Prof. Dr. Frank-Olaf Schreyer

Exercises for the Algebraic Geometry course

Perugia, July 2021

First week

Exercise 1. Let K be an infinite field and f € K[zy,...,x,] a non-zero polynomial. Show
that there exists a point a € A"(K) such that f(a) # 0.

Exercise 2. Let K[z] be a polynomial ring in one variable over a field. Prove that K|[z] is
a principal ideal domain, that is, every ideal I C K[z] is generated by a single polynomial.

Exercise 3. Implement the computer algebra system Macaulay2
https://faculty.math.illinois.edu/Macaulay2/
on your machine.

Exercise 4. Let [ C K|z1,...,x,] be an ideal. Prove
V(I) C A" is finite <= Klxy,...,x,]/I is a finite-dimensional K-vector space.
Exercise 5. A binomial f € Klzy,...,z,] is a polynomial which has exactly two terms

f = az® —bz".
A binomial ideal is an ideal generated by binomials and monomials. Prove:

Binomial ideals have a Grobner basis consisting of binomials and monomials.

Exercise 6. (Key property of >y.)
(1) Suppose f € Klzy,...,x,] and 1 < j <n —1. Then
Lt]ex(f) & K[.Z'j+1, Ce ,.fl?n] < f € K[$j+17 e ,xn]
(2) Let fi,..., fr be a Grobner basis of I C K[z, ...,x,] with respect to >e. Then
{fs | Ltlex(fs) € K[ijrla s wxn]}
is a Grobner basis of [; = I N K[xj11,. .., Tyl

Exercise 7. Consider the ideal I = (zy(xr +y) + 1) C Fs[z,y]. Determine coordinates
in which I satisfies the extra hypothesis of the projection theorem. Show that the extra
hypothesis cannot be achieved by means of a linear change of coordinates.

Exercise 8. Prove that the algebraic sets V (y —2?) and V(zy—1) in A? are not isomorphic.

Exercise 9. Let > be a monomial order and let M C K[zy,...,xz,] be a finite set of
monomials. Prove that there exists a weight order >,, (with Q-linearly independent weights)
which induces the same order on the monomials of M as >.

Hint: Consider the convex hull C of the set
{a— B | 2% 2% € M with 2% > 2°} C R"

and prove that 0 € C' is a vertex of C, i.e., 0 is not a linear combination of other points in
C with strictly positive coefficients.


https://faculty.math.illinois.edu/Macaulay2/

Exercise 10. Consider the curve C' = V(f1, f2) C A3(C), where

fi = ¥Pr—20%2— 2B+ 22+ 2,

fo = 2Pz —2xy*s—al+ 2+ P — 22 + 12— 2% +y.
Prove that the reduced lexicographic Grobner basis for the ideal (fi, f2) with variables
ordered as z > y > z, is

2 —yz+z, P -2 +y— 22

A <
g X

If we reorder the variables as y > z > x, the reduced lexicographic Grobner basis for (f1, fa)
consists of five polynomials:

y =2ty — 2% YRt gt =2t yr— 2

yrt — 24, 2% — 2zt — 25,
Consider Oy = V (y3—2y*+y—22) C A2 and Cy = V(2% —za*—12°) C A? and the projections
C — C} and C' — (5 onto the curve in the yz- and xz-plane. How many preimage points
have points in C'; and C57

Second week

Exercise 11. An R-module M is called noetherian if it satisfies the analogous equivalent
conditions for submodules instead of ideals. Prove:
(1) Let
0—> M 2o M —2- M" 0
be a short exact sequence of R-modules, i.e., the homomorphism ) is injective, the
homomorphism ¢ is surjective and ker p = im .
Then M is noetherian iff M’ and M"” are noetherian.
(2) An R-module M over a noetherian ring R is noetherian iff M is finitely generated.

Exercise 12. Let R be a noetherian ring, let m be a maximal ideal of R, and let I be any
ideal of R. Show that the following are equivalent:

(1) I is m-primary.

(2) rad(/) = m.

(3) m > I D m” for some k > 1.

Exercise 13.

(1) When is a monomial ideal a prime ideal?

(2) Characterize monomial primary ideals.

(3) Consider the monomial ideal I = (zy,zz,yz) C Q[z,y, z]. Compute a primary de-
composition of I and I?.

Exercise 14. Consider R = C°[0,1] = {f : [0,1] — R | f is continuous}, the ring of
continuous function on the interval [0, 1]. Prove that R is neither an integral domain nor
noetherian.



Exercise 15.

(1) Let R = K[A] be the coordinate ring of a variety and f € R be an element which is
not a unit. Prove that R; is isomorphic to the coordinate ring of a variety as well.

(2) Prove that K[z](), the localization of the polynomial ring in one variable at the
maximal ideal (z), is not isomorphic to the coordinate ring of a variety.

