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Monomial orders in free modules
Notation. We denote the polynomial ring by S = K [x1, . . . , xn]
and the free S-module Sk with basis ej = (0, . . . 1, . . . 0)t by

F = Sk .

Definition. A monomial in F is an element of the form xαej , a
term in F is an element of the form axαej with a ∈ K .
A monomial order on F is a complete order > of all the
monomials in F satisfying

xαej > xβei =⇒ xγxαej > xγxβei

for any two monomials in F and any monomial xγ in S .
Every element f ∈ F is a finite sum of terms, and we can define
the lead term of f as before:
If f =

∑
α,j fα,jx

αej , then Lt(f ) = fβ,ix
βei where

xβei = max{xαej | fα,j 6= 0}.



Examples of monomial orders
Definition. A monomial order > on F is global if

xiej > ej holds for i = 1, . . . , n and j = 1, . . . , k.

Examples. Let > be a global monomial order on S . We can define
a monomial order on F in two ways:

1.) xαej >1 x
βei iff xα > xβ or ( xα = xβ and j > i),

2.) xαej >2 x
βei iff j > i or ( j = i and xα > xβ)

which we call the monomial before component order and
component before monomial order, respectively.

There are many more ways to define global monomial orders on F ,
for example, weight orders, where also the ej get some weights.

A monomial order on F = S r gives r monomial orders on S using
the isomomophism

S ∼= Sej .

These might not coincide, but in all examples we are considering
they do.



Division with remainder
Theorem. Let > be a global monomial order on F = Sk and let
f1, . . . , fr ∈ F be non-zero polynomial vectors. For every f ∈ F
there exist uniquely determined g1, . . . , gr ∈ S and a unique
remainder h ∈ F satisfying

1) f = g1f1 + . . . + gr fr + h

2a) No term of gj Lt(fj) is divisible by a lead term Lt(fi ) for some
i < j .

2b) No term of h is divisible by a lead term Lt(fj).

Proof. As before we write

f = g
(0)
1 Lt(f1) + . . . + g

(0)
r Lt(fr ) + h(0)

satisfying 2a) and 2b). Consider

f (1) = f − (g
(0)
1 f1 + . . . + g

(0)
r fr + h(0)).

Then Lt(f (1)) < Lt(f ) and we can iterate until f (k) = 0.
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Remarks

1. Notice that to perform the division algorithm we do not need
to know the monomial order precisely. We only need to know
the lead terms Lt(fj).

2. The role of the global monomial order is to guarantee that the
algorithm terminates.

3. This in turn is based on the fact that monomial submodules
of F are finitely generated.

4. We deduce the descending chain condition:
Every strictly decreasing chain m1 > m2 > . . . of monomials
in F with respect to a global monomial order is finite.



Proof of the descending chain condition

Let m1 > m2 > . . . a (possibly infinite) strict chain of monomials
in F . Let I = ({mk | k ≥ 1}) ⊂ F be the monomial submodule
generated by the mk ’s. By Dixon’s Lemma I is generated by a
finite set J of monomials. Set

m = min{J}.

m exists because J is finite, and > is a total order. Since a global
monomial order refines divisibility in F we have

min(J) = min{m̃ | m̃ is a monomial in I} = min{mk}

The last minimum exists if and only if the chain is finite.



Gröbner basis in F

Let I ⊂ F be a submodule. Then Lt(I ) = ({Lt(f ) | f ∈ I}) is the
lead term module of I .
f1, . . . , fr ∈ I is a Gröbner basis iff Lt(I ) = (Lt(f1, . . . , Lt(fr )).

I Since every monomial module is finitely generated, every
submodule of F has a Gröbner basis.

I The remainder of f ∈ F by a Gröbner basis f1, . . . , fr is zero iff
f ∈ (f1, . . . , fr ).

I In particular a Gröbner basis of I is a generating set of I .

I The monomials m ∈ F with m /∈ Lt(I ) represent a K -vector
space basis of the quotient module M = F/I .



Buchberger’s criterion
For submodules N1,N2 ⊂ M of an R-module M the colon ideal is
defined as

N1 : N2 = {a ∈ R | aN2 ⊂ N1}.
Notation. Let f1, . . . , fr ∈ F be polynomial vectors. We define
monomial ideals as follows

Mj = (Lt(f1, . . . , Lt(fj−1)) : Lt(fj)

for j = 2, . . . , r .
For each minimal generator xα ∈ Mj the multiple xαfj is an
expression not allowed in the division theorem by condition 2a).

Theorem. With notation as above, f1, . . . , fr is a Gröbner basis for
(f1, . . . , fr ) if and only if for each j = 2, . . . , r and each minimal
generator xα of Mj the remainder of xαfj divided by f1, . . . , fr is
zero.
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Proof of Buchberger’s criterion
If f1, . . . , fr is a Gröbner basis, then the remainder of xαfj is zero,
because xαfj ∈ (f1, . . . , fr ). For the converse assume that the
condition of the criterion is satisfied. Then for each minimal
generator xα ∈ Mj we have an division expression with remainder
zero:

xαfj =
r∑

i=1

g
(j ,α)
i fi

satisfying condition 2a). Consider F1 = S r and the S-module
homomorphism

ϕ : F1 → F , ei 7→ fi

Then

G (j ,α) = xαej −
r∑

i=1

g
(j ,α)
i ei

is a syzygy of f1, . . . , fr , in other words, it is an element of ker(ϕ).



