Exercises for the Algebraic Geometry course

Perugia, July 2021

First week

Exercise 1. Let K be an infinite field and $f \in K\left[x_{1}, \ldots, x_{n}\right]$ a non-zero polynomial. Show that there exists a point $a \in \mathbb{A}^{n}(K)$ such that $f(a) \neq 0$.

Exercise 2. Let $K[x]$ be a polynomial ring in one variable over a field. Prove that $K[x]$ is a principal ideal domain, that is, every ideal $I \subset K[x]$ is generated by a single polynomial.

Exercise 3. Implement the computer algebra system Macaulay2
https://faculty.math.illinois.edu/Macaulay2/ on your machine.

Exercise 4. Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Prove

$$
V(I) \subset \mathbb{A}^{n} \text { is finite } \Longleftrightarrow K\left[x_{1}, \ldots, x_{n}\right] / I \text { is a finite-dimensional } K \text {-vector space. }
$$

Exercise 5. A binomial $f \in K\left[x_{1}, \ldots, x_{n}\right]$ is a polynomial which has exactly two terms

$$
f=a x^{\alpha}-b x^{\beta} .
$$

A binomial ideal is an ideal generated by binomials and monomials. Prove:
Binomial ideals have a Gröbner basis consisting of binomials and monomials.
Exercise 6. (Key property of $>_{\text {lex }}$.)
(1) Suppose $f \in K\left[x_{1}, \ldots, x_{n}\right]$ and $1 \leq j \leq n-1$. Then

$$
\operatorname{Lt}_{\text {lex }}(f) \in K\left[x_{j+1}, \ldots, x_{n}\right] \Longleftrightarrow f \in K\left[x_{j+1}, \ldots, x_{n}\right]
$$

(2) Let f_{1}, \ldots, f_{r} be a Gröbner basis of $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ with respect to $>_{\text {lex }}$. Then

$$
\left\{f_{s} \mid \operatorname{Lt}_{\text {lex }}\left(f_{s}\right) \in K\left[x_{j+1}, \ldots, x_{n}\right]\right\}
$$

is a Gröbner basis of $I_{j}=I \cap K\left[x_{j+1}, \ldots, x_{n}\right]$.
Exercise 7. Consider the ideal $I=(x y(x+y)+1) \subset \mathbb{F}_{2}[x, y]$. Determine coordinates in which I satisfies the extra hypothesis of the projection theorem. Show that the extra hypothesis cannot be achieved by means of a linear change of coordinates.

Exercise 8. Prove that the algebraic sets $V\left(y-x^{2}\right)$ and $V(x y-1)$ in \mathbb{A}^{2} are not isomorphic.

Exercise 9. Let $>$ be a monomial order and let $M \subset K\left[x_{1}, \ldots, x_{n}\right]$ be a finite set of monomials. Prove that there exists a weight order $>_{w}$ (with \mathbb{Q}-linearly independent weights) which induces the same order on the monomials of M as $>$.

Hint: Consider the convex hull C of the set

$$
\left\{\alpha-\beta \mid x^{\alpha}, x^{\beta} \in M \text { with } x^{\alpha} \geq x^{\beta}\right\} \subset \mathbb{R}^{n}
$$

and prove that $0 \in C$ is a vertex of C, i.e., 0 is not a linear combination of other points in C with strictly positive coefficients.

Exercise 10. Consider the curve $C=V\left(f_{1}, f_{2}\right) \subset \mathbb{A}^{3}(\mathbb{C})$, where

$$
\begin{aligned}
& f_{1}=y^{3} z-2 y^{2} z-z^{3}+x^{2}+z \\
& f_{2}=x y^{3} z-2 x y^{2} z-x z^{3}+x^{3}+y^{3}-2 y^{2}+x z-z^{2}+y .
\end{aligned}
$$

