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First week

Exercise 1. Let K be an infinite field and f ∈ K[x1, . . . , xn] a non-zero polynomial. Show
that there exists a point a ∈ An(K) such that f(a) 6= 0.

Exercise 2. Let K[x] be a polynomial ring in one variable over a field. Prove that K[x] is
a principal ideal domain, that is, every ideal I ⊂ K[x] is generated by a single polynomial.

Exercise 3. Implement the computer algebra system Macaulay2
https://faculty.math.illinois.edu/Macaulay2/
on your machine.

Exercise 4. Let I ⊂ K[x1, . . . , xn] be an ideal. Prove

V (I) ⊂ An is finite ⇐⇒ K[x1, . . . , xn]/I is a finite-dimensional K-vector space.

Exercise 5. A binomial f ∈ K[x1, . . . , xn] is a polynomial which has exactly two terms

f = axα − bxβ.
A binomial ideal is an ideal generated by binomials and monomials. Prove:
Binomial ideals have a Gröbner basis consisting of binomials and monomials.

Exercise 6. (Key property of >lex.)

(1) Suppose f ∈ K[x1, . . . , xn] and 1 ≤ j ≤ n− 1. Then

Ltlex(f) ∈ K[xj+1, . . . , xn] ⇐⇒ f ∈ K[xj+1, . . . , xn]

(2) Let f1, . . . , fr be a Gröbner basis of I ⊂ K[x1, . . . , xn] with respect to >lex. Then

{fs | Ltlex(fs) ∈ K[xj+1, . . . , xn]}
is a Gröbner basis of Ij = I ∩K[xj+1, . . . , xn].

Exercise 7. Consider the ideal I = (xy(x + y) + 1) ⊂ F2[x, y]. Determine coordinates
in which I satisfies the extra hypothesis of the projection theorem. Show that the extra
hypothesis cannot be achieved by means of a linear change of coordinates.

Exercise 8. Prove that the algebraic sets V (y−x2) and V (xy−1) in A2 are not isomorphic.

Exercise 9. Let > be a monomial order and let M ⊂ K[x1, . . . , xn] be a finite set of
monomials. Prove that there exists a weight order >w (with Q-linearly independent weights)
which induces the same order on the monomials of M as >.

Hint: Consider the convex hull C of the set

{α− β | xα, xβ ∈M with xα ≥ xβ} ⊂ Rn

and prove that 0 ∈ C is a vertex of C, i.e., 0 is not a linear combination of other points in
C with strictly positive coefficients.

https://faculty.math.illinois.edu/Macaulay2/


Exercise 10. Consider the curve C = V (f1, f2) ⊂ A3(C), where

f1 = y3z − 2y2z − z3 + x2 + z,
f2 = xy3z − 2xy2z − xz3 + x3 + y3 − 2y2 + xz − z2 + y.

Prove that the reduced lexicographic Gröbner basis for the ideal (f1, f2) with variables
ordered as x > y > z, is

x2 − yz + z, y3 − 2y2 + y − z2.

If we reorder the variables as y > z > x, the reduced lexicographic Gröbner basis for 〈f1, f2〉
consists of five polynomials:

y3 − 2y2 + y − z2, y2x2 − yx2 − z3, yz − z − x2,
yx4 − z4, z5 − zx4 − x6.

Consider C1 = V (y3−2y2+y−z2) ⊂ A2 and C2 = V (z5−zx4−x6) ⊂ A2 and the projections
C → C1 and C → C2 onto the curve in the yz- and xz-plane. How many preimage points
have points in C1 and C2?

Second week

Exercise 11. An R-module M is called noetherian if it satisfies the analogous equivalent
conditions for submodules instead of ideals. Prove:

(1) Let

0 // M ′ ψ // M
ϕ // M ′′ → 0

be a short exact sequence of R-modules, i.e., the homomorphism ψ is injective, the
homomorphism ϕ is surjective and kerϕ = imψ.
Then M is noetherian iff M ′ and M ′′ are noetherian.

(2) An R-module M over a noetherian ring R is noetherian iff M is finitely generated.

Exercise 12. Let R be a noetherian ring, let m be a maximal ideal of R, and let I be any
ideal of R. Show that the following are equivalent:

(1) I is m-primary.
(2) rad(I) = m.
(3) m ⊃ I ⊃ mk for some k ≥ 1.

Exercise 13.

