Topic 4 — Algebraic curves

Some of the numbers can be read off from the Hilbert function of C', in particular:
Proposition 277. ki = (d_g_l) and Kr—12 = g.

Proof. Since there is no linear form in the ideal I, we have k1,1 = dim(I¢)2 = dim Sy —
Y (0c(2)) = (TJ2“2) — (1 =g+ 2d). Since r = d — g, we have the desired result.

Moreover, by Green’s duality, K,_12(C,0c(1)) = Koo(C,Kc,Oc(1)) = HY(K¢) is
g-dimensional as stated. O

Proposition 278. Let C' be a curve of high degree as above. If k;1 = 0, then kj1 =0
for every j > i. If k2 =0, then kj2 = 0 for every j <.

Proof. Note that x; 41,1 counts the number of independent linear relations among mini-
mal generators of S(—i—1)®*i1 C F; appearing in i-th term of the minimal free resolution
of C. Hence, if ;1 =0, no (linear) relations can occur, which forces ;111 = 0.

The second statement comes from the same argument, applied on the “dual resolution”
Hom(F,, S(—r — 1)) which is a free resolution of the graded module b, Hwe(j)). O

To sum up, the Betti table of a curve of high degree has the following shape:

| Jo 1 2 -+ a a4l -+ b-1 b - r—1]
oll1 = —_ ... Z _ — — ... _
1||— kK11 Ko1 -+ Kal Kag1,l 0 Kp—11 — v —

- - 0 —  Rat12 0 Kp-12 Kp2 - g

Question 279. It is natural to ask the following questions for a curve of high degree
C C P of degree d =2g + 1 + p.

(1) What is the number a = a(C') so that k42 = 0 but Ke41,2 # 07 (such a number is
called the Green-Lazarsfeld index)

(2) What is the number b so that k1 = 0 but k1,1 # 07

As we seen above, Green’s (2g 4+ 1+ p)-theorem implies that a(C) > p. An upper bound
of a(C) comes from the presence of special secants:

Definition 280. A degenerate g-secant plane of C' C P” is a linear subspace A C P"
such that length(C N A) > ¢, and dim A < g — 2.

If we choose general ¢ points Py,---, P, of C' with ¢ < r, then their linear span A =
(Pr,---,P,;) is a linear subspace of dimension (¢ — 1) which intersects C' exactly at
Py,---, P, Hence, a degenerate g-secant plane implies that there are g-points on C

which form a special configuration in this manner. We address a known result without
proofs:

Proposition 281. Let C be as above. If C has a degenerate q-secant plane, then a(C) <
q — 3. Furthermore, C' always has a degenerate q-secant plane for the value g =p+ 3 +

max <0, [%1)
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For the values of b(C'), one has an upper bound, called K, ;-theorem:

Theorem 282. b(C) < r, and the equality holds (i.e., k,—11 # 0) if and only if C is a
rational normal curve.

A well-known proof of the K 1-theorem uses a notion of “syzygy scheme” and Casteln-
uovo theory, so we will skip in this lecture.
A lower bound comes from the following nonvanishing theorem by Green and Lazarsfeld.

Theorem 283 (Green-Lazarsfeld nonvanishing). Let X be a smooth projective variety,
L be a very ample line bundle. Let My, My be two line bundles such that L ~ My ® Mo
and

T, = hO(X,Mi) —1>1

fori=1,2. Then Ky 1r,—11(X,L) #0.
If we are able to find certain M;, My for our curve of high degree, then b(C) > ry + ro.

A nonzero cohomology class in K, 4r,—1,1(X, L) provided from the above nonvanishing
theorem is called a Green-Lazarsfeld class.

Question 284. Let C be a curve (of high degree).
(1) Do the degenerate secant planes completely determine the value a(C)?
(2) Do the Green-Lazarsfeld classes completely determine the value b(C)?

Both of the questions seem to be extremely difficult in general. There is an answer to
the second question when C' is a curve of sufficiently high degree. We first begin with a
consequence of the Green-Lazarsfeld nonvanishing.

Corollary 285. Let C be a k-gonal curve, and let L be a very ample line bundle on C
of degree deg L = 2g+1+p forp > 0, so that |L| embeds C into PN where N = g+p+1.
Then KN_]QJ(C, L) 75 0.