Prove that the reduced lexicographic Gröbner basis for the ideal $\left(f_{1}, f_{2}\right)$ with variables ordered as $x>y>z$, is

$$
x^{2}-y z+z, \quad y^{3}-2 y^{2}+y-z^{2} .
$$

If we reorder the variables as $y>z>x$, the reduced lexicographic Gröbner basis for $\left\langle f_{1}, f_{2}\right\rangle$ consists of five polynomials:

$$
\begin{array}{ll}
y^{3}-2 y^{2}+y-z^{2}, & y^{2} x^{2}-y x^{2}-z^{3}, \quad y z-z-x^{2} \\
y x^{4}-z^{4}, & z^{5}-z x^{4}-x^{6}
\end{array}
$$

Consider $C_{1}=V\left(y^{3}-2 y^{2}+y-z^{2}\right) \subset \mathbb{A}^{2}$ and $C_{2}=V\left(z^{5}-z x^{4}-x^{6}\right) \subset \mathbb{A}^{2}$ and the projections $C \rightarrow C_{1}$ and $C \rightarrow C_{2}$ onto the curve in the $y z$ - and $x z$-plane. How many preimage points have points in C_{1} and C_{2} ?

Second week

Exercise 11. An R-module M is called noetherian if it satisfies the analogous equivalent conditions for submodules instead of ideals. Prove:
(1) Let

$$
0 \longrightarrow M^{\prime} \xrightarrow{\psi} M \xrightarrow{\varphi} M^{\prime \prime} \rightarrow 0
$$

be a short exact sequence of R-modules, i.e., the homomorphism ψ is injective, the homomorphism φ is surjective and $\operatorname{ker} \varphi=\operatorname{im} \psi$.
Then M is noetherian iff M^{\prime} and $M^{\prime \prime}$ are noetherian.
(2) An R-module M over a noetherian ring R is noetherian iff M is finitely generated.

Exercise 12. Let R be a noetherian ring, let \mathfrak{m} be a maximal ideal of R, and let I be any ideal of R. Show that the following are equivalent:
(1) I is \mathfrak{m}-primary.
(2) $\operatorname{rad}(I)=\mathfrak{m}$.
(3) $\mathfrak{m} \supset I \supset \mathfrak{m}^{k}$ for some $k \geq 1$.

Exercise 13.

(1) When is a monomial ideal a prime ideal?
(2) Characterize monomial primary ideals.
(3) Consider the monomial ideal $I=(x y, x z, y z) \subset \mathbb{Q}[x, y, z]$. Compute a primary decomposition of I and I^{2}.

Exercise 14. Consider $R=C^{0}[0,1]=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ is continuous $\}$, the ring of continuous function on the interval $[0,1]$. Prove that R is neither an integral domain nor noetherian.

Exercise 15.

(1) Let $R=K[A]$ be the coordinate ring of a variety and $f \in R$ be an element which is not a unit. Prove that R_{f} is isomorphic to the coordinate ring of a variety as well.
(2) Prove that $K[x]_{(x)}$, the localization of the polynomial ring in one variable at the maximal ideal (x), is not isomorphic to the coordinate ring of a variety.

Exercise 16. Let $A=B \cup C$ be a decomposition of an algebraic set into proper algebraic subsets. Let $p \in A \backslash C$ be a point and $\mathfrak{m}=\mathrm{I}(p)$ be the corresponding maximal ideal. Prove

$$
K[A]_{\mathfrak{m}} \cong K[B]_{\mathfrak{m}}
$$

Exercise 17. Consider the ring extension

$$
R=\mathbb{R}\left[e_{2}, e_{3}\right] \hookrightarrow T=\mathbb{R}\left[t_{1}, t_{2}\right]
$$

defined by $e_{2} \mapsto t_{1} t_{2}-\left(t_{1}+t_{2}\right)^{2}, e_{3} \mapsto t_{1} t_{2}\left(-t_{1}-t_{2}\right)$.
(1) Prove that $S=R\left[t_{1}\right] \cong R[x] /\left(x^{3}+e_{2} x+e_{3}\right)$ and conclude that