(1) When is a monomial ideal a prime ideal?
(2) Characterize monomial primary ideals.
(3) Consider the monomial ideal I = (xy, xz, yz) ⊂ Q[x, y, z]. Compute a primary de-

composition of I and I2.

Exercise 14. Consider R = C0[0, 1] = {f : [0, 1] → R | f is continuous}, the ring of
continuous function on the interval [0, 1]. Prove that R is neither an integral domain nor
noetherian.



Exercise 15.

(1) Let R = K[A] be the coordinate ring of a variety and f ∈ R be an element which is
not a unit. Prove that Rf is isomorphic to the coordinate ring of a variety as well.

(2) Prove that K[x](x), the localization of the polynomial ring in one variable at the
maximal ideal (x), is not isomorphic to the coordinate ring of a variety.

Exercise 16. Let A = B ∪ C be a decomposition of an algebraic set into proper algebraic
subsets. Let p ∈ A \ C be a point and m = I(p) be the corresponding maximal ideal. Prove

K[A]m ∼= K[B]m.

Exercise 17. Consider the ring extension

R = R[e2, e3] ↪→ T = R[t1, t2]

defined by e2 7→ t1t2 − (t1 + t2)2, e3 7→ t1t2(−t1 − t2).

(1) Prove that S = R[t1] ∼= R[x]/(x3 + e2x+ e3) and conclude that

R ⊂ S ⊂ T

is a tower of finite extensions.
(2) Compute the degrees of the field extensions

Q(R) ⊂ Q(S) ⊂ Q(T ).

(3) Let (b2, b3) ∈ A2(R) be a point. How many maximal ideals P in S can lie over the
maximal ideal of p = (e2 − b2, e3 − b3) ⊂ R? How many maximal ideals P′ in T can
lie over p?

(4) What residue fields S/P and T/P′ do occur?

–1

0

1x
–2

–1

0

a

–2

0

2

R, S and T , and branch loci.

Exercise 18. If ψ : L → M and ϕ : M → N are two R-module homomorphism with
ϕ ◦ ψ = 0, then

H =
ker(ϕ)

imψ

is called the homology of the complex

L
ψ // M

ϕ // N



at M . Let

E1
a //

ψ1

��

E0
//

ψ0

��

L //

ψ
��

0

F1
b //

ϕ1

��

F0
//

ϕ0

��

M //

ϕ

��

0

G1
c // G0

// N // 0

be free presentations of ψ and ϕ. Prove the correctness of the following algorithm.

1. Compute the syzyzgy matrix of (c|ϕ0)

H0

g0

h0


// G1 ⊕ F0

(c|ϕ0)
// G0 .

2. Compute the syzyzgy matrix of (h0|b|ψ0)

H1


h1

g1

f1


// H0 ⊕ F1 ⊕ E0

(h0|b|ψ0)
// F0 .

3. Then

H1
h1 // H0

// H // 0

is a presentation of H.

Exercise 19. A 3SAT formula with m clauses and n logical variables is an expression of
the form

(a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (am ∨ bm ∨ cm)

with

ai, bi, ci ∈ {z1,¬z1, . . . , zn,¬zn}.
It is satisfiable if there exist values zi ∈ {true, false} which makes the formula true.
We translate this formula as follows into the square-free monomial ideal I ⊂ K[x1, . . . , yn]
in 2n variables. There are n degree two monomials

x1y1, . . . , xnyn

and m monomials of degree three. Each clause gives a degree three monomial, where xi and
yi correspond to zi and ¬zi respectively. For example

(z1 ∨ ¬z3 ∨ z4)←→ x1y3x4.

Thus altogether I has n+m generators. Prove:

1) dimV (I) = n iff the formula is satisfyable. Here a solution with xi = 0 corresponds to
a SAT-solution with zi = true, and yi = 0 corresponds to a solution with zi = false.

2) The number of points in V (I + J) where J = (x1 + y1− 1, . . . , xn + yn− 1) coincides
with the number of solutions of the 3SAT formula.

3) Define I0 = I and recursively

Ik = Ik−1 : (xi + yi).

Then the formula is not satisfyable iff In = (1).



Thus computing the dimension of monomial ideals is NP-hard. The algorithm in 3) is a
variant of the well-known resolution algorithm of J.A. Robinson (1963) for logical formulas.

Third week

Exercise 20. The group GL(n+ 1, K) acts on Pn(K) via the action induced from

GL(n+ 1, K)×Kn+1 → Kn+1, (A, x) 7→ Ax.