Proof. Apply the Green-Lazarsfeld nonvanishing theorem for a pair M and L ® MY,
where M is a line bundle which gives a g}, on C. Since h(C, L&M") > g+p+2—k = N+
1—k, the Koszul cohomology groups K 1(C, L) cannot be zero for 1 < i < RO(L—M)—1,
where the range covers i = N — k. O

When deg L is sufficiently large, then the divisor L — M becomes nonspecial, and hence
the number h°(L — M) — 1 coincides with N — k. Therefore, we may ask a natural
question whether this result is sharp:

Question 286. Let L be a very ample divisor on C' with deg L > 0, so that |L| embeds
C into PV where N = deg L — g. Does K, 1(C, L) = 0 when p > N — k?

The problem, once known as Green-Lazarsfeld’s gonality conjecture, is turned out to be
true by Ein and Lazarsfeld.
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Topic 4 — Algebraic curves

Theorem 287 (Ein-Lazarsfeld, Rathmann). Let L be any very ample divisor on C' with
deg L > 4g—4, so that |L| embeds C into PV where N = deg L—g. Then K,1(C,L) =0
forp> N —k.

In particular, we are able to read off the gonality of C from the shape of Betti table for
C C PV a curve of sufficiently high degree.

Remark 288. For a generic k-gonal curve C of genus g, Farkas and Kemeny showed
that deg(L) > 29 — 1+ k is enough for the degree condition for L. Their bound is sharp;
every k-gonal curve C' of genus ¢ has a line bundle of degree 2g — 2 4+ k which fails to
verify the statement of the gonality conjecture. However, their result cannot cover every
k-gonal curve of genus g; plane curves do not satisfy the statement (of course, they are
NOT general in the moduli).
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6 Enriques-Petri theorem and Green’s conjecture

We begin with another consequence of Green-Lazarsfeld nonvanishing theorem, asking
the Clifford index:

Question 289. Is it possible to read off the Clifford index of C' from a certain Betti
table?

Going back to the nonvanishing theorem, we have the following consequence:

Corollary 290. Let C be a nonhyperelliptic curve of genus g > 3 such that Cliff(C) = p.
Then the Koszul cohomology group Ky—o_p,1(C,Kc) # 0 does not vanish.

Proof. Let A be an effective divisor which computes the Clifford index of C. In partic-
ular, if we denote by d = deg A, r = h%(A) —1 > 1, then p = d — 2r. By Riemann-Roch,
the divisor Ko — A is also a special divisor such that h(Kc — A) =1 =g —d +r — 1.
Hence, the nonvanishing theorem implies that Ky_gi9,—21(C, K¢) = Kg—2_p1(C, K¢)
does not vanish. O

We may also ask that the above nonvanishing result is sharp, which is a famous Green’s
conjecture:

Conjecture 291 (Green’s canonical syzygy conjecture). Let C' be as above. Then
K;1(C,Kc) =0 fori>g—2—Cliff(C).

Passing by Green’s duality theorem, we have an equivalent statement for K, »(C, K¢):

Conjecture 292. Let C be as above. Then the canonical curve satisfies the property

(Np) for p < Cliff(C).

The zeroth case p = 0 corresponds to M. Noether’s theorem. The case p = 1 corresponds
to Enriques-Petri theorem:

Theorem 293 (Enriques-Petri). Let C' be a nonhyperelliptic curve of genus g > 4. The
canonical curve of C' is defined only by quadric equations if and only if neither C is
trigonal and nor C' is isomorphic to a plane quintic.

Proof. (=) When C is trigonal, then the divisor D associated to the 3—1 morphism C' —
P! contributes to the Clifford index of C; in particular, Cliff(C) < deg D—h°(D)+2 = 1.
Since C' is not hyperelliptic, the Clifford index cannot be zero. Similarly, when C is
isomorphic to a plane quintic, then the hyperplane divisor D satisfies h°(D) = 3 and
deg D = 5, which also contributes to the Clifford index of C. In particular, Cliff(C') < 1,
and we conclude that Cliff(C') = 1 by the same reason. In any cases, Cliff(C') = 1, and
hence, the canonical curve fails to satisfy the property (IN7) since the Koszul cohomology
group Ky 31(C,K¢) ~ Ki2(C, K¢)" does not vanish. In particular, the ideal of the
canonical curve requires a cubic equation as generators.
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(<) First, consider the case g = 3 as an example. By Riemann-Roch, we have h°(K¢) =
3 and h°(nK¢) = 4n — 2 for n > 1. Since K¢ is very ample, hence, for any point P € C
we have

h(Kc(—P)) = 2, and
{h0<Kc<2P>> I

In particular, we are able to find a basis {r, s,t} of H'(K¢) such that

ordp(r) = 2,
ordp(s) = 1,
ordp(t) = 0.

