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Overview

A phenomenon unique to algebraic geometry is that algebraic sets
occur naturally in families, which themselves carry the structure of
an algebraic set. The main point is that we can vary the
coefficients of the defining equations.

1. The space of hypersurfaces of degree d

2. Linear systems of plane curves

3. Grassmannians



The family of hypersurfaces
The family of hypersurfaces X ⊂ Pn of degree d is a projective
space:
Proposition. Let L(n, d) = K [x0, . . . , xn]d denote the K-vector
space of polynomials of degree d. Then the

(d+n
n

)
− 1-dimensional

projective space P(L(n, d)) is in bijection with the set of
hypersurfaces of degree d.

Proof. The equation f of an hypersurface X = V (f ) is uniquely
determined up to a scalar at least in case that f has no multiple
factors. In particular, the set

{X ⊂ Pn | X is an irreducible hypersurface of degree d}
is in bijection with a Zariski open subset of P(L(n, d)). This gives
this set the structure of a quasi-projective variety. We consider the
projective space of all equations for simplicity, since the set of
reducible or not square-free polynomials has a complicated
structure.



The families of reducible hypersurfaces
Remark. Let d = d1 + d2. The set of reducible hypersurfaces

{[f ] ∈ P(L(n, d)) | f = f1f2 with deg fi = di}
is the image of the morphism

P(L(n, d1))× P(L(n, d2))→ P(L(n, d)), ([f1], [f2]) 7→ [f1f2].

Hence it is a projective variety. In case of d1 6= d2 it is a birational
linear projection from the Segre embedding of
P(L(n, d1))× P(L(n, d2)) hence of large degree.
Example. The map

P(L(n, 1))→ P(L(n, d)), [`] 7→ [`d ]

can be identified with the Veronese embedding

ρn,d : Pn → P(d+n
n )−1.



V2,2 revisited
In the special case of plane conics we have the following:
We write the equation of a plane conic in the form

q(x , y , z) =
(
x y z

)w0 w1 w3

w1 w2 w4

w3 w4 w5

x
y
z


and identify P5 = P(L(2, 2)). Then the Veronese surface V2,2 ⊂ P5

corresponds to the squares of linear forms, i.e., to double lines,
and

V (det

w0 w1 w3

w1 w2 w4

w3 w4 w5

) ⊂ P5

corresponds to the set of reducible conics, i.e., to pairs of lines.



Linear systems of hypersurfaces
Definition. A linear system of hypersurfaces is a projective space
P(L) ⊂ P(L(n, d)) for a linear subspace L ⊂ L(n, d). We speak of
a pencil if P(L) ∼= P1. A net or web is a linear system of
dimension 2 and 3 respectively.

Example. A pencil of conics contains counted with multiplicity
precisely three reducible conics unless all conics are reducible
because

deg det

w0 w1 w3

w1 w2 w4

w3 w4 w5

 = 3.

A general net of conics contains no double lines because a general
P2 ⊂ P5 does not intersect the Veronese surface V2,2 ⊂ P5.



Linear systems of plane curves
In the following we study linear systems of plane curves and
abbreviate our notation:

L(d) = L(2, d) (= K [x , y , z ]d).

Definition. Let P(L) ⊂ P(L(d)) be a linear system of plane
curves. A point p ∈ P2 is called a base point of P(L) if p ∈ V (f )
for all f ∈ L(d).
Let p1, . . . , ps ∈ P2 be distinct points and let r1, . . . , rs be positive
integers. Then we set

L(d ; r1p1, . . . , rsps) := {f ∈ L(d) | f has multiplicity ri at pi ∀i}.

P(L(d ; r1p1, . . . , rsps)) is called the linear system of plane curves of
degree d with assigned base points pi of multiplicity ri .



Dimensions of linear systems of plane curves
Proposition. Let p1, . . . , ps ∈ P2 be distinct points and let
r1, . . . , rs be positive integers. Then

dimK L(d ; r1p1, . . . , rsps) ≥
(
d + 2

2

)
−

s∑
i=1

(
ri + 1

2

)
and equality holds if d >

∑s
i=1 ri .

Proof. Since L(d ; r1p1, . . . , rsps) =
⋂s

i=1 L(d ; ripi ) it suffices to
prove that

L(d ; rp) ⊂ L(d)

has codimension
(r+1

2

)
for the first statement. If p = [0 : 0 : 1],

then f ∈ L(d ; rp) iff in the affine equation

f (x1, x2, 1) =
∑
|α|≤d

fαx
α

the coefficients fα vanish for |α| ≤ r . These are
(r+1

2

)
coefficients.



