Algebraic Geometry, Lecture 3

Frank-Olaf Schreyer

Saarland University, Perugia 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Overview

- 1. Gröbner basis
- 2. Buchberger's criterion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

3. Modules

Gröbner basis

We call the definition.

Definition. Let > be a global monomial order and $I \subset K[x_1, \ldots, x_n]$ an ideal. The **lead term ideal** of I is the ideal generated by the lead terms of elements of I:

 $\mathsf{Lt}(I) = (\{\mathsf{Lt}(f) \mid f \in I\}).$

Elements $f_1, \ldots, f_r \in I$ are a **Gröbner basis** of I if

 $Lt(I) = (Lt(f_1), \ldots, Lt(f_r)).$

Proposition. Let $f_1, \ldots, f_r \in I$ be a Gröbner basis of I and $f \in K[x_1, \ldots, x_n]$. Consider the remainder h of f divided by f_1, \ldots, f_r . Then

$$f \in I \iff h = 0.$$

Macaulay's theorem

Theorem. Let f_1, \ldots, f_r be a Gröbner basis of an ideal $I \subset K[x_1, \ldots, x_n]$ with respect to a global monomial order. Then the monomials $\{x^{\alpha} \mid x^{\alpha} \notin Lt(I)\}$ represent a K-vector space basis for $K[x_1, \ldots, x_n]/I$.

Proof. Let \overline{f} be an element of $K[x_1, \ldots, x_n]/I$ and $f \in K[x_1, \ldots, x_n]$ a representative. Then the remainder h of f divided by f_1, \ldots, f_r represents the same element: $\overline{f} = \overline{h}$. Since $Lt(I) = (Lt(f_1, \ldots, Lt(f_r)))$, the remainder h is a linear combination of the $x^{\alpha} \notin Lt(I)$ by condition 2b). So the $\overline{x^{\alpha}}$ with $x^{\alpha} \notin Lt(I)$ span $K[x_1, \ldots, x_n]/I$ as an K-vector space. They are linearly independent by the proposition.

Example of a division

Consider
$$f_1 = x^2y - y^3$$
, $f_2 = x^3 \in K[x, y]$ and $>_{lex}$. Then
Lt $(f_1) = x^2y$ and Lt $(f_2) = x^3$.

We divide $f = x^3 y$ by f_1, f_2 :

$$f = x \operatorname{Lt}(f_1) + 0 \operatorname{Lt}(f_2) + 0$$
, hence
 $f^{(1)} = f - (xf_1 + 0f_2 + 0) = xy^3$.

In the second step we obtain

$$xy^3 = 0 \operatorname{Lt}(f_1) + 0 \operatorname{Lt}(f_2) + xy^3$$
, hence
 $f^{(2)} = f^{(1)} - (0f_1 + 0f_2 + xy^3) = 0.$

The final result is

$$f = xf_1 + 0f_2 + xy^3.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Same example in a different order

We consider $f_1 = x^2y - y^3$, $f_2 = x^3 \in K[x, y]$ and $>_{\text{lex}}$ with lead terms $Lt(f_1) = x^2 y$ and $Lt(f_2) = x^3$ as before. If we divide $f = x^3 y$ by x^3 , $x^2 y - y^3$ we obtain $f = v \operatorname{Lt}(x^3) + 0 \operatorname{Lt}(x^2 v - v^3)) + 0$, hence $f^{(0)} = x^3 v - (v(x^3) + 0(x^2 v - v^3) + 0) = 0$ and the final result is $f = yf_2 + 0f_1 + 0$. Thus

Warning: The remainder of the division by polynomials f_1, \ldots, f_r can depend on the order of f_1, \ldots, f_r !

This does not happen if f_1, \ldots, f_r is a Gröbner basis.

Warning

The remainder of the division by polynomials f_1, \ldots, f_r can depend on the order of f_1, \ldots, f_r ! The reason is that the condition 2a) depends very much on the order.

Theorem. Let > be a global monomial order on $K[x_1, ..., x_n]$, $f_1, ..., f_r \in K[x_1, ..., x_n]$ non-zero polynomials. For every $f \in K[x_1, ..., x_n]$ there exist uniquely determined $g_1, ..., g_r \in K[x_1, ..., x_n]$ and a unique remainder $h \in K[x_1, ..., x_n]$ satisfying 1) $f = g_1 f_1 + ... + g_r f_r + h$ 2a) No term of $g_j \operatorname{Lt}(f_j)$ is divisible by a lead term $\operatorname{Lt}(f_i)$ for some i < j.

2b) No term of h is divisible by a lead term $Lt(f_j)$.

Buchberger's Criterion

Let $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ be polynomials. How to compute a Gröbner basis for $I = (f_1, \ldots, f_r)$?

The easiest way to discover a new lead term of (f_1, \ldots, f_r) is to consider a difference where the lead terms cancel. Consider the monomial $m_{ij} = \text{gcd}(\text{Lt}(f_i), \text{Lt}(f_j))$ and the *S*-polynomial

$$S(f_i, f_j) := rac{\mathsf{Lt}(f_i)}{m_{ij}} f_j - rac{\mathsf{Lt}(f_j)}{m_{ij}} f_j.$$

The lead term in this difference cancels, so we might discover a new lead term of *I*.