Since K¢ (—P) is a base-point-free pencil, we have a short exact sequence
0= —Kg(P) = HY(Ko(—P)) @ Oc — Ko(—P) — 0.

Twisting by K¢ and considering the cohomology long exact sequence, one can show that
the multiplication map

HY(Ko(—P)) @ H'(K¢) = H(2Kc(—P))

is surjective. Hence, H*(2Kc(—P)) is spanned by r2,rs,rt, s?, st. Since h’(2K¢) = 6,
we conclude that

HY(2Kc(—P)) = (r?,rs,rt, s, st) C (r?,rs,rt,s* st, t*) = H (2K(¢).

Similarly, the multiplication map H°(Kc(—P)) ® H°(2K¢) — HY(3Kc(—P)) is also
surjective, and we have

HY(BKc(—P)) = (3, r%s, 7%, rs%, rst,rt?, 53, s°t, st?),
HY(BKc) = (r3,r%s,7%t,rs%, rst,rt?, s3, s°t, st2,t3).

We will show the statement by a similar argument. Now let C' be a non-hyperelliptic
curve of genus g > 3. Choose a general set of points P, P%,---, P, € C such that the
divisor D = P3 + - - - + P, satisfies

e Kco(—D) is globally generated;
e hW(Kc(—D)) =2, that is, |[Kc(—D)| is a base-point-free g;.

Since V; := HO(Kg(—Py — - - - —P,+PF)) C HO(K(¢) is 1-dimensional for each 1 <i < g,
we may pick a basis {wy, -+ ,w,} of H*(K¢) from generators of V;. We have

wi(P) # 0,

wilPy) = 0 i)

and HY(K¢(—D)) = (w1, ws) (in particular, wy and wo vanish with order exactly 1 on
P3, -, Py).
We apply the base-point-free pencil trick for the following multiplicative map

i+ HY(Kc(~D)) @ H((n — 1)Kc) - H(nKc(-D))

for each n > 2, we have
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® Wi, ,wy € H(nK¢)\ H'(nKo(—D));

n

g are linearly independent;

° w§L7 e LW
e W'(nKg) — h°(nKe(—D)) =g —2.

Hence, H(nK() is spanned by forms in H’(nK¢o(—D)) and wg,- - ,wy. As a conse-
quence, for any n > 2, the multiplicative map

HY(K¢)® H((n —1)K¢) — H'(nK¢)

is surjective, which proves the “projective normality part” of M. Noether’s theorem.
We are particularly interested in quadratic forms. Indeed, the (3g — 3)-dimensional
vector space H°(2K() is spanned by:

0 2 2 2 2
HY(2Kc) = (wi,wiwa, -+ Wiy, Wy, Waw3, - =+ ,Walg, W3, ,wg>.

Let 4,5 € {3,---, g} be distinct indices. Since w; vanishes on P}, # P; and w; vanishes
on Py # Pj, their multiplication ww; € H°(2K¢) vanishes at P, --- , P;. Therefore,
wz—term cannot appear (which vanishes at every Py,---, P, but not at P). In other
words, there exist A, 1ijs, bij € C such that w;w; is expressed as a linear sum

g
wiw; = bjjwiws + Z(/\ijswl + 1ijsw2)ws.
s=3
In particular, a quadratic form
g
fij =W wy — bijwl - Wy — Z(/\ijsuq + uijst) cWwg € Sym2 HO(Kc)
s=3

is in the kernel I of the natural map ¢ : Sym H*(K¢) — @, H*(nK¢). The elements
fij are linearly independent, and hence, we have (952) quadratic equations which form
a basis for the ideal I of C.

