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Overview

Today topics are associated primes of modules. This concept
allows to prove that over a noetherian ring R any finitely generated
R-module M is built from modules of the type R/p; for various
primes p;.
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Associated primes

Definition. Let M be an R-module. An associated prime of M is
a prime ideal p of the form

p=ann(m)={re R|m=0}
for some non-zero element m &€ M.

Proposition. The maximal elements with respect to inclusion of
the set

M ={ann(m) | me M, m # 0}
are associated primes of M.
Proof. Let ann(m) € M be maximal and f, g € R elements with
fg € ann(m).

Suppose g ¢ ann(m). Then gm # 0 and ann(m) C ann(gm).
Since ann(m) € M is maximal we have ann(m) = ann(gm) and
f € ann(gm) = ann(m). Thus ann(m) is a prime ideal. O



Ass(M)
Definition. Let M be an R-module. Then
Ass(M) = {p | p is an associated prime of M}

denotes the set of associated primes of M. Over a noetherian ring
Ass(M) is non-empty, since the set M above is non-empty.
Definition. A short exact sequence of R-modules is a sequence

0 YAy YT 0

which consists of an injective R-module homomorphism ) and a
surjective R-module homomorphism ¢ such that

fer() = im(1).
If we identify M’ with a submodule of M via v, then M" is
isomorphic to the quotient module M/M’:

M" = M/ ker(o) = M/M'.




Ass(M) in short exact sequences
Proposition. Let

0 [y v Ay y
be a short exact sequence of R-modules. Then

Ass(M') C Ass(M) C Ass(M') U Ass(M").

Proof. The first inclusion is clear. For the second consider a
p € Ass(M) \ Ass(M’) and an element m € M such that
p = ann(m). Then
Rm = R/p
Since p is prime, every non-zero element of gm € Rm has
annihilator ann(gm) = p as well: f € ann(gm) =0 =
fg € ann(m) =p = f € p since g ¢ ann(m).
Since p ¢ Ass(M’) it follows that Rm N M' = 0.
Thus Rm is isomorphic to its image ¢(Rm) in M” and

p = ann(p(m)) € Ass(M").



Associated primes of a direct sum

Corollary. Ass(M' @& M") = Ass(M") U Ass(M")

Proof. For M = M’ & M" we have two short exact sequences

0 M’ M M’ 0

and
0 M M %4 0.

Hence
Ass(M') U Ass(M") C Ass(M' & M")  Ass(M’) U Ass(M")

follows from the proposition.



1°t uniqueness theorem

Theorem. Let | =q1N...Nq, be a minimal primary
decomposition of an ideal | C R. Then the collection of associated
primes of R/l as an R-module is precisely the set

Ass(R/I) = {p1,...,pr}

where p; = rad(q;).
Proof. We first establish the special case when | = q is a
p-primary ideal:

Ass(R/q) = {p}.

Indeed suppose g € ann(f) = p’ lies in an associated prime. Then
gf € q. Since f ¢ q we obtain g" € q, i.e., p’ C rad(q). Since
q C p’ we deduce

rad(q) C rad(p’) = p’ C rad(q)

and equality holds.



Continuation of the proof
Now consider the R-module homomorphism

V:R=R/Qm®...®R/qrf (F+q1,....f+4q,)

Since ker(t)) = | we obtain an inclusion
R/l = R/q1©...© R/q,.

Hence we obtain Ass(R/I) C {p1,...,p,r} from the propostion.
To see equality we use that the primary decomposition is
irredundant. Thus for each /

.
a2
J# =t

Consider an element f; in the complement and the residue class

fi € R/I. ¢ maps the submodule Rf C R/I into the summand
R/qi. Thus

Ass(Rf) C Ass(R/a;) = {pi}
and equality holds. Thus {p;} = Ass(Rf) C Ass(R/I).



Associated primes of an ideal

Definition. If /| C R is an ideal. Then by the associated primes of
I we mean Ass(R/!) where we regard R/l as an R-module.