Prove: The scalar multiples of the identity matrix act trivially on Pn, and the quotient group

PGL(n+ 1, K) = GL(n+ 1, K)/K
∗

is a quasi-projective subvariety of Pn2+2n.

Let p0, . . . , pn+1, pn+2 ∈ Pn be n + 3 points of which no subset of n + 2 points lie in a
hyperplane. Then there exists a unique automorphism ϕ : Pn → Pn such that

ϕ(pi) = [0 : . . . : 1 : . . . 0]

is the ith coordinate point for i ≤ n + 1 and ϕ(pn+2) = [1 : . . . : 1]. For this reason
[1 : . . . : 1] is sometimes called the scaling point. Conclude that PGL(n + 1, K) acts
faithfully on Pn.

Exercise 21. Compute the homogeneous ideal of the projective closure of the affine curve
parametrized by

A1 → A3, t 7→ (t, t3, t4).

Exercise 22. Consider the map

S2 → R3 = A3(R), (x, y, z) 7→ (yz, xz, xy).

Prove that the map factors over P2(R) and compute the equation of the algebraic closure
in A3.

The image above was created with the program surfer https://imaginary.org/de/program/surfer.
This surface is known under the name Steiner surface or Roman surface.

Exercise 23. Consider the plane curves defined by

y2 = (1− x2)3, y2 = x4 − x6, y3 − 3x2y = (x2 + y2)2, y2 = x2 − x4

Their real points are one of the following:

https://imaginary.org/de/program/surfer


Who is who?

Exercise 24. Compute the ranks of the free modules Fi and the maps between them in the
free resolution F of the following R = K[x1, . . . , xn]-modules:

1) K ∼= K[x1, . . . , xn]/(x1, . . . , xn) and
2) K[x1, . . . , xn]/(x1, . . . , xn)2

Hint: The permutation group Sn of the n letters x1, . . . , xn acts on R and on each Fi.

Exercise 25. Let

f = a0x
d + a1x

d−1 + . . .+ ad

g = b0x
d + b1x

d−1 + . . .+ be

be two polynomials in K[x] of degree d and e. Consider the (d + e) × (d + e) Sylvester
matrix

Syl(f, g) =



a0 0 · · · 0 b0 0 · · · 0

a1 a0
... b1 b0

...
... a1

. . .
...

... b1
. . .

...
...

...
. . . a0

...
...

. . . b0

ad a1 be b1

0 ad
... 0 be

...
...

. . .
...

...
. . .

...
0 0 · · · ad 0 0 · · · be


There are e columns with entries ai’s and d columns with entries bj’s. Prove

1) f and g have a common root if and only if the resultant

Res(f, g) = det Syl(f, g) = 0

of f and g vanishes.
2) Suppose that ai and bj are independent variables of degree i and j respectively. Prove

that the resultant
Res(f, g) ∈ Z[ai, bj]

is a homogeneous polynomial of degree d · e.

Exercise 26. Give examples of two smooth plane conics which intersect in points with
multiplicities

(a) 1, 1, 1, 1
(b) 2, 1, 1
(c) 2, 2
(d) 3, 1
(e) 4

Exercise 27. Use Macaulay2 to compute the following:



1) The rational parametrization of the curve defined by f = −3x5 − 2x4y − 3x3y2 +
x y4 + 3 y5 + 6x4 + 7x3y + 3x2y2 − 2x y3 − 6 y4 − 3x3 − 5x2y + x y2 + 3 y3 from
Lecture 15.

2) A rational parametrization of the plane quartic curve V (f) ⊂ A2 defined by f =
−2x4 − 2x3y + x2y2 + 3x y3 + 4 y4 + 4x3 + x2y − 4x y2 − 8 y3 − 2x2 + x y + 4 y2.
Hint: V (f) contains the points with coordinates (0, 0), (1, 0), (0, 1) and (1, 1),

3) The equation of the image C of

ϕ : P1 → P2, [t0 : t1] 7→ [t40 : t30t1 − t0t31 : t41].

Where are the singular points of C?