Dimensions of linear systems of plane curves
The second statement is proved by induction on

∑
ri . The key step

is to prove that L(d ; r1p1, . . . , rsps) ⊂ L(d ; (r1 − 1)p1, . . . , rsps)
has the maximal possible codimension r1 + 1 in case d >

∑s
i=1 ri .

We leave this as an exercise.

Example. The inequality might be strict if the points lie in special
position. For example in case p1, . . . , p4 lie on a line we have

dimP(L(2; p1, . . . , p4)) = 2.

In all other cases P(L(2; p1, . . . , p4)) is a pencil as expected(2+2
2

)
− 4 · 1− 1 = 1.



Dimensions of linear systems of plane curves in case of
general points

L(d ; r1p1, . . . , rsps) ⊂ L(d) is defined by a linear system of
equations whose coefficients are polynomials in the coordinates
[ai : bi : ci ] of pi . Thus there exists an open subset

U ⊂ P2 × . . .× P2

of the product of s copies of P2 such that dimK L(d ; r1p1, . . . , rsps)
takes its minimal value for all tuples (p1, . . . , ps) ∈ U.

The minimal value can be larger than
(d+2

2

)
−
∑(ri+1

2

)
.

Example. dim L(4; 2p1, . . . , 2p5) ≥ 1 although
(4+2

2

)
− 5 · 3 = 0.

The reason is that L(2; p1, . . . , p5) ≥ 1 and the equation q of a
conic through the five points yields a non-zero quartic
q2 ∈ L(4; 2p1, . . . , 2p5).



Dimensions of linear systems in case of simple base points.
It is on-going reseach to characterize those multiplicities r1, . . . , rs
for which dim L(d ; r1p1, . . . , rsps) =

(d+2
2

)
−
∑s

i=1

(ri+1
2

)
holds for

a general collection of points p1, . . . , ps . Ciro Ciliberto and Rick
Miranda are leading experts in this line of research.

Proposition. Let p1, . . . , ps be a general tuple of points in P2.
Then

dim L(d ; p1, . . . , ps) =

(
d + 2

2

)
− s

as long as the right hand side is non-negative.

Proof. We have to prove that the Zariski-open subset
U ⊂ P2 × . . .× P2 where equality holds is non-empty. Suppose
dimK L(d ; p1, . . . , ps−1) 6= 0. Choose a non-zero
f ∈ L(d ; p1, . . . , ps−1) and a point ps /∈ V (f ). Then
L(d ; p1, . . . , ps) ⊂ L(d ; p1, . . . , ps−1) has (the maximal possible)
codimension 1, and U 6= ∅ follows by induction on s.



The Grassmannian
We now turn to the description of families of varieties of larger
codimension. The first interesting case is perhaps the family of
lines in P3 or, equivalently, two dimensional subvector spaces
W ⊂ K 4.
Definition. Let 1 ≤ d < n be two integers. As a set we define the
Grassmannian

G(d , n) = {W ⊂ Kn |W is a subvector space of dimension d}.
If M = {A = (aij) ∈ Kd×n | rankA = d} ⊂ Adn denotes the
quasi-affine variety of d × n-matrices of maximal rank d , then we
can identify

G(d , n) = M/GL(d ,K )

with the set of orbits under the action

GL(d , n)×M → M, (B,A) 7→ BA.



The Grassmannian
Indeed, the map

M → G(d , n)

which maps the matrix

A =

a11 a12 . . . a1n
...

...
...

ad1 ad2 . . . adn


to the subspace W ⊂ Kn spanned by the rows of A is surjective.
The fibers correspond to the choices of a basis of W , i.e., to the
points of in the orbit GL(d ,K )A ⊂ M.

To give G(d , n) the structure of a projective variety we consider
the Plücker embedding. For a subset

I = {i1 < i2 < . . . < id} ⊂ {1, . . . , n}
of d elements we denote by AI the d × d-submatrix of A with
columns ik for k = 1, . . . , d .



The Plücker embedding
Consider the map

γ : G(d , n)→ P(n
d)−1, [A] 7→ [detAI ]

induced by all d × d-minors of A. This induces a well-defined map
because the d × d minors of A and BA differ by the common
factor detB ∈ K ∗ since det(BA)I = detB detAI and at least one
minor is non-zero because rankA = d .
In algebraic terms we have a variable pI in the homogeneous

coordinate ring of P(n
d)−1, and we define G(d , n) ⊂ P(n

d)−1 as the
projective variety defined by the ideal ker(γ∗) of the ring
homomorphism

γ∗ : K [pI ]→ K [aij ], pI 7→ detAI .