We are now going to construct a set of cubic relations Gj; such that f;;’s and G;’s form
a generating set for the whole I. However, the multiplication map

H°(K¢ — D) ® H°(2K¢ — D) — HY(3K¢ — 2D)

is not surjective. Inside the (3g — 1)-dimensional vector space H(3K¢ —2D), the image
forms a (3¢g — 2)-dimensional subspace

— 3,2 2 2 3 2
W= (Wi, wiws - -+, Wiwg, WiWy, - - , WiWaWg, Wy, -+ - , Walg)

(corresponding to cubic monomials which contains ws, - - - , w, at most once; we skipped a
proof for their linear independence). Taken € H(3K¢(—2D))\W so that H*(3K¢(—2D)) =
(W, n). Hence, we have a filtration

W2 c H'(3K¢ —2D)* "' ¢ H'(3K¢ — D)*~% c H'(3K¢)»™°

of vector spaces. For each i € {3,---,g}, there is an element o; € H°(Ko(—D)) =
(w1, ws) such that aw? € HY(3K¢ — 2D) \ W.
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Note that both wjw? and wow? has a zero of order 1 at P;. Hence, by taking
a suitable linear combination of them, there is a unique nonzero element
a; € {w1,ws) such that aiw? has a zero of order > 2 at F,. Clearly it has a
zero of order 2 at the other Pj, j # i. In particular, cyw? € H*(3K¢(—2D)).
If it is an element in W, one can express aiw? as a linear combination

2 2
QWi = W11 + Qiwaps + wsl

for some linear forms ¢1, 2,0 € H°(K¢). Consider the (effective) divisor
of zeros of o;. Then (a;)o = D + P; + D;; oy vanishes along Ps,-- -, Py,
and vanishes twice at P,. Since |K¢c — D] is base-point-free, the divisors
D; and (wq)g are disjoint. Hence, if @ is a point such that «;(Q) = 0 but
w2 (Q) # 0, then O(Q) = 0, that is, § € H(Kc — D;). Among the elements
in H(K¢ — D), the only possible choice is: 6 is a constant multiple of a;.
Hence the relation reduces into

oziw? = Oéi(z Ajwiwj + Z [jwaws),
which gives a contradiction by observing the vanishing order at P;.

We conclude that there is an element 8; € W such that aiwf =n+0; foreach i <3 < g.
Therefore, for any given distinct j, k € {3,--- , g}, the cubic relation

ij = (aj CWji Wy — 9]) — (ak cWE W — Hk) S Sym3 HO(Kc)

lies in the kernel I of . In particular, I3 is generated by wy, - fi; and Gji’s.

Vector space | (additional) Generators
w Wi, wiwg L Wiy, wiw3, -, WiWawg, W3, < -+, Wawg
HY(3K¢ —2D) | n
HY(3Kc — D) | Biwi(3<i<g),Bi € H(Kc(=D))\ (a)
H°B3Kc) |wi(3<i<y)
When n > 4, the multiplication map

HYKc—D)® H((n —1)K¢ + (2 —n)D) = H(nK¢ + (1 —n)D)

becomes surjective by the bpf pencil trick, since the divisor (n — 2)K¢ + (3 —n)D is
always nonspecial. By induction, one can compute the bases of vector spaces as in the
following table:

Vector space (additional) Generators

wiwl (I+m =n),
H(nKc + (1 —n)D) | wiwbw; (s+t=n—-1,3<i<g),
whwkn (h+k=mn-3)

H°(nKc+ (2-n)D) | B 2w? (3<i<yg)

)

H(nKc—D) | Bwi™" (3<i<yg)
H(nKc) w' (3<i<yg)
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This explicit computation of bases allows us to find the generators of the ideal I of the
canonical curve of C. Indeed, I is generated by the f;; (quadratic equations) and Gy,
(cubic equations):

g
fii = wirw;—bywiws — Y (Nijswi + pijswa) - we
5=3
Gjr = (oj wj-wj—0;)— (g wy-wp—0b)

Note that f;; are linearly independent, but Gj; are mostly not; it satisfies the cocycle
condition G, + G = Gj.

First we show that they generate /. Consider an element R = ) 7;jw; - wj -
wi € I3. Since w?(3 < i < g) are linearly independent modulo H°(3K¢ — D),
we have v;;; =0 for i =3,--- ,g. Thus

g
R= Z 8ijk fijwr + Z(uiai + viBi)wi +w
=3

where w € W. Restricting to C' and use the relation aiwiz =n—+6;, we have
> i =0 and v; = 0, and hence we may write it as

R = Z aijkfijwk + Z Ajijk +w

with some w’ € W. Restricting again to C, we see that w’ € I3. However, by
the construction of W, we have W NI = {0} so w’ must be 0. In particular,
R is generated by f;; and Gj’s.