Theorem. Let $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ be polynomials and > be a global monomial order. f_1, \ldots, f_r is a Gröbner basis for (f_1, \ldots, f_r) if and only if for each pair i, j the remainder of $S(f_i, f_j)$ divided by f_1, \ldots, f_r is zero.

Buchberger's algorithm

Algorithm.

Input. A global monomial order and polynomials f_1, \ldots, f_r . **Output.** A Gröbner basis f_1, \ldots, f_s for (f_1, \ldots, f_r) .

- 1. Initialize s = r and $L = \{f_1, \ldots, f_r\}$
- 2. for all *i*, *j* with $1 \le i < j \le s$ do compute the remainder *h* of $S(f_i, f_j)$; if $h \ne 0$ then $f_{s+1} = h$; $L = L \cup \{f_{s+1}\}$; s = s + 1;

3. return L.

The algorithm terminates since monomial ideals are finitely generated.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example

Consider
$$f_1=x^3, f_2=x^2y-y^3\in \mathcal{K}[x,y]$$
 and $>_{\mathrm{lex}}$. Then
 $\mathsf{Lt}(f_1)=x^3,\mathsf{Lt}(f_2)=x^2y$

 $m_{12} = x^2$ and $S(f_1, f_2) = xf_2 - yf_1 = -xy^3 = 0f_1 + 0f_2 - xy^3$ has a non-zero remainder. Thus

$$f_3 = -xy^3.$$

 $m_{13} = x$ and $S(f_1, f_3) = x^2 f_3 - (-y^3) f_1 = 0.$ $m_{23} = xy$ and $S(f_2, f_3) = x f_3 - (-y^2) f_2 = -y^5.$ Thus

$$f_4 = -y^5$$

The S-polynomials $S(f_1, f_4)$ and $S(f_3, f_4)$ are zero. $m_{24} = y$ and $S(f_2, f_4) = x^2 f_4 - (-y^4) f_2 = -y^7 = 0 f_1 + 0 f_2 + 0 f_3 + y^2 f_4 + 0$. So f_1, \ldots, f_4 is a Gröbner basis.

Example: 3×3 -minors of a 3×5 -matrix

Consider the ideal $I \subset K[x_1, \ldots, z_5]$ generated by the 3 minors of the matrix

$\left(x_{1} \right)$	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	x_5
<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>Y</i> 4	$\frac{y_5}{z_5}$
$\langle z_1 \rangle$	<i>z</i> ₂	Z3	<i>Z</i> 4	z5/

and $>_{\rm lex}$. There are $10 = \binom{5}{3}$ minors. To check that they form a Gröbner basis we have to check $45 = \binom{10}{2}$ S-pairs. Changing slightly the focus in Buchberger's criterion one can get away with 15 tests only.

We are going to explain how this works next.

Definition. Let $I, J \subset R$ be ideals in a ring. Then the **colon ideal** is

$$I: J = \{r \in R \mid rJ \subset I\}.$$

A second version of Buchberger's criterion

Notation. Let $f_1, \ldots, f_r \in K[x_1, \ldots, x_n]$ be polynomials. We define r - 1 monomial ideals as follows

$$M_j = (\mathsf{Lt}(f_1), \ldots, \mathsf{Lt}(f_{j-1})) : \mathsf{Lt}(f_j)$$

for j = 2, ..., r.

For each minimal generator $x^{\alpha} \in M_j$ the multiple $x^{\alpha}f_j$ is an expression not allowed in the division theorem by condition 2a).

Theorem. With notation as above, f_1, \ldots, f_r is a Gröbner basis for (f_1, \ldots, f_r) if and only if for each $j = 2, \ldots, r$ and each minimal generator x^{α} of M_j the remainder of $x^{\alpha}f_j$ divided by f_1, \ldots, f_r is zero.

Example: 3×3 -minors of a 3×5 -matrix, 2

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ y_1 & y_2 & y_3 & y_4 & y_5 \\ z_1 & z_2 & z_3 & z_4 & z_5 \end{pmatrix}$$

j	$Lt(f_j)$	Mj	
1	$x_1y_2z_3$	0	$0 = \det \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \\ z_1 & z_2 & z_3 & z_4 \\ z_1 & z_2 & z_3 & z_4 \end{pmatrix}$
2	x ₁ y ₂ z ₃ x ₁ y ₂ z ₄	(z_3)	$0 - \det \begin{bmatrix} y_1 & y_2 & y_3 & y_4 \end{bmatrix}$
3	x ₁ y ₃ z ₄ x ₂ y ₃ z ₄	(y_2)	z_1 z_2 z_3 z_4
4	<i>x</i> ₂ <i>y</i> ₃ <i>z</i> ₄	(x_1)	$\begin{pmatrix} z_1 & z_2 & z_3 & z_4 \end{pmatrix}$
5	x ₁ y ₃ z ₄ x ₂ y ₃ z ₄ x ₁ y ₂ z ₅ x ₁ y ₃ z ₅ x ₂ y ₃ z ₅	(z_3, z_4)	$\implies z_3f_2 = z_4f_1 + z_2f_3 - z_1f_4 + 0.$
6	$x_1 y_3 z_5$	(y_2, z_4)	
7	$x_2 y_3 z_5$	(x_1, z_4)	Similarly, all other remainders are
8	X1 V1 75	(V_2, V_3)	zero.
9	<i>x</i> ₂ <i>y</i> ₄ <i>z</i> ₅	(x_1, y_3) (x_1, x_2)	Hence f_1, \ldots, f_{10} is a Gröbner basis.
10	<i>x</i> 3 <i>y</i> 4 <i>z</i> 5	(x_1, x_2)	