Exercise 28. Let R be a noetherian ring, and let M and N be finitely generated R-module
and F• and G• free resolutions of M and N respectively. Prove:

1) Every R-module homomorphism ϕ : M → N extends to a map of complexes

. . .
∂3 // F2

∂2 //

ϕ2

��

F1
∂1 //

ϕ1

��

F0
//

ϕ0

��

M //

ϕ

��

0

. . .
∂′3

// G2
∂′2

// G1
∂′1

// G0
// N // 0,

i.e., all squares in this diagram commute in particular ϕi−1∂i = ∂′iϕi for all i ≥ 1.
2) Two extensions (ϕi)i∈N and (ϕ′i)i∈N of ϕ differ by a homotopy, i.e., ∃ (hi)i∈N

. . .
∂3 // F2

∂2 //

��

h2

~~

F1
∂1 //

h1

~~ ��

F0

h0

~~

//

����

M //

ϕ

��

0

. . .
∂′3

// G2
∂′2

// G1
∂′1

// G0
// N // 0

such that

ϕ0 − ϕ′0 = ∂′1h0 and ϕi − ϕ′i = hi−1∂i + ∂′i+1hi for i ≥ 1.

Exercise 29. Let (R,m) be a local noetherian ring and M a finitely generated R-module.
A free resolution

. . .
∂3 // F2

∂2 // F1
∂1 // F0

∂ // M
∂−1 // 0

is minimal if at each step we choose a minimal set of generators of ker ∂i−1 and a free
module Fi whose basis maps to these generators. Prove:

1) A resolution F• is minimal if and only if the matrices describing ∂i for i ≥ 1 have
entries in m.

2) The minimal free resolution of M is uniquely determined up to an isomorphism of
complexes.



Exercise 30. Let R = ⊕d≥0Rd be a finitely generated graded ring k-algebra with m = R+ =
⊕d>0Rd a maximal ideal with residue field k = R0. Let M be a finitely generated graded
R-module.

1) Prove Nakayama’s Lemma in the graded case: If N ⊂ M is a graded submodule,
then

M = N + mM =⇒ N = M.

2) Conclude that the minimal graded free resolution of M is unique up to isomorphism.
3) Deduce that graded Betti numbers βij of the minimal free resolution F• of a fini-

tely generated graded module M over the standard graded polynomial ring S =
K[x0, . . . , xn] are invariants of M .

Exercise 31. A monomial ideal I ⊂ S = k[x0, . . . , xn] is called Borel fixed if

xix
α ∈ I =⇒ xjx

α ∈ I holds for all monomials xα and all j < i.

Prove that the algorithm from Lecture 14 computes the minimal free resolution. Eliahou
and Kevaire (1990) even gave a description of the matrices in the minimal free resolution.

Exercise 32. 1) Consider the ideal

I = (x0x1x2, x1x2x3, x0x1x4, x0x3x4, x2x3x4, x0x2x5, x0x3x5, x1x3x5, x1x4x5, x2x4x5)

Prove that the minimal free resolution of I as an K[x0, . . . , x5]-module depends on the cha-
racteristic of the ground field. The ranks of the free modules in char(K) = 2 and char(K) 6= 2
are different.

An explanation of this phenomenon is given by Hochster’s theory (1977) of Stanley-Reisner
rings. Let ∆ be a simplicial complex with n+ 1 vertices. We may regard ∆ as a subcomplex
of the standard n simplex ∆n, which by definition is the convex hall of the coordinate vectors
ei ∈ Rn+1 = An+1(R). The square-free monomial ideal I∆ of ∆ is the vanishing ideal of the
cone over ∆ with vertex 0 ∈ Rn+1. Since I∆ is monomial ideal its generators generate an
ideal IK∆ ⊂ K[x0, . . . , xn] for any field K. The coordinate ring K[∆] = K[x0, . . . , xn]/IK∆ is
called the Stanley-Reisner ring of ∆ over K. Conversely any square-free monomial ideal
J ⊂ Q[x0, . . . , xn] defines a simplicial complex by intersecting the cone C(J) ⊂ An+1(C)
over V (J) ⊂ Pn(C) with the standard n-simplex ∆n ⊂ Rn+1 ⊂ Cn+1 = An+1(C).

2) Prove
∆ = C(J) ∩∆n

is a simplicial complex with IQ∆ = J .
3) Check that the monomial ideal

I ⊂ K[x0, . . . , x5]

above corresponds to a triangulation of P2(R). Hint: Compute a primary decompo-
sition of I.

The fact that the homology of P2(R) with coefficients in K is different for char(K) = 2
explains Example 1) by Hochster’s theory.

Exercise 33. Prove that the Segre product Pn × Pm ⊂ PN with N = (n + 1)(m + 1) − 1
has dimension dimPn × Pm = n+m and degree degPn × Pm =

(
n+m
n

)
.