Exercise 16. Let A = B U C be a decomposition of an algebraic set into proper algebraic
subsets. Let p € A\ C be a point and m = I(p) be the corresponding maximal ideal. Prove

Exercise 17. Consider the ring extension
R =Rleg, e3] = T = Rty 9]
defined by e > t1to — (t1 + t2)?, €3 > tita(—t; — t3).
(1) Prove that S = R[t;] & R[z]/(x® 4+ eax + e3) and conclude that
RcScT

is a tower of finite extensions.
(2) Compute the degrees of the field extensions

Q(R) C Q(S) € QT).

(3) Let (by,b3) € A%(R) be a point. How many maximal ideals 9 in S can lie over the
maximal ideal of p = (e3 — by, e3 — b3) C R? How many maximal ideals ' in T can
lie over p?

(4) What residue fields S/B and T/’ do occur?

} 1_2/"/3/0/
R, S and T', and branch loci.

Exercise 18. If ¢y : L — M and ¢ : M — N are two R-module homomorphism with
po1 =0, then
ker(y)

H—
im

is called the homology of the complex

LY M- N



at M. Let

E, —=E, L 0
"
Fy b Fy M 0
lsm ls@o leo

Gl = G() N 0

be free presentations of ¥ and (. Prove the correctness of the following algorithm.

1. Compute the syzyzgy matrix of (¢|pp)
o)
ho .
H0—>G1€BF0LW>GO .

2. Compute the syzyzgy matrix of (hg|b|t)

hy

g1

fl holb
H1—>H()EBF1@E0( OIﬂFO .

3. Then

is a presentation of H.

Exercise 19. A 3SAT formula with m clauses and n logical variables is an expression of
the form

(ay Vb Ver)A(agVba V) Ao Alam V by Ve
with
ai,biyc; € {z1,721,. ..\ Zny D20 )
It is satisfiable if there exist values z; € {true, false} which makes the formula true.

We translate this formula as follows into the square-free monomial ideal I C K[xy,...,yy,]
in 2n variables. There are n degree two monomials

T1Y1y - - - Tnln

and m monomials of degree three. Each clause gives a degree three monomial, where x; and
y; correspond to z; and —z; respectively. For example

(Zl V —z3 V 24) < T1Y3T4.

Thus altogether I has n 4+ m generators. Prove:

1) dim V(1) = n iff the formula is satisfyable. Here a solution with z; = 0 corresponds to
a SAT-solution with z; = true, and y; = 0 corresponds to a solution with z; = false.

2) The number of points in V(I 4 J) where J = (x1+y1 —1,..., 2, +y, — 1) coincides
with the number of solutions of the 3SAT formula.

3) Define Iy = I and recursively

[k = [k,1 : (Z’Z + yz)
Then the formula is not satisfyable iff 7,, = (1).



Thus computing the dimension of monomial ideals is NP-hard. The algorithm in 3) is a
variant of the well-known resolution algorithm of J.A. Robinson (1963) for logical formulas.

Third week

Exercise 20. The group GL(n + 1, K) acts on P"(K) via the action induced from
GL(n+1,K) x K" — K" (A, z) = Az,
Prove: The scalar multiples of the identity matrix act trivially on P", and the quotient group
PCGL(n+1,K)=GL(n+1,K)/K"
is a quasi-projective subvariety of Pm*+2n,

Let po, ..., Pni1;Pase € P* be n 4+ 3 points of which no subset of n 4+ 2 points lie in a
hyperplane. Then there exists a unique automorphism ¢ : P* — P" such that

ep))=[0:...:1:...0]
is the ith coordinate point for i < n + 1 and ¢(p,42) = [1 : ... : 1]. For this reason
[1 : ... : 1] is sometimes called the scaling point. Conclude that PGL(n + 1, K) acts

faithfully on P".

Exercise 21. Compute the homogeneous ideal of the projective closure of the affine curve
parametrized by

Al — At (6,11,

Exercise 22. Consider the map
S? = R = A*(R), (2,9, 2) = (y2,22,2y).

Prove that the map factors over P?(R) and compute the equation of the algebraic closure
in A3,

The image above was created with the program surfer https: / /imaginary.org/de/program /surfer.
This surface is known under the name Steiner surface or Roman surface.

Exercise 23. Consider the plane curves defined by

P=(1-22)3 Pr=at—2b -3y = (2 +y?)% yi=a?—at

Their real points are one of the following:


https://imaginary.org/de/program/surfer

Who is who?