$$
R \subset S \subset T
$$

is a tower of finite extensions.
(2) Compute the degrees of the field extensions

$$
Q(R) \subset Q(S) \subset Q(T)
$$

(3) Let $\left(b_{2}, b_{3}\right) \in \mathbb{A}^{2}(\mathbb{R})$ be a point. How many maximal ideals \mathfrak{P} in S can lie over the maximal ideal of $\mathfrak{p}=\left(e_{2}-b_{2}, e_{3}-b_{3}\right) \subset R$? How many maximal ideals \mathfrak{P}^{\prime} in T can lie over \mathfrak{p} ?
(4) What residue fields S / \mathfrak{P} and $T / \mathfrak{P}^{\prime}$ do occur?

R, S and T, and branch loci.

Exercise 18. If $\psi: L \rightarrow M$ and $\varphi: M \rightarrow N$ are two R-module homomorphism with $\varphi \circ \psi=0$, then

$$
H=\frac{\operatorname{ker}(\varphi)}{\operatorname{im} \psi}
$$

is called the homology of the complex

$$
L \xrightarrow{\psi} M \xrightarrow{\varphi} N
$$

at M. Let

be free presentations of ψ and φ. Prove the correctness of the following algorithm.

1. Compute the syzyzgy matrix of $\left(c \mid \varphi_{0}\right)$

$$
H_{0} \xrightarrow{\binom{g_{0}}{h_{0}}} G_{1} \oplus F_{0} \xrightarrow{\left(c \mid \varphi_{0}\right)} G_{0} .
$$

2. Compute the syzyzgy matrix of $\left(h_{0}|b| \psi_{0}\right)$

$$
H_{1} \xrightarrow{\left(\begin{array}{l}
h_{1} \\
g_{1} \\
f_{1}
\end{array}\right)} H_{0} \oplus F_{1} \oplus E_{0} \xrightarrow{\left(h_{0}|b| \psi_{0}\right)} F_{0}
$$

3. Then

$$
H_{1} \xrightarrow{h_{1}} H_{0} \longrightarrow H \longrightarrow 0
$$

is a presentation of H.

Exercise 19. A 3SAT formula with m clauses and n logical variables is an expression of the form

$$
\left(a_{1} \vee b_{1} \vee c_{1}\right) \wedge\left(a_{2} \vee b_{2} \vee c_{2}\right) \wedge \ldots \wedge\left(a_{m} \vee b_{m} \vee c_{m}\right)
$$

with

$$
a_{i}, b_{i}, c_{i} \in\left\{z_{1}, \neg z_{1}, \ldots, z_{n}, \neg z_{n}\right\} .
$$

It is satisfiable if there exist values $z_{i} \in\{$ true, false $\}$ which makes the formula true.
We translate this formula as follows into the square-free monomial ideal $I \subset K\left[x_{1}, \ldots, y_{n}\right]$ in $2 n$ variables. There are n degree two monomials

$$
x_{1} y_{1}, \ldots, x_{n} y_{n}
$$

and m monomials of degree three. Each clause gives a degree three monomial, where x_{i} and y_{i} correspond to z_{i} and $\neg z_{i}$ respectively. For example

$$
\left(z_{1} \vee \neg z_{3} \vee z_{4}\right) \longleftrightarrow x_{1} y_{3} x_{4} .
$$

Thus altogether I has $n+m$ generators. Prove:

1) $\operatorname{dim} V(I)=n$ iff the formula is satisfyable. Here a solution with $x_{i}=0$ corresponds to a SAT-solution with $z_{i}=$ true, and $y_{i}=0$ corresponds to a solution with $z_{i}=$ false.
2) The number of points in $V(I+J)$ where $J=\left(x_{1}+y_{1}-1, \ldots, x_{n}+y_{n}-1\right)$ coincides with the number of solutions of the 3SAT formula.
3) Define $I_{0}=I$ and recursively

$$
I_{k}=I_{k-1}:\left(x_{i}+y_{i}\right) .
$$

Then the formula is not satisfyable iff $I_{n}=(1)$.