Proposition. The affine charts UI = {pI 6= 0} of P(n
d)−1 intersect

the Gassmannian in affine varieties G(d , n) ∩ UI
∼= Ad(n−d). In

particular it is a smooth projective variety of dimension d(n− d).



The charts of the Grassmannian
Proof. We consider UI ∩G(d , n) for I = {1, . . . , d}. The points
of γ−1(UI ) are represented by a matrices A′ with detA′I 6= 0. Thus
we have a distinguished representative A = (A′I )

−1A′ of shape

A =

1 0 a1,d+1 . . . a1n
. . .

...
...

0 1 ad ,d+1 . . . adn

 .

On this chart we have

p({1,...,d}\{i})∪{j} = (−1)d−jaij for j > d .

Every Plücker coordinate detAJ is a polynomial in the aij with
j > d . Thus interpreting these aij ’s in terms of the Plücker
coordinates p({1,...,d}\{i})∪{j} above and homogenizing with respect
to p{1,...,d} we obtain elements of ker(γ∗) which show that

G(d , n) ∩ U{1,...,d} is isomorphic to Ad(n−d). The arguments in
other charts a re analogous. In particular we see that G(n, d) is
covered by

(n
d

)
charts which are all needed to cover G(d , n).



The Plücker quadric
G(2, 4) ⊂ P5 is a hypersurface. It is actually a quadric. In terms of
coordinates p12, . . . , p34 the ideal is generated by the Plücker
quadric

p12p34 − p13p24 + p14p23.

We can see that this equation is satisfied for the minors of the
2× 4-matrix

A =

(
a11 a12 a13 a14
a21 a22 a23 a24

)
by expanding the determinant

0 = det


a11 a12 a13 a14
a21 a22 a23 a24
a11 a12 a13 a14
a21 a22 a23 a24


with respect to the first two rows. Thus
2(detA12 detA34 − detA13 detA24 + detA14 detA23) = 0 ∈ Z[aij ].



Stratification of the Grassmannians
Pn = G(1, n + 1) has a stratification by affine strata:

Pn = An ∪ Pn−1 = An ∪ An−1 ∪ . . . ∪ A1 ∪ A0.

A similar stratification exists for the Grassmannians. We describe
this for the case G(2, 4).

S12 = {
(

1 0 ∗ ∗
0 1 ∗ ∗

)
} ∼= A4

S13 = {
(

1 ∗ 0 ∗
0 0 1 ∗

)
} ∼= A3

S14 = {
(

1 ∗ ∗ 0
0 0 0 1

)
} ∼= A2 S23 = {

(
0 1 0 ∗
0 0 1 ∗

)
} ∼= A2

S24 = {
(

0 1 ∗ 0
0 0 0 1

)
} ∼= A1

S34 = {
(

0 0 1 0
0 0 0 1

)
} ∼= A0



Stratification of the Grassmannians
In which strata a point [A] ∈ G(d , n) lies depends on the row
echelon form of the matrix A ∈ Kd×n. The closure of the strata

Si1...id

is called a Schubert varieties. They are intensely studied objects
of algebraic geometry. The closure of the strata can also be
characterized by how the corresponding linear subspace intersect
the subspaces of a complete flag of linear subspaces.
We illustrate this in case of G(2, 4). Consider the flag

p0 ⊂ L0 ⊂ P0 ⊂ P3

of the point, line and plane defined by

V (x0, x1, x2) ⊂ V (x0, x1) ⊂ V (x0) ⊂ P3.



Stratification of the Grassmannian G(2, 4)

S12 = G(2, 4)

S13 = {L ∈ G(2, 4) | L ∩ L0 6= ∅}

S14 = {L | p0 ∈ L} S23 = {L | L ⊂ P0}

S24 = {L | p0 ∈ L ⊂ P0} ∼= P1

S34 = {L0}
Corollary. The set of lines L in the affine three space is the quasi
projective variety

{L ⊂ A3 | L is a line} = G(2, 4) \ S23
where S23 = P2 is the space of lines contained in the plane at
infinity of P3.



Schubert calculus
Hermann Schubert (1848-1911) developed a general machinery to
solve enumerative problems. For example: How many lines
intersect four given lines in P3. Here is how Schubert would argue.
Take L1, . . . , L4 into special position. Then there are visibly
precisely 2 lines intersecting all four.

One of Schubert’s most famous result is that 5 general conics are
tangent to precisely 3264 smooth conics. To put Schubert calculus
on a solid foundation was Hilbert’s 15th problem.