Exercise 34. Consider the algebraic set S(e, d) ⊂ Pd+e+1 for d, e ≥ 1 defined by the 2× 2-
minors of the matrix (

x0 x1 . . . xd−1 y0 y1 . . . ye−1

x1 x2 . . . xd y1 y2 . . . ye

)
where x0 . . . ye are the homogeneous coordinates on Pd+e+1.



1) Prove that there exists a morphism π : S(d, e)→ P1 whose fibers are lines.
2) Let φ1 : P1 → Pd = V (y0, . . . , ye) and φ2 : P1 → Pe = V (x0, . . . , xd) ⊂ Pd+e+1 be

the parametrisation of the rational normal curve of degree d and e in disjoint linear
subspaces Pd ∪ Pe ⊂ Pd+e+1. Prove

S(e, d) ∼=
⋃
p∈P1

φ1(p)φ2(p)

where φ1(p)φ2(p) denotes the line joining φ1(p) and φ2(p).

Fourth week

Exercise 35. Let ϕ : X → Y be a projective morphism. Then

Ar = {q ∈ Y | dimXq ≥ r} ⊂ Y

is a Zariski-closed subset of Y . Suppose that X and Y are varieties and that ϕ is surjective.
Prove that

dimAr + r < dimX

for r with r > dimX − dimY.

Exercise 36. Let X ⊂ Pn be a projective variety. The secant variety of X is

Sec(X) =
⋃

p,q∈X∗,p 6=q

pq ⊂ Pn

where pq is the line spanned by the two points and X∗ = X \Xsing is the open set of smooth
points. Prove:

1) dim Sec(X) ≤ 2 dimX + 1.
2) If X is smooth and p a point not contained in Sec(X), then the projection

πp : Pn 99K Pn−1

from p induces an isomorphism X ∼= πp(X).

Conclude:

3) Every irreducible smooth projective curve can be embedded into P3.
4) Every irreducible smooth projective curve has a birational model in P2 with only

nodes as singularities.

Exercise 37. Let V2 = ρ2,2(P2) ⊂ P5 be the Veronese surface, and let p ∈ P5 be a general
point. Prove that the projection πp : P5 99K P4 induces an isomorphism

V2
∼= πp(V2) ⊂ P4.

A famous result of Severi (1901) says: A smooth surfaceX ⊂ P5 has no isomorphic projection
from a point into P4 unless X lies in a hyperplane or X is projectively equivalent to the
Veronese surface.

Exercise 38. Let L1 ∪ L2 ∪ L3 ∪ L4 ⊂ P3 be four general lines. Prove: Counted with
multiplicities there are exactly two lines L ⊂ P3 which intersects all four lines.

Hint: Take the special case L1 = V (w, x), L2 = V (y, z) and L3 = V (w+ y, x+ z) and prove
that L1 ∪ L2 ∪ L3 lies in a unique quadric hypersurface Q ⊂ P3 isomorphic to P1 × P1.

Exercise 39. Consider a conic C ⊂ P2 and six different points p1, . . . , p6 on C. Prove
Pascal’s theorem: The opposite sides of the hexagon L12 = p1p2, L23 = p2p3, . . . , L56 =
p5p6, L61 = p5p6 intersect in three points q1 = L12 ∩L45, q2 = L23 ∩L56, q3 = L34 ∩L61 which
lie on a line.



Hint: Consider the pencil of cubics

V (t0f + t1g) ⊂ P2 with [t0 : t1] ∈ P1

where f = `12`34`56 and g = `23`45`61 are products of the equation `ij of Lij.

Exercise 40. Find the affine equations of the pair of quartics with non-ordinary respectively
ordinary triple point related by a Cremona transformation as in the example from Lecture
20.

Exercise 41. Consider over K = C the projective closure E of the curve

V (y2 − x3 + x) ⊂ A2 ⊂ P2

and the projection π : E → P1 from the point o ∈ E at infinity onto the x-axis. Then π has
degree 2 and branch points in {0, 1,−1,∞}. Triangulate P1 ≈ S2 like an octahedron with
{0, 1,−1, i,−i,∞, } as vertices. Describe the induced triangulation of E!

Exercise 42. Let C ⊂ P1 × P1 ⊂ P3 be a curve defined by a form of bi-degree (d, e). Prove
that C has degree degC = d+ e and arithmetic genus pa = (d− 1)(e− 1).


