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Overview

Today’s topics are fractions. This is an important technique in
commutative algebra.

1. Multiplicative sets and localization

2. Primary decomposition and localization

3. Proof of the second uniqueness theorem



Multiplicative sets and fractions
If we want to add or multiply two fractions, we have to be able to
multiply the denominators:

a

s
+

b

t
=

at + bs

st
.

Definition. A multiplicative subset U ⊂ R of a ring R is a subset
which satisfies

a) 1 ∈ U
b) s, t ∈ U =⇒ st ∈ U.

Example. The most important multiplicative sets are:

1. U = {f k | k ∈ N} powers of an element f ∈ R,
2. U = R \ p the complement of a prime ideal,
3. U = {r ∈ R | rs 6= 0 ∀s 6= 0} the set of non-zero divisors.

If R is an integral domain, then (0) is a prime ideal and the set of
non-zero divisors coincides with the complement of (0).



Localization in U
Let U ⊂ R be a multiplicative subset of a ring. We will define a
ring of fractions

R[U−1] = {a
s
| a ∈ R and s ∈ U}

as follows: Consider on R × U the following equivalence relation:

(a1, s1) ∼ (a2, s2) iff ∃u ∈ U such that u(s2a1 − s1a2) = 0 ∈ R.

The factor u is needed for the transitivity, since R might not be an
integral domain.

(a1, s1) ∼ (a2, s2) and (a2, s2) ∼ (a3, s3)

⇒ ∃u, v ∈ U such that u(s2a1 − s1a2) = 0 and v(s3a2 − s2a3) = 0

⇒ 0 = vs3u(s2a1 − s1a2)− us1v(s3a2 − s2a3) = uvs2(s3a1 − s1a3)

⇒ (a1, s1) ∼ (a3, s3) since uvs2 ∈ U.

The fraction a
s = {(b, t) ∈ R × U | (a, s) ∼ (b, t)} denotes the

equvalence class of (a, s).



Localization in U continued
Then

R[U−1] = (R × U)/ ∼
defines the localization as a set. It is a subset of 2R×U . The usual
formulas give R[U−1] the structure of a commutative ring with
1 = 1

1 . Of course, one has to verify that addition and multiplication
are well-defined. For example, if (a1, s1) ∼ (a2, s2), then

a1
s1

+
b

t
=

a1t + s1b

s1t
=

a2t + s2b

s2t
=

a2
s2

+
b

t

because u(s2a1 − s1a2) = 0 implies
u(s2t(ta1 + s1b)− s1t(a2t + s2b)) = t2u(s2a1 − s1a2) = 0.
The map

ι : R → R[U−1], r 7→ r

1
is a ring homomorphism, which might be not injective:

ker(ι) = {r ∈ R | ∃u ∈ U with ur = 0}.
Notice that the elements ι(u) are units in R[U−1]: u

1
1
u = 1.



Localization of modules

Let M be an R-module and U ⊂ R a multiplicative subset. Then
we can define similarly M[U−1]:

(m1, s1) ∼ (m2, s2) iff ∃u ∈ U such that u(s2m1 − s1m2) = 0 ∈ R

is an equivalence relation on M × U, and the set of equivalence
classes

M[U−1] = {m
s
| m ∈ M, s ∈ U}

becomes an R[U−1]-module by

a

s
· m
t

=
am

st
.



Notation
Definition. Let p ⊂ R be a prime ideal and M and an R-module.
Then

Mp = M[U−1]

where U = R \ p is called the localization of M in p. For f ∈ R the
localization of M in f is

Mf = M[U−1]

for U = {f k | k ∈ N}.
Example.

Z2 = {a
b
∈ Q | b is a power of 2}

and
Z(2) = {a

b
∈ Q | b with 2 6 |b}

are quite different.



A local property
Theorem. Let M be an R-module. TFAE

1) M = 0.
2) Mp = 0 for all prime ideals p ⊂ R.
3) Mm = 0 for all maximal ideals m ⊂ R.

Proof. Only the implication 3) =⇒ 1) is non-trivial. Let M 6= 0
be a non-zero module and m ∈ M a non-zero element. Then
I = ann(m) ( R is a proper ideal since 1 /∈ I . The set of ideals
M = {J ideal in R | I ⊂ J} contains a maximal element m with
respect to inclusion. (This is clear for noetherian rings. For more
general rings one applies Zorn’s Lemma.) The ideal m is a maximal
ideal of R, and Mm 6= 0 because

m

1
6= 0.

No element of R \m annihilates m because m ⊃ I = ann(m).



Extended and contracted ideals
Let ϕ : A→ B a ring homomorphism, a an ideal in A and b an
ideal in B. Then

ae = aB = {
∑
i

biϕ(ai ) | bi ∈ B and ai ∈ a}

is called the extended ideal of a, and

bc = ϕ−1(b)

is called the contracted ideal of b.
Primary decompositions behave well under contractions:

1. If b is a prime ideal or primary ideal, then bc is prime
respectively primary as well.

2. (b1 ∩ b2)c = bc1 ∩ bc2.

3. (rad(b))c = rad(bc).



Extended and contracted ideals

The behavior under extension can be complicated:
Example. Consider Z ↪→ Z[

√
−1]. Then the prime ideals (p) ⊂ Z

extend as follows:

1) (2)e = (1 +
√
−1)2 is a square of a prime ideal.

2) If p ≡ 1 mod 4, then (p)e is the product of two distinct
prime ideals, for example (5)e = (2 +

√
−1)(2−

√
−1).

3) If p ≡ 3 mod 4, then (p)e is a prime ideal.

