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Gröbner basis
We call the definition.
Definition. Let > be a global monomial order and
I ⊂ K [x1, . . . , xn] an ideal. The lead term ideal of I is the ideal
generated by the lead terms of elements of I :

Lt(I ) = ({Lt(f ) | f ∈ I}).

Elements f1, . . . , fr ∈ I are a Gröbner basis of I if

Lt(I ) = (Lt(f1), . . . , Lt(fr )).

Proposition. Let f1, . . . , fr ∈ I be a Gröbner basis of I and
f ∈ K [x1, . . . , xn]. Consider the remainder h of f divided by
f1, . . . , fr . Then

f ∈ I ⇐⇒ h = 0.



Macaulay’s theorem

Theorem. Let f1, . . . , fr be a Gröbner basis of an ideal
I ⊂ K [x1, . . . , xn] with respect to a global monomial order. Then
the monomials {xα | xα /∈ Lt(I )} represent a K -vector space basis
for K [x1, . . . , xn]/I .

Proof. Let f be an element of K [x1, . . . , xn]/I and
f ∈ K [x1, . . . , xn] a representative. Then the remainder h of f
divided by f1, . . . , fr represents the same element: f = h. Since
Lt(I ) = (Lt(f1, . . . , Lt(fr )), the remainder h is a linear combination
of the xα /∈ Lt(I ) by condition 2b). So the xα with xα /∈ Lt(I )
span K [x1, . . . , xn]/I as an K -vector space. They are linearly
independent by the proposition.



Example of a division

Consider f1 = x2y − y3, f2 = x3 ∈ K [x , y ] and >lex. Then

Lt(f1) = x2y and Lt(f2) = x3.

We divide f = x3y by f1, f2:

f = x Lt(f1) + 0 Lt(f2) + 0, hence

f (1) = f − (xf1 + 0f2 + 0) = xy3.

In the second step we obtain

xy3 = 0 Lt(f1) + 0 Lt(f2) + xy3, hence

f (2) = f (1) − (0f1 + 0f2 + xy3) = 0.

The final result is
f = xf1 + 0f2 + xy3.



Same example in a different order

We consider f1 = x2y − y3, f2 = x3 ∈ K [x , y ] and >lex with lead
terms Lt(f1) = x2y and Lt(f2) = x3 as before.

If we divide f = x3y by x3, x2y − y3 we obtain

f = y Lt(x3) + 0 Lt(x2y − y3)) + 0, hence

f (0) = x3y − (y(x3) + 0(x2y − y3) + 0) = 0

and the final result is f = yf2 + 0f1 + 0. Thus

Warning: The remainder of the division by polynomials f1, . . . , fr
can depend on the order of f1, . . . , fr !
This does not happen if f1, . . . , fr is a Gröbner basis.



Warning

The remainder of the division by polynomials f1, . . . , fr can depend
on the order of f1, . . . , fr ! The reason is that the condition 2a)
depends very much on the order.

Theorem. Let > be a global monomial order on K [x1, . . . , xn],
f1, . . . , fr ∈ K [x1, . . . , xn] non-zero polynomials. For every
f ∈ K [x1, . . . , xn] there exist uniquely determined
g1, . . . , gr ∈ K [x1, . . . , xn] and a unique remainder
h ∈ K [x1, . . . , xn] satisfying

1) f = g1f1 + . . .+ gr fr + h

2a) No term of gj Lt(fj) is divisible by a lead term Lt(fi ) for some
i < j .

2b) No term of h is divisible by a lead term Lt(fj).
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Buchberger’s Criterion
Let f1, . . . , fr ∈ K [x1, . . . , xn] be polynomials. How to compute a
Gröbner basis for I = (f1, . . . , fr )?
The easiest way to discover a new lead term of (f1, . . . , fr ) is to
consider a difference where the lead terms cancel. Consider the
monomial mij = gcd(Lt(fi ), Lt(fj)) and the S-polynomial

S(fi , fj) :=
Lt(fi )

mij
fj −

Lt(fj)

mij
fi .