Thus computing the dimension of monomial ideals is NP-hard. The algorithm in 3) is a variant of the well-known resolution algorithm of J.A. Robinson (1963) for logical formulas.

Third week

Exercise 20. The group $\operatorname{GL}(n+1, K)$ acts on $\mathbb{P}^{n}(K)$ via the action induced from

$$
\mathrm{GL}(n+1, K) \times K^{n+1} \rightarrow K^{n+1},(A, x) \mapsto A x .
$$

Prove: The scalar multiples of the identity matrix act trivially on \mathbb{P}^{n}, and the quotient group

$$
\operatorname{PGL}(n+1, \bar{K})=\operatorname{GL}(n+1, \bar{K}) / \bar{K}^{*}
$$

is a quasi-projective subvariety of $\mathbb{P}^{n^{2}+2 n}$.
Let $p_{0}, \ldots, p_{n+1}, p_{n+2} \in \mathbb{P}^{n}$ be $n+3$ points of which no subset of $n+2$ points lie in a hyperplane. Then there exists a unique automorphism $\varphi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ such that

$$
\varphi\left(p_{i}\right)=[0: \ldots: 1: \ldots 0]
$$

is the i th coordinate point for $i \leq n+1$ and $\varphi\left(p_{n+2}\right)=[1: \ldots: 1]$. For this reason $[1: \ldots: 1]$ is sometimes called the scaling point. Conclude that $\operatorname{PGL}(n+1, K)$ acts faithfully on \mathbb{P}^{n}.

Exercise 21. Compute the homogeneous ideal of the projective closure of the affine curve parametrized by

$$
\mathbb{A}^{1} \rightarrow \mathbb{A}^{3}, t \mapsto\left(t, t^{3}, t^{4}\right)
$$

Exercise 22. Consider the map

$$
S^{2} \rightarrow \mathbb{R}^{3}=\mathbb{A}^{3}(\mathbb{R}),(x, y, z) \mapsto(y z, x z, x y)
$$

Prove that the map factors over $\mathbb{P}^{2}(\mathbb{R})$ and compute the equation of the algebraic closure in \mathbb{A}^{3}.

The image above was created with the program surfer https://imaginary.org/de/program/surfer. This surface is known under the name Steiner surface or Roman surface.

Exercise 23. Consider the plane curves defined by

$$
y^{2}=\left(1-x^{2}\right)^{3}, \quad y^{2}=x^{4}-x^{6}, \quad y^{3}-3 x^{2} y=\left(x^{2}+y^{2}\right)^{2}, \quad y^{2}=x^{2}-x^{4}
$$

Their real points are one of the following:

Who is who?
Exercise 24. Compute the ranks of the free modules F_{i} and the maps between them in the free resolution F of the following $R=K\left[x_{1}, \ldots, x_{n}\right]$-modules:

1) $K \cong K\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}, \ldots, x_{n}\right)$ and
2) $K\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}, \ldots, x_{n}\right)^{2}$

Hint: The permutation group S_{n} of the n letters x_{1}, \ldots, x_{n} acts on R and on each F_{i}.
Exercise 25. Let

$$
\begin{aligned}
& f=a_{0} x^{d}+a_{1} x^{d-1}+\ldots+a_{d} \\
& g=b_{0} x^{d}+b_{1} x^{d-1}+\ldots+b_{e}
\end{aligned}
$$

be two polynomials in $K[x]$ of degree d and e. Consider the $(d+e) \times(d+e)$ Sylvester matrix