Exercise 24. Compute the ranks of the free modules F; and the maps between them in the
free resolution F' of the following R = K[z, ..., x,]-modules:

1) K =2 K[zy,...,z,]/(2z1,...,2,) and
2) Klz1,...,x0)/(x1,...,2,)?
Hint: The permutation group S,, of the n letters z,...,x, acts on R and on each F;.
Exercise 25. Let
f:aoxd+a1xd_1+...+ad

g =0box® + bzt + .+ b,

be two polynomials in K[z]| of degree d and e. Consider the (d + ¢) x (d + e) Sylvester
matrix

ag o --- 0 bO o --- 0
a; Qo b1 b() :
aq . bl
Syl(f,g) = a:d S ZO b Do Zo
1 e 1
O Qq 0 be
0 o ... Qg o o --- be

There are e columns with entries a;’s and d columns with entries b;’s. Prove
1) f and g have a common root if and only if the resultant

Res(f, g) = det Syl(f,g) =0

of f and ¢ vanishes.
2) Suppose that a; and b; are independent variables of degree i and j respectively. Prove
that the resultant
Res(f, g) € Z[a;, b]

is a homogeneous polynomial of degree d - e.

Exercise 26. Give examples of two smooth plane conics which intersect in points with
multiplicities

(a) 1,1,1,1
b) 2,1,1

—

Y

=N

¢
d
e

A~ N
S— N
NS

Exercise 27. Use Macaulay2 to compute the following:



1) The rational parametrization of the curve defined by f = —32° — 22ty — 323y +
ryt +3y° + 62 + 723y + 32%y% — 2293 — 6yt — 323 — 52ty + xy? + 3y from
Lecture 15.

2) A rational parametrization of the plane quartic curve V(f) C A? defined by f =
22t =223y + 2%y + 3xyP FAyt 4 a2ty —dxy? — 8y — 2% +xy + 492
Hint: V(f) contains the points with coordinates (0, 0), (1,0), (0,1) and (1, 1),

2

1

3) The equation of the image C' of
0Pt — P2 [t : 1] = [ty : taty — tot) : t3].

Where are the singular points of C?7

Exercise 28. Let R be a noetherian ring, and let M and N be finitely generated R-module
and F, and G, free resolutions of M and N respectively. Prove:

1) Every R-module homomorphism ¢ : M — N extends to a map of complexes

03 F2 02 Fl o1 F(] M 0
-
P Go 7 G 7 Go N 0,

i.e., all squares in this diagram commute in particular ¢; 10; = dlp; for all i > 1.
2) Two extensions (¢;)ien and (¢});en of ¢ differ by a homotopy, i.e., 3 (h;)ien

03 02 o1

F2 F1 Fo M 0

pararam s

2 2 2,

such that

Yo — QOIO = 81h0 and Yi — gO; = hi,l&- -+ Q{Hhi for 4 2 1.

Exercise 29. Let (R, m) be a local noetherian ring and M a finitely generated R-module.
A free resolution

03 02 01 0 0-1

Fy M 0

Fy Fy

is minimal if at each step we choose a minimal set of generators of kerd;_; and a free
module F; whose basis maps to these generators. Prove:

1) A resolution F, is minimal if and only if the matrices describing 0; for ¢ > 1 have
entries in m.

2) The minimal free resolution of M is uniquely determined up to an isomorphism of
complexes.



Exercise 30. Let R = ©4>0[% be a finitely generated graded ring k-algebra with m = Ry =
Dg>0 Ry a maximal ideal with residue field k = Ry. Let M be a finitely generated graded
R-module.

1) Prove Nakayama’s Lemma in the graded case: If N C M is a graded submodule,
then
M=N+mM = N =M.

2) Conclude that the minimal graded free resolution of M is unique up to isomorphism.

3) Deduce that graded Betti numbers ;; of the minimal free resolution F, of a fini-
tely generated graded module M over the standard graded polynomial ring S =
K|z, ..., x,] are invariants of M.

Exercise 31. A monomial ideal I C S = k[xy,...,x,] is called Borel fixed if
rix® € I = z;2% € I holds for all monomials 2 and all j < 7.

Prove that the algorithm from Lecture 14 computes the minimal free resolution. Eliahou
and Kevaire (1990) even gave a description of the matrices in the minimal free resolution.

Exercise 32. 1) Consider the ideal
I = (1750%196’27 T1T2X3, TOL1L4, TOL3L4, T2L3L4, ToL2L5, LOL3L5, L1TL3L5, T1L4L5, $2$4$5)

Prove that the minimal free resolution of I as an K|z, ..., x5]-module depends on the cha-
racteristic of the ground field. The ranks of the free modules in char(K) = 2 and char(K) # 2
are different.

An explanation of this phenomenon is given by Hochster’s theory (1977) of Stanley-Reisner
rings. Let A be a simplicial complex with n+ 1 vertices. We may regard A as a subcomplex
of the standard n simplex A,,, which by definition is the convex hall of the coordinate vectors
e; € R*™ = A" (R). The square-free monomial ideal Ix of A is the vanishing ideal of the
cone over A with vertex 0 € R""!, Since I5 is monomial ideal its generators generate an
ideal IX C Klxo,...,z,] for any field K. The coordinate ring K[A] = K|xo, ..., z,]/IX is
called the Stanley-Reisner ring of A over K. Conversely any square-free monomial ideal
J C Q|xo,...,z,] defines a simplicial complex by intersecting the cone C(J) C A" (C)
over V(J) C P*(C) with the standard n-simplex A,, C R"*! c C"™! = A"*1(C).

