Algebraic Geometry, Lecture 3

Frank-Olaf Schreyer

Saarland University, Perugia 2021

Overview

1. Gröbner basis
2. Buchberger's criterion
3. Modules

Gröbner basis

We call the definition.
Definition. Let $>$ be a global monomial order and
$I \subset K\left[x_{1}, \ldots, x_{n}\right]$ an ideal. The lead term ideal of I is the ideal generated by the lead terms of elements of I :

$$
\operatorname{Lt}(I)=(\{\operatorname{Lt}(f) \mid f \in I\})
$$

Elements $f_{1}, \ldots, f_{r} \in I$ are a Gröbner basis of I if

$$
\operatorname{Lt}(I)=\left(\operatorname{Lt}\left(f_{1}\right), \ldots, \operatorname{Lt}\left(f_{r}\right)\right)
$$

Proposition. Let $f_{1}, \ldots, f_{r} \in I$ be a Gröbner basis of I and $f \in K\left[x_{1}, \ldots, x_{n}\right]$. Consider the remainder h of f divided by f_{1}, \ldots, f_{r}. Then

$$
f \in I \Longleftrightarrow h=0
$$

Macaulay's theorem

Theorem. Let f_{1}, \ldots, f_{r} be a Gröbner basis of an ideal $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ with respect to a global monomial order. Then the monomials $\left\{x^{\alpha} \mid x^{\alpha} \notin \operatorname{Lt}(I)\right\}$ represent a K-vector space basis for $K\left[x_{1}, \ldots, x_{n}\right] / I$.
Proof. Let \bar{f} be an element of $K\left[x_{1}, \ldots, x_{n}\right] / I$ and $f \in K\left[x_{1}, \ldots, x_{n}\right]$ a representative. Then the remainder h of f divided by f_{1}, \ldots, f_{r} represents the same element: $\bar{f}=\bar{h}$. Since $\operatorname{Lt}(I)=\left(\operatorname{Lt}\left(f_{1}, \ldots, \operatorname{Lt}\left(f_{r}\right)\right)\right.$, the remainder h is a linear combination of the $x^{\alpha} \notin \operatorname{Lt}(I)$ by condition 2 b$)$. So the $\overline{x^{\alpha}}$ with $x^{\alpha} \notin \operatorname{Lt}(I)$ span $K\left[x_{1}, \ldots, x_{n}\right] / I$ as an K-vector space. They are linearly independent by the proposition.

Example of a division

Consider $f_{1}=x^{2} y-y^{3}, f_{2}=x^{3} \in K[x, y]$ and $>_{\text {lex }}$. Then

$$
\operatorname{Lt}\left(f_{1}\right)=x^{2} y \text { and } \operatorname{Lt}\left(f_{2}\right)=x^{3}
$$

We divide $f=x^{3} y$ by f_{1}, f_{2} :

$$
\begin{aligned}
f & =x \operatorname{Lt}\left(f_{1}\right)+0 \operatorname{Lt}\left(f_{2}\right)+0, \text { hence } \\
f^{(1)} & =f-\left(x f_{1}+0 f_{2}+0\right)=x y^{3} .
\end{aligned}
$$

In the second step we obtain

$$
\begin{aligned}
& x y^{3}=0 \operatorname{Lt}\left(f_{1}\right)+0 \operatorname{Lt}\left(f_{2}\right)+x y^{3}, \text { hence } \\
& f^{(2)}=f^{(1)}-\left(0 f_{1}+0 f_{2}+x y^{3}\right)=0 .
\end{aligned}
$$

The final result is

$$
f=x f_{1}+0 f_{2}+x y^{3} .
$$

Same example in a different order

We consider $f_{1}=x^{2} y-y^{3}, f_{2}=x^{3} \in K[x, y]$ and $>_{\text {lex }}$ with lead terms $\operatorname{Lt}\left(f_{1}\right)=x^{2} y$ and $\operatorname{Lt}\left(f_{2}\right)=x^{3}$ as before.
If we divide $f=x^{3} y$ by $x^{3}, x^{2} y-y^{3}$ we obtain

$$
\begin{aligned}
f & \left.=y \operatorname{Lt}\left(x^{3}\right)+0 \operatorname{Lt}\left(x^{2} y-y^{3}\right)\right)+0, \text { hence } \\
f^{(0)} & =x^{3} y-\left(y\left(x^{3}\right)+0\left(x^{2} y-y^{3}\right)+0\right)=0
\end{aligned}
$$

and the final result is $f=y f_{2}+0 f_{1}+0$. Thus
Warning: The remainder of the division by polynomials f_{1}, \ldots, f_{r}
can depend on the order of f_{1}, \ldots, f_{r} !
This does not happen if f_{1}, \ldots, f_{r} is a Gröbner basis.