$$
\operatorname{Syl}(f, g)=\left(\begin{array}{cccccccc}
a_{0} & 0 & \cdots & 0 & b_{0} & 0 & \cdots & 0 \\
a_{1} & a_{0} & & \vdots & b_{1} & b_{0} & & \vdots \\
\vdots & a_{1} & \ddots & \vdots & \vdots & b_{1} & \ddots & \vdots \\
\vdots & \vdots & \ddots & a_{0} & \vdots & \vdots & \ddots & b_{0} \\
a_{d} & & & a_{1} & b_{e} & & & b_{1} \\
0 & a_{d} & & \vdots & 0 & b_{e} & & \vdots \\
\vdots & & \ddots & \vdots & \vdots & & \ddots & \vdots \\
0 & 0 & \cdots & a_{d} & 0 & 0 & \cdots & b_{e}
\end{array}\right)
$$

There are e columns with entries a_{i} 's and d columns with entries b_{j} 's. Prove

1) f and g have a common root if and only if the resultant

$$
\operatorname{Res}(f, g)=\operatorname{det} \operatorname{Syl}(f, g)=0
$$

of f and g vanishes.
2) Suppose that a_{i} and b_{j} are independent variables of degree i and j respectively. Prove that the resultant

$$
\operatorname{Res}(f, g) \in \mathbb{Z}\left[a_{i}, b_{j}\right]
$$

is a homogeneous polynomial of degree $d \cdot e$.
Exercise 26. Give examples of two smooth plane conics which intersect in points with multiplicities
(a) $1,1,1,1$
(b) $2,1,1$
(c) 2,2
(d) 3,1
(e) 4

Exercise 27. Use Macaulay2 to compute the following:

1) The rational parametrization of the curve defined by $f=-3 x^{5}-2 x^{4} y-3 x^{3} y^{2}+$ $x y^{4}+3 y^{5}+6 x^{4}+7 x^{3} y+3 x^{2} y^{2}-2 x y^{3}-6 y^{4}-3 x^{3}-5 x^{2} y+x y^{2}+3 y^{3}$ from Lecture 15.
2) A rational parametrization of the plane quartic curve $V(f) \subset \mathbb{A}^{2}$ defined by $f=$ $-2 x^{4}-2 x^{3} y+x^{2} y^{2}+3 x y^{3}+4 y^{4}+4 x^{3}+x^{2} y-4 x y^{2}-8 y^{3}-2 x^{2}+x y+4 y^{2}$. Hint: $V(f)$ contains the points with coordinates $(0,0),(1,0),(0,1)$ and $(1,1)$,

3) The equation of the image C of

$$
\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{2},\left[t_{0}: t_{1}\right] \mapsto\left[t_{0}^{4}: t_{0}^{3} t_{1}-t_{0} t_{1}^{3}: t_{1}^{4}\right] .
$$

Where are the singular points of C ?

Exercise 28. Let R be a noetherian ring, and let M and N be finitely generated R-module and F_{\bullet} and G_{\bullet} free resolutions of M and N respectively. Prove:

1) Every R-module homomorphism $\varphi: M \rightarrow N$ extends to a map of complexes

i.e., all squares in this diagram commute in particular $\varphi_{i-1} \partial_{i}=\partial_{i}^{\prime} \varphi_{i}$ for all $i \geq 1$.
2) Two extensions $\left(\varphi_{i}\right)_{i \in \mathbb{N}}$ and $\left(\varphi_{i}^{\prime}\right)_{i \in \mathbb{N}}$ of φ differ by a homotopy, i.e., $\exists\left(h_{i}\right)_{i \in \mathbb{N}}$

such that

$$
\varphi_{0}-\varphi_{0}^{\prime}=\partial_{1}^{\prime} h_{0} \quad \text { and } \quad \varphi_{i}-\varphi_{i}^{\prime}=h_{i-1} \partial_{i}+\partial_{i+1}^{\prime} h_{i} \quad \text { for } i \geq 1 .
$$