Notice that Ass(/) where we regard / as an R-module is not so
interesting. For example, if R is an integral domain, then

Ass(l) = Ass(R) = {(0)}.

Thus the associated primes of | are precisely the prime ideals
which occur in a minimal primary decomposition of /.



Filtration with prime ideals

Theorem. Let M be a finitely generated non-zero module over a
noetherian ring R. Then there exists a filtration

0O=MycM,C...cM,=M
such that all quotients
M;/Mi—1 = R/p;
for some prime ideals p; of R.
Proof. Since R is noetherian, the set of proper ideals
M ={ann(m)| me M, m+#0}

is not empty, and a maximal element of this set is a prime ideal
p1 = ann(my) such
le = R/pl

We take M; = Rmy.



Filtration with prime ideals

Suppose that My C ... C Mj_q are already constructed. If
My_1 € M, then we consider an associated prime
px = ann(my) € Ass(M/My_1) and define

M, = W_I(Rmk) = Rmy + Mx_4

where m : M — M /M)y _1 is the natural projection and
7T(mk) = m.

Mk/Mk—l = Rmk/Rmk NMy_q1 = Rmk/pkmk ~ Rmy = R/pk

The process stops with an M, = M because any ascending chain
of submodules becomes stationary, because M is noetherian. O



Filtration with prime ideals

Proposition. Let M be an R-module with a filtration
O=MyCcMyC...CM,=M

such that all quotients M;/M;_1 = R/p; for some prime ideals p;
of R. Then

Ass(M) C {p1,...,Pn}.



Functoriality of localization
Let ¢ : M — N be an R-module homomorphism. Then

e[U7] : MUY — N[UTY

defined by
—iy My _ p(m)
Utl(=)=
AU(T) = £
is a well-defined R[U~!]-module homomorphism. If

M~ o M2 M" are two composable morphisms with

p o1 =0, then the same holds for the localizations. More is true.

Definition. A sequence

¥

M/HMH@MH

of R-module homomorphisms is exact at M if ker(¢) = im(v).



Exactness of localization

Proposition. Let M —'~ M —%~ M" be exact at M. Let U be
a multiplicative subset. Then the induced sequence

-1 -1
MI[U—I]M M[U—l] &_] M//[U—l]

is exact at M[U™1].

Proof. The inclusion im(y[U~1]) C ker(¢[U™1]) is clear because
@ o1 = 0. To prove the converse inclusion let m/s € ker(¢[U™]).
Then ¢(m)/s =0 € M"[U71], i.e.,, 3 u € U such that
up(m) =0¢e M"”. But up(m) = ¢(um) since ¢ is R-linear. Hence
um € ker(¢) = im(1)). So there exists m" € M’ such that
(m') = um. Thus

m um m

— —.
us us s

OJ



Localization commutes with the formation of finite sums,
finite intersections and quotients

If N C M is a submodule, then by the proposition applied to the
exact sequence
0O—-N—-M

we may regard N[U~!] as a submodule of M[U1].
Corollary. Let N, P be submodules of M. Then
1) (N+ P)[U Y = N[UY+ P[UY.
2) (NN P)UY = N[U N PUY.
3) (M/N)[U™] = M[U~Y]/N[UY.
Proof. 1) follows from n/s + p/t = (tn+ sp)/st.
2): If n/s = p/t, then Ju € U with utn = usp € NN P.
3) follows from the proposition applied to the exact sequence

0O—-N—->M-—M/N—D0.



Further local properties

Theorem. Let o : M — N be an R-module homomorphism.
TFAE

1) ¢ is injective.

2) ¢y is injective for all prime ideals p of R.

3) ¢m is injective for all maximal ideals m of R.
A similar result holds for ‘injective’ replaced by ‘surjective’.
Proof. Consider the sequence

0— ker(p) = M = N
which is exact at M and ker(y). By the exactness of localization

ker(ipp) = (ker())y-

Thus the result follows because being the zero-module is a local
property. For the second version we consider the sequence

M — N — coker(yp) — 0.