The lead term in this difference cancels, so we might discover a
new lead term of I .

Theorem. Let f1, . . . , fr ∈ K [x1, . . . , xn] be polynomials and > be
a global monomial order. f1, . . . , fr is a Gröbner basis for
(f1, . . . , fr ) if and only if for each pair i , j the remainder of S(fi , fj)
divided by f1, . . . , fr is zero.



Buchberger’s algorithm

Algorithm.
Input. A global monomial order and polynomials f1, . . . , fr .
Output. A Gröbner basis f1, . . . , fs for (f1, . . . , fr ).

1. Initialize s = r and L = {f1, . . . , fr}
2. for all i , j with 1 ≤ i < j ≤ s do

compute the remainder h of S(fi , fj);
if h 6= 0 then

fs+1 = h; L = L ∪ {fs+1}; s = s + 1;

3. return L.

The algorithm terminates since monomial ideals are finitely
generated.



Example

Consider f1 = x3, f2 = x2y − y3 ∈ K [x , y ] and >lex. Then

Lt(f1) = x3, Lt(f2) = x2y

m12 = x2 and S(f1, f2) = xf2 − yf1 = −xy3 = 0f1 + 0f2 − xy3 has a
non-zero remainder. Thus

f3 = −xy3.

m13 = x and S(f1, f3) = x2f3 − (−y3)f1 = 0.
m23 = xy and S(f2, f3) = xf3 − (−y2)f2 = −y5. Thus

f4 = −y5

The S-polynomials S(f1, f4) and S(f3, f4) are zero. m24 = y and
S(f2, f4) = x2f4 − (−y4)f2 = −y7 = 0f1 + 0f2 + 0f3 + y2f4 + 0.

So f1, . . . , f4 is a Gröbner basis.



Example: 3× 3-minors of a 3× 5-matrix

Consider the ideal I ⊂ K [x1, . . . , z5] generated by the 3 minors of
the matrix x1 x2 x3 x4 x5

y1 y2 y3 y4 y5
z1 z2 z3 z4 z5


and >lex. There are 10 =

(5
3

)
minors. To check that they form a

Gröbner basis we have to check 45 =
(10
2

)
S-pairs. Changing

slightly the focus in Buchberger’s criterion one can get away with
15 tests only.
We are going to explain how this works next.
Definition. Let I , J ⊂ R be ideals in a ring. Then the colon ideal
is

I : J = {r ∈ R | rJ ⊂ I}.
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A second version of Buchberger’s criterion

Notation. Let f1, . . . , fr ∈ K [x1, . . . , xn] be polynomials. We
define r − 1 monomial ideals as follows

Mj = (Lt(f1), . . . , Lt(fj−1)) : Lt(fj)

for j = 2, . . . , r .
For each minimal generator xα ∈ Mj the multiple xαfj is an
expression not allowed in the division theorem by condition 2a).

Theorem. With notation as above, f1, . . . , fr is a Gröbner basis for
(f1, . . . , fr ) if and only if for each j = 2, . . . , r and each minimal
generator xα of Mj the remainder of xαfj divided by f1, . . . , fr is
zero.



Example: 3× 3-minors of a 3× 5-matrix, 2x1 x2 x3 x4 x5
y1 y2 y3 y4 y5
z1 z2 z3 z4 z5


j Lt(fj) Mj

1 x1y2z3 0
2 x1y2z4 (z3)
3 x1y3z4 (y2)
4 x2y3z4 (x1)
5 x1y2z5 (z3, z4)
6 x1y3z5 (y2, z4)
7 x2y3z5 (x1, z4)
8 x1y4z5 (y2, y3)
9 x2y4z5 (x1, y3)
10 x3y4z5 (x1, x2)

0 = det


x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
z1 z2 z3 z4


=⇒ z3f2 = z4f1 + z2f3 − z1f4 + 0.