Exercise 29. Let (R, \mathfrak{m}) be a local noetherian ring and M a finitely generated R-module. A free resolution

$$
\ldots \xrightarrow{\partial_{3}} F_{2} \xrightarrow{\partial_{2}} F_{1} \xrightarrow{\partial_{1}} F_{0} \xrightarrow{\partial} M \xrightarrow{\partial_{-1}} 0
$$

is minimal if at each step we choose a minimal set of generators of ker ∂_{i-1} and a free module F_{i} whose basis maps to these generators. Prove:

1) A resolution F_{\bullet} is minimal if and only if the matrices describing ∂_{i} for $i \geq 1$ have entries in \mathfrak{m}.
2) The minimal free resolution of M is uniquely determined up to an isomorphism of complexes.

Exercise 30. Let $R=\oplus_{d \geq 0} R_{d}$ be a finitely generated graded ring k-algebra with $\mathfrak{m}=R_{+}=$ $\oplus_{d>0} R_{d}$ a maximal ideal with residue field $k=R_{0}$. Let M be a finitely generated graded R-module.

1) Prove Nakayama's Lemma in the graded case: If $N \subset M$ is a graded submodule, then

$$
M=N+\mathfrak{m} M \Longrightarrow N=M
$$

2) Conclude that the minimal graded free resolution of M is unique up to isomorphism.
3) Deduce that graded Betti numbers $\beta_{i j}$ of the minimal free resolution F_{\bullet} of a finitely generated graded module M over the standard graded polynomial ring $S=$ $K\left[x_{0}, \ldots, x_{n}\right]$ are invariants of M.

Exercise 31. A monomial ideal $I \subset S=k\left[x_{0}, \ldots, x_{n}\right]$ is called Borel fixed if

$$
x_{i} x^{\alpha} \in I \Longrightarrow x_{j} x^{\alpha} \in I \quad \text { holds for all monomials } x^{\alpha} \text { and all } j<i .
$$

Prove that the algorithm from Lecture 14 computes the minimal free resolution. Eliahou and Kevaire (1990) even gave a description of the matrices in the minimal free resolution.

Exercise 32.1) Consider the ideal

$$
I=\left(x_{0} x_{1} x_{2}, x_{1} x_{2} x_{3}, x_{0} x_{1} x_{4}, x_{0} x_{3} x_{4}, x_{2} x_{3} x_{4}, x_{0} x_{2} x_{5}, x_{0} x_{3} x_{5}, x_{1} x_{3} x_{5}, x_{1} x_{4} x_{5}, x_{2} x_{4} x_{5}\right)
$$

Prove that the minimal free resolution of I as an $K\left[x_{0}, \ldots, x_{5}\right]$-module depends on the characteristic of the ground field. The ranks of the free modules in $\operatorname{char}(K)=2$ and $\operatorname{char}(K) \neq 2$ are different.

An explanation of this phenomenon is given by Hochster's theory (1977) of Stanley-Reisner rings. Let Δ be a simplicial complex with $n+1$ vertices. We may regard Δ as a subcomplex of the standard n simplex Δ_{n}, which by definition is the convex hall of the coordinate vectors $e_{i} \in \mathbb{R}^{n+1}=\mathbb{A}^{n+1}(\mathbb{R})$. The square-free monomial ideal I_{Δ} of Δ is the vanishing ideal of the cone over Δ with vertex $0 \in \mathbb{R}^{n+1}$. Since I_{Δ} is monomial ideal its generators generate an ideal $I_{\Delta}^{K} \subset K\left[x_{0}, \ldots, x_{n}\right]$ for any field K. The coordinate ring $K[\Delta]=K\left[x_{0}, \ldots, x_{n}\right] / I_{\Delta}^{K}$ is called the Stanley-Reisner ring of Δ over K. Conversely any square-free monomial ideal $J \subset \mathbb{Q}\left[x_{0}, \ldots, x_{n}\right]$ defines a simplicial complex by intersecting the cone $C(J) \subset \mathbb{A}^{n+1}(\mathbb{C})$ over $V(J) \subset \mathbb{P}^{n}(\mathbb{C})$ with the standard n-simplex $\Delta_{n} \subset \mathbb{R}^{n+1} \subset \mathbb{C}^{n+1}=\mathbb{A}^{n+1}(\mathbb{C})$.
2) Prove