2) Prove

A=C(J)NA,
is a simplicial complex with 2_
3) Check that the monomial ideal

I C Kz, ...,zs)
above corresponds to a triangulation of P?(R). Hint: Compute a primary decompo-

sition of I.

The fact that the homology of P?(R) with coefficients in K is different for char(K) = 2
explains Example 1) by Hochster’s theory.

Exercise 33. Prove that the Segre product P" x P™ C P with N = (n+1)(m+1) — 1
has dimension dimP" x P™ = n + m and degree degP" x P™ = ("*™).

n

Exercise 34. Consider the algebraic set S(e,d) C P4e*! for d, e > 1 defined by the 2 x 2-
minors of the matrix

Lo L1 .- Td-1 Yo Y1 ... ye—l)

Ty X9 ... Tq Y1 Ya ... Ye

where zg . ... are the homogeneous coordinates on P?+et!,



1) Prove that there exists a morphism 7 : S(d,e) — P! whose fibers are lines.

2) Let ¢1 : P* — P? = V(yo,...,y.) and ¢ : P1 — P¢ = V(wg,...,x4) C P be
the parametrisation of the rational normal curve of degree d and e in disjoint linear
subspaces P4 U P¢ C P4*+e*1. Prove

S(e.d) = ] é1(p)éa(p)

pePL

where ¢1(p)p2(p) denotes the line joining ¢(p) and ¢o(p).

Fourth week

Exercise 35. Let ¢ : X — Y be a projective morphism. Then
A ={qeY |dmX,>r}CY

is a Zariski-closed subset of Y. Suppose that X and Y are varieties and that ¢ is surjective.
Prove that

dimA, +r < dim X
for » with » > dim X — dim Y.

Exercise 36. Let X C P" be a projective variety. The secant variety of X is

Sec(X) = U pqg C P"
P,qEX* ,p#q

where pgq is the line spanned by the two points and X* = X \ X, is the open set of smooth
points. Prove:

1) dim Sec(X) < 2dim X + 1.
2) If X is smooth and p a point not contained in Sec(X), then the projection
mp i P - Pt
from p induces an isomorphism X = m,(X).
Conclude:

3) Every irreducible smooth projective curve can be embedded into P3.
4) Every irreducible smooth projective curve has a birational model in P? with only
nodes as singularities.

Exercise 37. Let V5 = p272(]P’2) C P° be the Veronese surface, and let p € P° be a general
point. Prove that the projection 7, : P’ --» P* induces an isomorphism

Vy & 7, (V) C P4

A famous result of Severi (1901) says: A smooth surface X C P° has no isomorphic projection
from a point into P* unless X lies in a hyperplane or X is projectively equivalent to the
Veronese surface.

Exercise 38. Let L, U Ly U L3 U Ly C P? be four general lines. Prove: Counted with
multiplicities there are exactly two lines L C IP3 which intersects all four lines.

Hint: Take the special case Ly = V(w,x), Ly = V(y,2) and Ly = V(w +y,z + z) and prove
that L; U Ly U Ls lies in a unique quadric hypersurface ) C P? isomorphic to P! x P

Exercise 39. Consider a conic C' C P? and six different points pi,...,ps on C. Prove
Pascal’s theorem: The opposite sides of the hexagon Lis = pips, Loz = paps, ..., Lsg =
DsDs, Le1 = Dsps intersect in three points qu = Lo N Lys, g2 = Loz M Lsg, q3 = L3y N Lg1 which
lie on a line.



Hint: Consider the pencil of cubics
V(tof +tig) C P? with [to : t;] € P*
where f = 19034056 and g = (9304506 are products of the equation ¢;; of L;;.

Exercise 40. Find the affine equations of the pair of quartics with non-ordinary respectively

ordinary triple point related by a Cremona transformation as in the example from Lecture
20.

Exercise 41. Consider over K = C the projective closure E of the curve
V(y? -2+ ) C A C P?

and the projection 7 : £ — P! from the point o € E at infinity onto the z-axis. Then 7 has
degree 2 and branch points in {0,1, —1,00}. Triangulate P! ~ S? like an octahedron with
{0,1,—1,4,—i,00, } as vertices. Describe the induced triangulation of E!

& 0

Exercise 42. Let C' C P! x P! C P? be a curve defined by a form of bi-degree (d, €). Prove
that C' has degree deg C' = d + e and arithmetic genus p, = (d — 1)(e — 1).



