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Hilbert’s Nullstellensatz

Theorem. Let K be an algebraically closed field, and
f1, . . . , fr ∈ K [x1, . . . , xn].

V (f1, . . . , fr ) = ∅ ⇐⇒ 1 ∈ (f1, . . . , fr ).

Remember: An = Kn always denotes the affine space over an
algebraically closed field.

V (f1, . . . , fr ) = {a ∈ An | fj(a) = 0 for j = 1 . . . , r}.

The right hand side condition can be decided by computing a
Gröbner basis for f1, . . . , fr .
⇐ is true by an elementary argument.



Vanishing loci of ideals.
Definition. Let I ⊂ K [x1, . . . , xn] be an ideal. We define

V (I ) = {a ∈ An | f (a) = 0∀f ∈ I}
Since I is finitely generated, say I = (f1, . . . , fr ), we have

V (I ) = V (f1, . . . , fr ).

The basic approach of the proof of the Nullstellensatz is an
induction of the number of variables.

If n = 1, the theorem holds, because K [x ] is a principal ideal
domain. So every ideal

(0) ( I ( K [x ]

is generated by a monic polynomial of positive degree, I = (f ), and
f has a zero because K is algebraically closed.



Basic approach of the induction step
Let I ⊂ K [x1, . . . , xn]. Consider the projection

An → An−1, (a1, . . . , an) 7→ (a2, . . . , an)

and the ideal
I1 = I ∩ K [x2, . . . , xn]

obtained by eliminating x1. If I 6= (1), then I1 6= (1), so by the
induction hypothesis V (I1) ⊂ An−1 is non empty.
Let

a′ = (a2, . . . , an) ∈ V (I1) ⊂ An−1

be a point and consider the ideal

({f (x1, a
′) | f ∈ I}) ⊂ K [x1].

This is a principal ideal, and a root a1 of its generator would give a
solution

a = (a1, a
′) ∈ V (I ) ⊂ An.



A counter example
So, we have a diagram

V (I )

��

⊂ An

π
��

V (I1) ⊂ An−1

.

Since I1 ⊂ I we have π(V (I )) ⊂ V (I1). However the map is not
necessarily surjective.

Example. For I = (xy − 1) we have I1 = (0) ⊂ k[y ], but the
origin a′ = 0 ∈ V (I1) = A1 has no preimage:
({f (x , a′) | f ∈ I}) = (x0− 1) = (−1) has no zero.
In a certain sense the solution (1/t, t) approaches (∞, 0) for
t → 0.
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The projection theorem
Theorem. Let I ⊂ K [x1, . . . , xn] be an ideal, and
I1 = I ∩ K [x2, . . . , xn]. Suppose I contains an element f which is
monic in x1:

f = xd1 + c1(x2, . . . , xn)xd−11 + . . .+ cd(x2, . . . , xn).

Then the projection

π : An → An−1, (a1, . . . , an) 7→ (a2, . . . , an)

onto the last n − 1 components satisfies

π(V (I )) = V (I1).

Remark. Since f ∈ I we can have at most d points a ∈ V (I ) over
any given point a′ ∈ V (I1).



Proof of the projection theorem
We already know that π(V (I )) ⊂ V (I1) because I1 ⊂ I .

To prove the converse inclusion we have to find for any
a′ ∈ An−1 \ π(V (I )) a polynomial h ∈ I1 with h(a′) 6= 0.

We will do this in two steps.

Step 1. For every polynomial g ∈ K [x1, . . . , xn] there exists a
polynomial g̃ ∈ K [x1, . . . , xn] of degree < d in x1 such that

g̃(x1, a
′) = 0 and g ≡ g̃ mod I .

Consider the ring homomorphism

ϕ : K [x1, . . . , xn]→ K [x1], g 7→ g(x1, a
′).

Since a′ /∈ π(V (I )) the Nullstellensatz in one variable implies

ϕ(I ) = K [x1].



Proof of step 1
Thus for every g ∈ K [x1, . . . , xn] there exists a g1 ∈ I with
ϕ(g) = ϕ(g1). Consider g2 = g − g1. Since f is monic in x1,
division of g2 by f gives an expression

g2 = qf + g̃ .

The remainder g̃ has degree < d in x1. Applying ϕ to this
equation yields

0 = q(x1, a
′)f (x1, a

′) + g̃(x1, a
′).

Thus g̃(x1, a
′) is the unique remainder of 0 under the division by

f (x1, a
′). Hence g̃(x1, a

′) = 0 ∈ K [x1] and

g̃ − g = g2 − qf − g = g − g1 − qf − g

= −g1 − qf ∈ I .

Thus g ≡ g̃ mod I .