Warning

The remainder of the division by polynomials f_{1}, \ldots, f_{r} can depend on the order of f_{1}, \ldots, f_{r} ! The reason is that the condition 2 a) depends very much on the order.

Theorem. Let $>$ be a global monomial order on $K\left[x_{1}, \ldots, x_{n}\right]$, $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ non-zero polynomials. For every
$f \in K\left[x_{1}, \ldots, x_{n}\right]$ there exist uniquely determined $g_{1}, \ldots, g_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ and a unique remainder $h \in K\left[x_{1}, \ldots, x_{n}\right]$ satisfying

1) $f=g_{1} f_{1}+\ldots+g_{r} f_{r}+h$

2a) No term of $g_{j} \operatorname{Lt}\left(f_{j}\right)$ is divisible by a lead term $\operatorname{Lt}\left(f_{i}\right)$ for some $i<j$.
2b) No term of h is divisible by a lead term $\operatorname{Lt}\left(f_{j}\right)$.

Buchberger's Criterion

Let $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ be polynomials. How to compute a Gröbner basis for $I=\left(f_{1}, \ldots, f_{r}\right)$?
The easiest way to discover a new lead term of $\left(f_{1}, \ldots, f_{r}\right)$ is to consider a difference where the lead terms cancel. Consider the monomial $m_{i j}=\operatorname{gcd}\left(\operatorname{Lt}\left(f_{i}\right), \operatorname{Lt}\left(f_{j}\right)\right)$ and the S-polynomial

$$
S\left(f_{i}, f_{j}\right):=\frac{\operatorname{Lt}\left(f_{i}\right)}{m_{i j}} f_{j}-\frac{\operatorname{Lt}\left(f_{j}\right)}{m_{i j}} f_{i} .
$$

The lead term in this difference cancels, so we might discover a new lead term of I.
Theorem. Let $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ be polynomials and $>$ be a global monomial order. f_{1}, \ldots, f_{r} is a Gröbner basis for $\left(f_{1}, \ldots, f_{r}\right)$ if and only if for each pair i, j the remainder of $S\left(f_{i}, f_{j}\right)$ divided by f_{1}, \ldots, f_{r} is zero.

Buchberger's algorithm

Algorithm.

Input. A global monomial order and polynomials f_{1}, \ldots, f_{r}.
Output. A Gröbner basis f_{1}, \ldots, f_{s} for $\left(f_{1}, \ldots, f_{r}\right)$.

1. Initialize $s=r$ and $L=\left\{f_{1}, \ldots, f_{r}\right\}$
2. for all i, j with $1 \leq i<j \leq s$ do
compute the remainder h of $S\left(f_{i}, f_{j}\right)$; if $h \neq 0$ then

$$
f_{s+1}=h ; L=L \cup\left\{f_{s+1}\right\} ; s=s+1 ;
$$

3. return L.

The algorithm terminates since monomial ideals are finitely generated.

Example

Consider $f_{1}=x^{3}, f_{2}=x^{2} y-y^{3} \in K[x, y]$ and $>_{\text {lex }}$. Then

$$
\operatorname{Lt}\left(f_{1}\right)=x^{3}, \operatorname{Lt}\left(f_{2}\right)=x^{2} y
$$

$m_{12}=x^{2}$ and $S\left(f_{1}, f_{2}\right)=x f_{2}-y f_{1}=-x y^{3}=0 f_{1}+0 f_{2}-x y^{3}$ has a non-zero remainder. Thus

$$
f_{3}=-x y^{3} .
$$

$$
\begin{aligned}
& m_{13}=x \text { and } S\left(f_{1}, f_{3}\right)=x^{2} f_{3}-\left(-y^{3}\right) f_{1}=0 . \\
& m_{23}=x y \text { and } S\left(f_{2}, f_{3}\right)=x f_{3}-\left(-y^{2}\right) f_{2}=-y^{5} . \text { Thus }
\end{aligned}
$$

$$
f_{4}=-y^{5}
$$

The S-polynomials $S\left(f_{1}, f_{4}\right)$ and $S\left(f_{3}, f_{4}\right)$ are zero. $m_{24}=y$ and $S\left(f_{2}, f_{4}\right)=x^{2} f_{4}-\left(-y^{4}\right) f_{2}=-y^{7}=0 f_{1}+0 f_{2}+0 f_{3}+y^{2} f_{4}+0$.