$$
\Delta=C(J) \cap \Delta_{n}
$$

is a simplicial complex with $I_{\Delta}^{\mathbb{Q}}=J$.
3) Check that the monomial ideal

$$
I \subset K\left[x_{0}, \ldots, x_{5}\right]
$$

above corresponds to a triangulation of $\mathbb{P}^{2}(\mathbb{R})$. Hint: Compute a primary decomposition of I.
The fact that the homology of $\mathbb{P}^{2}(\mathbb{R})$ with coefficients in K is different for $\operatorname{char}(K)=2$ explains Example 1) by Hochster's theory.

Exercise 33. Prove that the Segre product $\mathbb{P}^{n} \times \mathbb{P}^{m} \subset \mathbb{P}^{N}$ with $N=(n+1)(m+1)-1$ has dimension $\operatorname{dim} \mathbb{P}^{n} \times \mathbb{P}^{m}=n+m$ and degree $\operatorname{deg} \mathbb{P}^{n} \times \mathbb{P}^{m}=\binom{n+m}{n}$.

Exercise 34. Consider the algebraic set $S(e, d) \subset \mathbb{P}^{d+e+1}$ for $d, e \geq 1$ defined by the 2×2 minors of the matrix

$$
\left(\begin{array}{cccccccc}
x_{0} & x_{1} & \ldots & x_{d-1} & y_{0} & y_{1} & \ldots & y_{e-1} \\
x_{1} & x_{2} & \ldots & x_{d} & y_{1} & y_{2} & \ldots & y_{e}
\end{array}\right)
$$

where $x_{0} \ldots y_{e}$ are the homogeneous coordinates on \mathbb{P}^{d+e+1}.

1) Prove that there exists a morphism $\pi: S(d, e) \rightarrow \mathbb{P}^{1}$ whose fibers are lines.
2) Let $\phi_{1}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{d}=V\left(y_{0}, \ldots, y_{e}\right)$ and $\phi_{2}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{e}=V\left(x_{0}, \ldots, x_{d}\right) \subset \mathbb{P}^{d+e+1}$ be the parametrisation of the rational normal curve of degree d and e in disjoint linear subspaces $\mathbb{P}^{d} \cup \mathbb{P}^{e} \subset \mathbb{P}^{d+e+1}$. Prove

$$
S(e, d) \cong \bigcup_{p \in \mathbb{P}^{1}} \overline{\phi_{1}(p) \phi_{2}(p)}
$$

where $\overline{\phi_{1}(p) \phi_{2}(p)}$ denotes the line joining $\phi_{1}(p)$ and $\phi_{2}(p)$.

Fourth week

Exercise 35. Let $\varphi: X \rightarrow Y$ be a projective morphism. Then

$$
A_{r}=\left\{q \in Y \mid \operatorname{dim} X_{q} \geq r\right\} \subset Y
$$

is a Zariski-closed subset of Y. Suppose that X and Y are varieties and that φ is surjective. Prove that

$$
\operatorname{dim} A_{r}+r<\operatorname{dim} X
$$

for r with $r>\operatorname{dim} X-\operatorname{dim} Y$.
Exercise 36. Let $X \subset \mathbb{P}^{n}$ be a projective variety. The secant variety of X is

$$
\operatorname{Sec}(X)=\overline{\bigcup_{p, q \in X^{*}, p \neq q}} \overline{p q} \subset \mathbb{P}^{n}
$$

where $\overline{p q}$ is the line spanned by the two points and $X^{*}=X \backslash X_{\text {sing }}$ is the open set of smooth points. Prove:
1)

$$
\operatorname{dim} \operatorname{Sec}(X) \leq 2 \operatorname{dim} X+1
$$

2) If X is smooth and p a point not contained in $\operatorname{Sec}(X)$, then the projection

$$
\pi_{p}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n-1}
$$

from p induces an isomorphism $X \cong \pi_{p}(X)$.
Conclude:
3) Every irreducible smooth projective curve can be embedded into \mathbb{P}^{3}.
4) Every irreducible smooth projective curve has a birational model in \mathbb{P}^{2} with only nodes as singularities.