Modules

For our proof of Buchberger's criterion we need the concept of modules and division with remainder in free modules.

Definition. Let R be a ring. An R-module M is an abelian group together with an operation

$$R imes M o M, (a, m) \mapsto am$$

satisfying the usual associativity and distributivity laws:

$$a(bm) = (ab)m \quad \forall a, b \in R \ \forall m \in M$$
$$1m = m \quad \forall m \in M$$
$$(a + b)m = am + bm \quad \forall a, b \in R \ \forall m \in M$$
$$a(m + n) = am + an \quad \forall a \in R \ \forall m, n \in M$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For a field K a K-module is simply a K-vector space.

Examples of modules

R is an *R*-module.

A free module is module of the form $F = R^r$. It has basis vectors $e_j = (0, ..., 1, ..., 0)^t$ with 1 in the *j*-th position. An element of F is simply a column vector

$$(a_1,\ldots,a_r)^t=\sum a_j e_j$$

with entries in R.

A submodule $N \subset M$ of a module M is a subgroup N satisfying

$$n \in N \Rightarrow an \in N \quad \forall a \in R \ \forall n \in N.$$

Thus an ideal *I* is a submodule of *R*. If $f_1, \ldots f_r \in M$, then

$$(f_1\ldots,f_r)=\{g_1f_1+\ldots+g_rf_r\mid g_j\in R\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

is a submodule of M.

Homomorphism

An *R*-module homomorphism $\varphi \colon M \to N$ is a group homomorphism satisfying additionally $\varphi(am) = a\varphi(m)$.

ker φ is a submodule of M and im(φ) is a submodule of N.

To say that a module is generated by elements $f_1, \ldots, f_r \in M$ is equivalent to say that

$$\varphi: F = R^r \to M, e_j \mapsto f_j$$

defines a surjective *R*-module homomorphism.

Definition. A syzygy between elements $f_1, \ldots, f_r \in M$ is an element $(g_1, \ldots, g_r)^t \in F = R^r$ satisfying $\sum g_j f_j = 0$. In other words, it is an element of ker φ where $\varphi : F = R^r \to M$ is defined by $e_j \mapsto f_j$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Quotient modules

Let $N \subset M$ be a submodule. Then

$$f \equiv g \mod N :\Leftrightarrow f - g \in N$$

defines an equivalence relation on M with equivalence classes

$$f + N = \{f + h \mid h \in N\}.$$

The set of equivalence classes

$$M/N = \{f + N \mid f \in M\} \subset 2^M$$

carries a unique R-module structure such that

$$\pi: M \to M/N, f \mapsto f + N$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

becomes an *R*-module homomorphism.

Homomorphism theorem

Theorem. Let $\varphi \colon M \to N$ be an *R*-module homomorphism. Then

 $\operatorname{im}(\varphi) \cong M/\ker(\varphi).$

Proof. $f + \ker(\varphi) \mapsto \varphi(f)$ is a well-defined isomorphism.

For $\varphi \colon M \to N$ we define the **cokernel** of φ as

 $\operatorname{coker}(\varphi) = N/\operatorname{im}(\varphi).$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Finitely presented modules

Definition. An R-module M is **finitely generated** if there exists a surjection

$$\varphi: R^r \to M$$

M is **finitely presentable** if one can choose the surjection $\varphi : R^r \to M$ such that the syzygy module ker(φ) is finitely generated as well. In that case we obtain a sequence

$$R^{s} \xrightarrow{\varphi_{1}} R^{r} \xrightarrow{\varphi} M \longrightarrow 0$$

with $im(\varphi_1) = ker(\varphi)$ and $M \cong coker(\varphi_1)$. Such sequence is called a **finite presentation** of M.

Since a homomorphism $R^s \to R^r$ between free modules can be described by $r \times s$ -matrices with entries in R, we can simply specify a finitely presented module via a matrix φ_1 .

Tasks of constructive module theory

Not so easy are the following tasks: Given two finitely presented modules

$$R^s \xrightarrow{\varphi_1} R^r \longrightarrow M \longrightarrow 0$$

and

$$R^{\ell} \xrightarrow{\psi_1} R^k \longrightarrow N \longrightarrow 0 ,$$

- 1. decide whether M and N are isomorphic,
- compute the *R*-module Hom(*M*, *N*) of all *R*-module homomorphisms.

We will approach these questions in case of $R = K[x_1, ..., x_n]$ using Gröbner basis for submodules of free modules.

part 4