Only 2) is a non-trival statement. It is equivalent to a theorem of
Fermat, which says that a prime p ≡ 1 mod 4 is sum of two
squares: (5 = 22 + 12, 13 = 32 + 22, . . . , 97 = 92 + 42, etc.)



Extended and contracted ideals
Proposition. For a ring homomorphism A→ B and notation as
before we have

1. aec ⊃ a and bce ⊂ b.
2. ae = aece and bcec = bc .
3. The set of contracted ideals is C = {a | a = aec}, and the set

of extended ideals is E = {b | b = bce}. These sets are in
bijection via a 7→ ae and b 7→ bc .

Proof. 1) is clear. 2) follows from 1): aec ⊃ a implies aece ⊃ ae ,
and apply bce ⊂ b to b = ae gives the other inclusion. 3) follows
with 2).
The situation is better for localizations maps

ι : R → R[U−1].

Passing from a ring to a localization makes things easier at least
from a theoretical point of view. For example, the ideal theory of
R[U−1] is a simplified version of the ideal theory of R.



Ideal theory of localizations
Theorem. Let U ⊂ R be a multiplicative subset of a ring and let
ι : R → R[U−1], r 7→ r/1 denote the natural homomorphism.

1. If I is an ideal in R, then

I ec = ι−1(IR[U−1] = {a ∈ R | ∃u ∈ U with ua ∈ I}.
2. If J is an ideal in R[U−1], then

Jce = ι−1(J)R[U−1] = J

Thus the map J 7→ ι−1(J) is an injection of the set ideals of
R[U−1] into the set of ideals of R.

3. If R is noetherian, then R[U−1] is noetherian.
4. ι−1 induces a bijection between the set of prime ideals of

R[U−1] and the set of prime ideals p of R with U ∩ p = ∅.
5. ι−1 induces a bijection between the set of primary ideals of

R[U−1] and the set of prime ideals q of R with U ∩ q = ∅.



Proof
Part 1: If a ∈ R, then a ∈ ι−1(IR[U−1]) ⇐⇒ a/1 ∈ IR[U−1]
⇐⇒ ua ∈ I for some u ∈ U.
Part 2: Let b/u ∈ R[U−1]. Then b/u ∈ J ⇐⇒ b/1 ∈ J
⇐⇒ b ∈ ι−1(J) ⇐⇒ b/u ∈ ι−1(J)R[U−1].
Part 3 follows from part 2.
Part 5 and 4: Let q be a primary ideal of R[U−1]. Then
qc = ι−1(q) is a primary ideal of R which does not intersect U
because q contains no units.
Conversely, let q be a primary ideal in R with q ∩ U = ∅.
Then qe = qR[U−1] is a proper ideal because qec = ι−1(qe) = q
follows from part 1: ua ∈ q and un /∈ q implies a ∈ q since q is
primary. It remains to prove that qe is a primary ideal. Suppose
a/u · b/v ∈ qe , then wab ∈ q for some w ∈ U by part 1. Hence
wa ∈ q or bn ∈ q for some n since q is primary. It follows a/u ∈ qe

or (b/v)n ∈ qe because wu and v are units in R[U−1].
In case of prime ideals we have n = 1 in the argument above.



Primary decomposition and localization
Corollary. Let U be a multiplicative subset of a ring R and

I = q1 ∩ . . . ∩ qr

a primary decomposition of an ideal I ⊂ R. Then

I e =
⋂

qi :qi∩U=∅

qei

is a primary decomposition of the extended ideal I e ⊂ R[U−1] and

I ec =
⋂

qi :qi∩U=∅

qi .

In particular the last intersection does not depend on the choice of
the primary decomposition.



Proof
We need one more Lemma.
Lemma. Let ι : R → R[U−1] be a localization, and let I and J be
ideals in R. Then

I e ∩ Je = (I ∩ J)e .

Proof of the Lemma. I e ∩ Je ⊃ (I ∩ J)e is clear. Suppose

a

u
=

b

v
∈ I e ∩ Je with a ∈ I and b ∈ J

Then there exists a w ∈ U such that wva = wub ∈ I ∩ J. Hence
a

u
=

wva

uwv
∈ (I ∩ J)e .

Primary ideals qj with qj ∩ U 6= ∅ extend to qej = (1), since

elements of U become units in R[U−1]. Thus these can be
dropped in the intersection, and

I e =
⋂

qi :qi∩U=∅

qei



2nd uniqueness theorem
The rest of the theorem clear, because contraction commutes with
intersections and qeci = qi for primary ideals with qi ∩ U 6= ∅.
Corollary. Let pi be a minimal associated prime of a minimal
primary decomposition

I = q1 ∩ . . . ∩ qr .

Then qi is uniquely determined by I .

Proof. Consider the localization in pi , i.e., with respect to
U = R \ pi . Since pi is minimal all other associated primes
pj = rad(qj) intersect U:

(R \ pi ) ∩ pj = ∅ ⇐⇒ pj ⊂ pi

and pj would be smaller than pi . Since U is multiplicative
pj ∩ U 6= ∅ ⇐⇒ qj ∩ U 6= ∅ holds. Thus

I ec = qi

holds by the theorem.



Examples
1. R = Z. The ideals of Z are principal and

(n) = (pe11 ) ∩ . . . ∩ (perr )

is the primary decomposition if

n = pe11 · . . . · p
er
r

is the prime factorization.

2. The polynomial ring K [x1, . . . , xn] for any field K is factorial.
As above the primary decomposition of an principal ideal (f )
corresponds to factorizations: If

f = uf e11 · . . . · f
er
r

with u ∈ K ∗ a unit and fj irreduzible, then
(f ) = (f e11 ) ∩ . . . ∩ (f err ) is the primary decomposition.