So f_{1}, \ldots, f_{4} is a Gröbner basis.

Example: 3×3-minors of a 3×5-matrix

Consider the ideal $I \subset K\left[x_{1}, \ldots, z_{5}\right]$ generated by the 3 minors of the matrix

$$
\left(\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} \\
z_{1} & z_{2} & z_{3} & z_{4} & z_{5}
\end{array}\right)
$$

and $>_{\text {lex }}$. There are $10=\binom{5}{3}$ minors. To check that they form a Gröbner basis we have to check $45=\binom{10}{2}$ S-pairs. Changing slightly the focus in Buchberger's criterion one can get away with 15 tests only.
We are going to explain how this works next.
Definition. Let $I, J \subset R$ be ideals in a ring. Then the colon ideal is

$$
I: J=\{r \in R \mid r J \subset I\} .
$$

A second version of Buchberger's criterion

Notation. Let $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ be polynomials. We define $r-1$ monomial ideals as follows

$$
M_{j}=\left(\operatorname{Lt}\left(f_{1}\right), \ldots, \operatorname{Lt}\left(f_{j-1}\right)\right): \operatorname{Lt}\left(f_{j}\right)
$$

for $j=2, \ldots, r$.
For each minimal generator $x^{\alpha} \in M_{j}$ the multiple $x^{\alpha} f_{j}$ is an expression not allowed in the division theorem by condition 2 a).

Theorem. With notation as above, f_{1}, \ldots, f_{r} is a Gröbner basis for $\left(f_{1}, \ldots, f_{r}\right)$ if and only if for each $j=2, \ldots, r$ and each minimal generator x^{α} of M_{j} the remainder of $x^{\alpha} f_{j}$ divided by f_{1}, \ldots, f_{r} is zero.

Example: 3×3-minors of a 3×5-matrix, 2

			$\left(\begin{array}{llll}x_{2} & x_{3} & x_{4} & x_{5} \\ y_{2} & y_{3} & y_{4} & y_{5} \\ z_{2} & z_{3} & z_{4} & z_{5}\end{array}\right)$
j	$\operatorname{Lt}\left(f_{j}\right)$	M_{j}	
1	$x_{1} y_{2} z_{3}$	0	$\left(\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4}\end{array}\right.$
2	$x_{1} y_{2} z_{4}$	$\left(z_{3}\right)$	$0=\operatorname{det}\left(\begin{array}{llll}y_{1} & y_{2} & y_{3} & y_{4}\end{array}\right.$
3	$x_{1} y_{3} z_{4}$	$\left(y_{2}\right)$	$=\operatorname{det}\left(\begin{array}{llll}z_{1} & z_{2} & z_{3} & z_{4} \\ z_{1} & z_{2} & z_{3} & z_{4}\end{array}\right.$
4	$x_{2} y_{3} z_{4}$	$\left(x_{1}\right)$	$\left(\begin{array}{llll}z_{1} & z_{2} & z_{3} & z_{4}\end{array}\right)$
5	$x_{1} y_{2} z_{5}$	$\left(z_{3}, z_{4}\right)$	$\Longrightarrow z_{3} f_{2}=z_{4} f_{1}+z_{2} f_{3}-z_{1} f_{4}+0$.
6	$x_{1} y_{3} z_{5}$	$\left(y_{2}, z_{4}\right)$	
7	$x_{2} y_{3} z_{5}$	$\left(x_{1}, z_{4}\right)$	Similarly, all other remainders are
8	$x_{1} y_{4} z_{5}$	$\left(y_{2}, y_{3}\right)$	zero.
9	$x_{2} y_{4} z_{5}$	$\left(x_{1}, y_{3}\right)$	Hence f_{1}, \ldots, f_{10} is a Gröbner basis.
10	$x_{3} y_{4} z_{5}$	$\left(x_{1}, x_{2}\right)$	

Modules

For our proof of Buchberger's criterion we need the concept of modules and division with remainder in free modules.

Definition. Let R be a ring. An R-module M is an abelian group together with an operation

$$
R \times M \rightarrow M,(a, m) \mapsto a m
$$

satisfying the usual associativity and distributivity laws:

$$
\begin{aligned}
a(b m) & =(a b) m \quad \forall a, b \in R \forall m \in M \\
1 m & =m \quad \forall m \in M \\
(a+b) m & =a m+b m \quad \forall a, b \in R \forall m \in M \\
a(m+n) & =a m+a n \quad \forall a \in R \forall m, n \in M
\end{aligned}
$$

For a field K a K-module is simply a K-vector space.