Step 2
Applying step 1 to the polynomials 1, x1, x

2
1 , . . . , x

d−1
1 we find

expressions

1 ≡ g00 + g01x1 + . . .+ g0,d−1x
d−1 mod I

x1 ≡ g10 + g11x1 + . . .+ g1,d−1x
d−1 mod I

...

xd−11 ≡ gd−1,0 + gd−1,1x1 + . . .+ gd−1,d−1x
d−1 mod I

with gij ∈ K [x2, . . . , xn] and gij(a
′) = 0. In matrix form we have

(Ed − B)


1
x1
...

xd−11

 ≡ 0 mod I

where B = (gij) and Ed is the d × d identity matrix.



Step 2 continued
Multiplying the last equation with the cofactor matrix of (Ed − B)
we arrive at

det(Ed − B)


1
x1
...

xd−11

 ≡ 0 mod I .

In particular h = det(Ed − B) ∈ I ∩ K [x2, . . . , xn] = I1. Since
h(a′) = detEd = 1 6= 0 we have found our desired polynomial
which does not vanish at a′.
This completes the proof of the projection theorem.
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A change of coordinates

Lemma. Let f ∈ K [x1, . . . , xn] be a non-constant polynomial.

1. If K be an infinite field and a2, . . . , an ∈ K are sufficiently
general elements, then substituting

xj = x̃j + ajx1 for j = 2, . . . , n

into f gives a polynomial

f̃ = axd1 + c1(x̃2, . . . , x̃n)xd−11 + . . .+ cd(x̃2, . . . , x̃n)

with d ≥ 1, a ∈ K \ {0} and cj ∈ K [x̃2, . . . , x̃n].
2. If K is an arbitrary field, then a substitution of the form

xj = x̃j + x
(r j−1)
1 for j = 2, . . . , n

for r ∈ N sufficiently large yields a polynomial f̃ of the same
shape.



Proof of the Lemma, case 1

Let d = deg f denote the degree of f and let

f = fd + . . .+ f1 + f0 with fk =
∑
|α|=k

fαx
α

be the decomposition of f =
∑

fαx
α into homogeneous parts.

Then fd(1, x2, . . . , xn) is not the zero polynomial. Hence by
Exercise 1 on sheet 1 there exists (a2, . . . , an) ∈ An−1(K ) with
a = fd(1, a2, . . . an) 6= 0. The substitution xj = x̃j + ajx1 gives

fd(x1, x̃2+a2x1, . . . , x̃n+anx1) = axd1 + terms of lower degree in x1.

Thus f (x1, x̃2 + a2x1, . . . , x̃n + anx1) has the desired shape.



Proof of the Lemma, case 2
Take

r > max{e | ∃α ∃j with fα 6= 0 and αj = e}

larger than any exponent occuring in a term of f . Then the
monomials

x
∑n

j=1 αj r
j−1

1 for α with α 6= 0

are all distinct, and the largest one will give the desired leading
term after the substitution.

Example. For f = xy − 1 every substitution y = ỹ + a2x for
a2 6= 0 has the desired effect:

f̃ = a2x
2 + xỹ − 1.



Proof of the Nullstellensatz

Let I ( K [x1, . . . , xn] be a proper ideal. We have to prove that
V (I ) 6= ∅. If I = (0), then V (I ) = An. Otherwise there exists a
non-constant polynomial f ∈ I . After a change of coordinates as in
the Lemma we may assume that f is monic in x1. Thus the
projection V (I )→ V (I1) is surjective. Since 1 /∈ I1 ⊂ I we obtain
V (I1) 6= ∅ from the induction hypothesis. Hence V (I ) 6= ∅ as
well.

Remark. Notice that we can perform the change of coordinates
over the field of definition of I . Thus for example if
I ⊂ C[x1, . . . , xn] is generated by polynomials in Q[x1, . . . , xn] we
can take a linear change of coordinates defined over Q.
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A tower of projections

Theorem. Suppose that I ( K [x1, . . . , xn]
is a proper ideal. Let Ij = I∩K [xj+1, . . . , xn]
be the j-th elimination ideal. Set

c = min{j | Ij = (0)}

and suppose that for each j with 0 ≤ j ≤
c − 1 the ideal Ij contains an xj+1-monic
polynomial of degree dj . Then the projec-
tion πc : V (I ) → An−c onto the last n − c
components is surjective and each fiber

π−1c (ac+1, . . . , an)

is finite of cardinality ≤
∏c−1

j=0 dj .

V (I ) ( An

��
V (I1) ( An−1

��
...

V (Ic−1) ( An−c+1

��
V (Ic) = An−c



Remarks

1. If I has an infinite field of definition L ⊂ K , we can reach the
assumption of the tower theorem by a triangular change of
coordinates defined over L, i.e., with aij ∈ L:

x1
x2
x3
...
xn

 =


1
a21 1 0
a31 a32 1

...
. . .

an1 an2 . . . 1




x̃1
x̃2
x̃3
...
x̃n

 .

2. In the situation of the tower theorem it is tempting to define

dimV (I ) = n − c and codimV (I ) = c

because the projetion πc : V (I )→ An−c is surjective with finite
fibers. A problem with this definition is that it is not clear that this
is independent from the choice of coordinates.