Similarly, all other remainders are
zero.

Hence f1, . . . , f10 is a Gröbner basis.



Modules
For our proof of Buchberger’s criterion we need the concept of
modules and division with remainder in free modules.

Definition. Let R be a ring. An R-module M is an abelian group
together with an operation

R ×M → M, (a,m) 7→ am

satisfying the usual associativity and distributivity laws:

a(bm) = (ab)m ∀a, b ∈ R ∀m ∈ M

1m = m ∀m ∈ M

(a + b)m = am + bm ∀a, b ∈ R ∀m ∈ M

a(m + n) = am + an ∀a ∈ R ∀m, n ∈ M

For a field K a K -module is simply a K -vector space.



Examples of modules
R is an R-module.
A free module is module of the form F = R r . It has basis vectors
ej = (0, . . . , 1, . . . , 0)t with 1 in the j-th position. An element of F
is simply a column vector

(a1, . . . , ar )t =
∑

ajej

with entries in R.
A submodule N ⊂ M of a module M is a subgroup N satisfying

n ∈ N ⇒ an ∈ N ∀a ∈ R ∀n ∈ N.

Thus an ideal I is a submodule of R.
If f1, . . . fr ∈ M, then

(f1 . . . , fr ) = {g1f1 + . . .+ gr fr | gj ∈ R}
is a submodule of M.



Homomorphism

An R-module homomorphism ϕ : M → N is a group
homomorphism satisfying additionally ϕ(am) = aϕ(m).

kerϕ is a submodule of M and im(ϕ) is a submodule of N.

To say that a module is generated by elements f1, . . . , fr ∈ M is
equivalent to say that

ϕ : F = R r → M, ej 7→ fj

defines a surjective R-module homomorphism.

Definition. A syzygy between elements f1, . . . , fr ∈ M is an
element (g1, . . . , gr )t ∈ F = R r satisfying

∑
gj fj = 0.

In other words, it is an element of kerϕ where ϕ : F = R r → M is
defined by ej 7→ fj .
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Quotient modules

Let N ⊂ M be a submodule. Then

f ≡ g mod N :⇔ f − g ∈ N

defines an equivalence relation on M with equivalence classes

f + N = {f + h | h ∈ N}.

The set of equivalence classes

M/N = {f + N | f ∈ M} ⊂ 2M

carries a unique R-module structure such that

π : M → M/N, f 7→ f + N

becomes an R-module homomorphism.



Homomorphism theorem

Theorem. Let ϕ : M → N be an R-module homomorphism. Then

im(ϕ) ∼= M/ ker(ϕ).

Proof. f + ker(ϕ) 7→ ϕ(f ) is a well-defined isomorphism.

For ϕ : M → N we define the cokernel of ϕ as

coker(ϕ) = N/ im(ϕ).



Finitely presented modules

Definition. An R-module M is finitely generated if there exists a
surjection

ϕ : R r → M

M is finitely presentable if one can choose the surjection
ϕ : R r → M such that the syzygy module ker(ϕ) is finitely
generated as well. In that case we obtain a sequence

Rs ϕ1 // R r ϕ // M // 0

with im(ϕ1) = ker(ϕ) and M ∼= coker(ϕ1). Such sequence is called
a finite presentation of M.

Since a homomorphism Rs → R r between free modules can be
described by r × s-matrices with entries in R, we can simply
specify a finitely presented module via a matrix ϕ1.



Tasks of constructive module theory

Not so easy are the following tasks: Given two finitely presented
modules

Rs ϕ1 // R r // M // 0

and

R`
ψ1 // Rk // N // 0 ,

1. decide whether M and N are isomorphic,

2. compute the R-module Hom(M,N) of all R-module
homomorphisms.

We will approach these questions in case of R = K [x1, . . . , xn]
using Gröbner basis for submodules of free modules.
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