Examples of modules

R is an R-module.
A free module is module of the form $F=R^{r}$. It has basis vectors $e_{j}=(0, \ldots, 1, \ldots, 0)^{t}$ with 1 in the j-th position. An element of F is simply a column vector

$$
\left(a_{1}, \ldots, a_{r}\right)^{t}=\sum a_{j} e_{j}
$$

with entries in R.
A submodule $N \subset M$ of a module M is a subgroup N satisfying

$$
n \in N \Rightarrow a n \in N \quad \forall a \in R \forall n \in N
$$

Thus an ideal I is a submodule of R.
If $f_{1}, \ldots f_{r} \in M$, then

$$
\left(f_{1} \ldots, f_{r}\right)=\left\{g_{1} f_{1}+\ldots+g_{r} f_{r} \mid g_{j} \in R\right\}
$$

is a submodule of M.

Homomorphism

An R-module homomorphism $\varphi: M \rightarrow N$ is a group homomorphism satisfying additionally $\varphi(a m)=a \varphi(m)$.
$\operatorname{ker} \varphi$ is a submodule of M and $\operatorname{im}(\varphi)$ is a submodule of N.
To say that a module is generated by elements $f_{1}, \ldots, f_{r} \in M$ is equivalent to say that

$$
\varphi: F=R^{r} \rightarrow M, e_{j} \mapsto f_{j}
$$

defines a surjective R-module homomorphism.
Definition. A syzygy between elements $f_{1}, \ldots, f_{r} \in M$ is an element $\left(g_{1}, \ldots, g_{r}\right)^{t} \in F=R^{r}$ satisfying $\sum g_{j} f_{j}=0$. In other words, it is an element of $\operatorname{ker} \varphi$ where $\varphi: F=R^{r} \rightarrow M$ is defined by $e_{j} \mapsto f_{j}$.

Quotient modules

Let $N \subset M$ be a submodule. Then

$$
f \equiv g \quad \bmod N: \Leftrightarrow f-g \in N
$$

defines an equivalence relation on M with equivalence classes

$$
f+N=\{f+h \mid h \in N\} .
$$

The set of equivalence classes

$$
M / N=\{f+N \mid f \in M\} \subset 2^{M}
$$

carries a unique R-module structure such that

$$
\pi: M \rightarrow M / N, f \mapsto f+N
$$

becomes an R-module homomorphism.

Homomorphism theorem

Theorem. Let $\varphi: M \rightarrow N$ be an R-module homomorphism. Then

$$
\operatorname{im}(\varphi) \cong M / \operatorname{ker}(\varphi)
$$

Proof. $f+\operatorname{ker}(\varphi) \mapsto \varphi(f)$ is a well-defined isomorphism.

For $\varphi: M \rightarrow N$ we define the cokernel of φ as

$$
\operatorname{coker}(\varphi)=N / \operatorname{im}(\varphi)
$$

Finitely presented modules

Definition. An R-module M is finitely generated if there exists a surjection

$$
\varphi: R^{r} \rightarrow M
$$

M is finitely presentable if one can choose the surjection $\varphi: R^{r} \rightarrow M$ such that the syzygy module $\operatorname{ker}(\varphi)$ is finitely generated as well. In that case we obtain a sequence

$$
R^{s} \xrightarrow{\varphi_{1}} R^{r} \xrightarrow{\varphi} M \longrightarrow 0
$$

with $\operatorname{im}\left(\varphi_{1}\right)=\operatorname{ker}(\varphi)$ and $M \cong \operatorname{coker}\left(\varphi_{1}\right)$. Such sequence is called a finite presentation of M.
Since a homomorphism $R^{s} \rightarrow R^{r}$ between free modules can be described by $r \times s$-matrices with entries in R, we can simply specify a finitely presented module via a matrix φ_{1}.

Tasks of constructive module theory

Not so easy are the following tasks: Given two finitely presented modules

$$
R^{s} \xrightarrow{\varphi_{1}} R^{r} \longrightarrow M \longrightarrow 0
$$

and

$$
R^{\ell} \xrightarrow{\psi_{1}} R^{k} \longrightarrow N \longrightarrow 0
$$

1. decide whether M and N are isomorphic,
2. compute the R-module $\operatorname{Hom}(M, N)$ of all R-module homomorphisms.
We will approach these questions in case of $R=K\left[x_{1}, \ldots, x_{n}\right]$ using Gröbner basis for submodules of free modules.