Exercise 37. Let $V_{2}=\rho_{2,2}\left(\mathbb{P}^{2}\right) \subset \mathbb{P}^{5}$ be the Veronese surface, and let $p \in \mathbb{P}^{5}$ be a general point. Prove that the projection $\pi_{p}: \mathbb{P}^{5} \rightarrow \mathbb{P}^{4}$ induces an isomorphism

$$
V_{2} \cong \pi_{p}\left(V_{2}\right) \subset \mathbb{P}^{4}
$$

A famous result of Severi (1901) says: A smooth surface $X \subset \mathbb{P}^{5}$ has no isomorphic projection from a point into \mathbb{P}^{4} unless X lies in a hyperplane or X is projectively equivalent to the Veronese surface.

Exercise 38. Let $L_{1} \cup L_{2} \cup L_{3} \cup L_{4} \subset \mathbb{P}^{3}$ be four general lines. Prove: Counted with multiplicities there are exactly two lines $L \subset \mathbb{P}^{3}$ which intersects all four lines.

Hint: Take the special case $L_{1}=V(w, x), L_{2}=V(y, z)$ and $L_{3}=V(w+y, x+z)$ and prove that $L_{1} \cup L_{2} \cup L_{3}$ lies in a unique quadric hypersurface $Q \subset \mathbb{P}^{3}$ isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Exercise 39. Consider a conic $C \subset \mathbb{P}^{2}$ and six different points p_{1}, \ldots, p_{6} on C. Prove Pascal's theorem: The opposite sides of the hexagon $L_{12}=\overline{p_{1} p_{2}}, L_{23}=\overline{p_{2} p_{3}}, \ldots, L_{56}=$ $\overline{p_{5} p_{6}}, L_{61}=\overline{p_{5} p_{6}}$ intersect in three points $q_{1}=L_{12} \cap L_{45}, q_{2}=L_{23} \cap L_{56}, q_{3}=L_{34} \cap L_{61}$ which lie on a line.

Hint: Consider the pencil of cubics

$$
V\left(t_{0} f+t_{1} g\right) \subset \mathbb{P}^{2} \text { with }\left[t_{0}: t_{1}\right] \in \mathbb{P}^{1}
$$

where $f=\ell_{12} \ell_{34} \ell_{56}$ and $g=\ell_{23} \ell_{45} \ell_{61}$ are products of the equation $\ell_{i j}$ of $L_{i j}$.
Exercise 40. Find the affine equations of the pair of quartics with non-ordinary respectively ordinary triple point related by a Cremona transformation as in the example from Lecture 20.

Exercise 41. Consider over $K=\mathbb{C}$ the projective closure E of the curve

$$
V\left(y^{2}-x^{3}+x\right) \subset \mathbb{A}^{2} \subset \mathbb{P}^{2}
$$

and the projection $\pi: E \rightarrow \mathbb{P}^{1}$ from the point $o \in E$ at infinity onto the x-axis. Then π has degree 2 and branch points in $\{0,1,-1, \infty\}$. Triangulate $\mathbb{P}^{1} \approx S^{2}$ like an octahedron with $\{0,1,-1, i,-i, \infty$,$\} as vertices. Describe the induced triangulation of E$!

Exercise 42. Let $C \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}^{3}$ be a curve defined by a form of bi-degree (d, e). Prove that C has degree $\operatorname{deg} C=d+e$ and arithmetic genus $p_{a}=(d-1)(e-1)$.