The induced order
We define the induced monomial order on F1 by

xαej > xβei ⇐⇒ xα Lt(fj) > xβ Lt(fi ) or

xα Lt(fj) = xβ Lt(fi ) up to a non-zero factor in K

and j > i .

Remark. We could avoid the phrase up to a non-zero factor in K
if we assume that the fj are monic, i.e., have leading coefficients 1.

Lemma. With respect to the induced monomial orders the
syzygies G (j ,α) ∈ F1 have the lead terms

Lt(G (j ,α)) = xαej .



Proof of the Lemma
Proof. Since xαfj =

∑r
i=1 g

(j ,α)
i fi satisfies condition 2a), we have

Lt(xαfj) = max{Lt(g
(j ,α)
i fi )},

and equality is achieved for ĩ = min{i | xα Lt(fj) ∈ (Lt(fi ))}:

xα Lt(fj) = Lt(g
(j ,α)

ĩ
) Lt(fĩ ).

All other terms of any g
(j ,α)
i Lt(fi ) are strictly smaller than

xα Lt(fj). Since ĩ < j , we obtain

Lt(G (j ,α)) = xαej

from the definition of the induced order.



Proof of Buchberger’s criterion, 2
Let f = a1f1 + . . . + ar fr ∈ (f1, . . . , fr ) be an arbitrary element. We
consider

A =
r∑

i=1

aiei ∈ F1

and the remainder H =
∑r

i=1 giei of A divided by the G (j ,α)’s.
Since the G (j ,α) are syzygies of f1, . . . , fr , we have

f = a1f1 + . . . + ar fr = g1f1 + . . . + gr fr .

Indeed

A =
∑
(j ,α)

gj ,αG
(j ,α) + H ∈ F1 =⇒ ϕ(A) = ϕ(H).

By the definition of the monomial ideals Mj and the G (j ,α) we have
removed in the remainder H =

∑r
i=1 giei any term t from gj such

that t Lt(fj) ∈ (Lt(f1), . . . , Lt(fj−1)).



End of the proof and Schreyer’s corollary

In other words the coefficients g1, . . . gr satisfy the condition 2a)
for division by f1, . . . , fr in F . Thus

Lt(f ) = max{Lt(gj fj)} ∈ (Lt(f1), . . . , Lt(fr ))

and
Lt((f1, . . . , fr )) = (Lt(f1), . . . , Lt(fr )),

i.e., f1, . . . , fr is a Gröbner basis of (f1, . . . , fr ).

Corollary. If f1, . . . , fr ∈ F is a Gröbner basis, then the G (j ,α)’s in
F1 form a Gröbner basis of the syzygy module ker(ϕ) where

ϕ : F1 → F , ej 7→ fj .
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Proof of the corollary
Let G be an element of ker(ϕ). Consider the remainder

H = (g1, . . . , gr )t

of the division of G by the G (j ,α). The coefficients gj satisfy
condition 2a) for the division by f1, . . . , fr . Thus

Lt(g1f1 + . . . + gr fr ) = max{Lt(gj fj)}

On the other hand g1f1 + . . . + gr fr = ϕ(H) = ϕ(G ) = 0. Thus all
gj = 0 and hence H is zero.
Thus every G ∈ ker(ϕ) has remainder zero under the division by
the G (j ,α). Applying the condition 2a) for the division by the
G (j ,α)’s, we see that

Lt(G ) ∈ ({Lt(G (j ,α))}).



Example
We compute a Gröbner basis of I = (y − x2, z − x3) ⊂ K [x , y , z ]
with respect to >lex .



Example
We compute a Gröbner basis of I = (y − x2, z − x3) ⊂ K [x , y , z ]
with respect to >lex .

x2 − y −x −y −z
x3 − z 1

xy − z -1 x y −z −y2
xz − y2 1 x y z

y3 − z2 1 x

z −y x −1

Note that y3 − z2 ∈ (y − x2, z − x3) ∩ K [y , z ].

We will later see that computing a Gröbner basis of
I ⊂ K [x1, . . . , xn] with respect to >lex allows to compute the
elimination ideals

Ij = I ∩ K [xj+1, . . . , xn]

obtained from I by eliminating the first j variables.



Module membership problem
Algorithm. f ∈ (f1, . . . , fr ) ?
Input. f1, . . . , fr ∈ F and a further polynomial vector f ∈ F .
Output. A boolean value t

and if t = true coefficients g1, . . . , gr ∈ S such that
f = g1f1 + . . . + gr fr .

1. Choose a global monomial order > on F .
2. Compute a Gröbner basis f1, . . . , fs of (f1, . . . , fr ) with

Buchberger’s algorithm.
3. Divide f by f1, . . . , fs with remainder:

f = g̃1f1 + . . . + g̃s fs + h.

4. If h 6= 0 the return t = false else t = true and recursively
substitute fk by a linear combination of f1, . . . , fk−1 for
k = s, . . . , r + 1 to obtain an expression f = g1f1 + . . . + gr fr .

5. return t and g1, . . . , gr .
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