Similarly, one can check that I, is generated by f;; and G, for n > 4.

To complete the proof, we need to exhibit the syzygies among them. First assume that
g > b5; a canonical curve of genus 4 is always trigonal, since it is a complete intersection
of a quadric and a cubic hypersurface, so that the rulings of the quadric cut out on C a
9.
Consider the relation ;

Wiwj = Z(aijs)ws + bijwiws

5=3

determined by the quadratic equation f;;. For any triple of distinct integers 4, j, k, the
linear form (differential) c;; vanishes doubly at Py, so there are scalars p;j;, such that
ik = pijkak- Hence, we have Petri syzygies

g
figwr = finws =Y (ks fsj — cijs fsr) + pijk G
s=3
for any triple of distinct indices 3 < 4,7,k < g (here, in the summation appearing in
the right-hand-side, f;; = fir = 0). One can also check that the coefficients p;;, are
symmetric in ¢, j, k.
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To complete the theorem, we have to ask under which condition the coefficients p;j;, are
zero/nonzero. Let 3 < j < g. Denote V; C P9~! be the algebraic set defined by (g — 3)
quadratic equations

Jij=0, 3<i<g, i#].

Note that f;; € I; hence the canonical curve of C lies in V;. Then one can check that V;
has a unique surface component F; which contains the canonical curve C;

Since V; is defined by (g — 3) equations in P91, every component of V; is
of dimension > 2, and there is a component which contains C' since V; O C.
Write the equations { f;;} defining V; in the following way:

g
D (Biswj — quje)ws = bywiws + aujjwy, 3 <0< g0 #
5=3,5#]

where ;5 is the Kronecker delta symbol. Consider the determinant A; of the
(9 —3) x (g — 3) matrix
Mj = (0iswj = Cijs)3<i s<g it

Then A; is a polynomial in wi,ws,w; such that A;(P;) # 0. In particular,
the hypersurface (A; = 0) does not contain the canonical curve C C P9~1.
In particular, we can solve the above system of equations in the w,;. As a
result, we obtain a rational surface F; with rational parametric equations,
away from the hypersurface A; = 0,

wr = Wi
w2 = W2;
wj = wj
-1 .
Wy = [Mj (bijwlwz+aijjwj )} , 3<s<g,s#].
S

By construction, it is the only component of V; which is not contained in the
hypersurface V(A;). Since P; € C C V; and P; € V(A;), the only possibility
is that F} is the only component containing C.

Petri’s key idea is encoded in the vanishing condition of p;j; in terms of those surfaces,
namely:

Let 3 < j,k < g,j # k. Two surfaces F; and Fj, coincide if and only if
Pijk = 0 for every i € {37 T 79} \ {.7’ k}

We will see how the above statement concludes the proof. If p;;x # 0, from the Petri
syzygy we have

9
pijkGik = fijwr — firw; — Z(aiksfsj — ijsfsk),
s=3
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hence G, is generated by quadratic equations { f;; }, which are quadratic generators of I.
Since pj;), is symmetric up to permutations of indices, we may have the same conclusion
for G;j and G = Gy +Gjji. Hence, it remains to see that all the coefficients p;j;, cannot
vanish simultaneously. Suppose not, then the surfaces F3 = --- = F, = F', it means that
all the quadrics containing C' contain a surface F'. Such an irreducible surface F' has
the maximal number of quadric generators it can have (equals to (COdimQ(F )H) = (93%)).
Castelnuovo theory implies that deg F' = g — 2, and F' is either one of the following:

e a cone over a rational normal curve;
e a rational normal scroll;
e Veronese surface in P°.

However, the first case does not appear (by a projection argument). If F' = vo(P?) C P°
is the Veronese surface, then C C F C P® implies that the genus g(C) = 6, and C is
isomorphic to a plane curve since F' ~ P2. Therefore, C' must be isomorphic to a plane
quintic curve.

Finally, suppose that F' is a rational normal scroll F ~ F,, = P(Op1 @ Op1(—n)) (n > 0),
embedded in P9~! by a complete linear series |H| = |0 + (n + 1 + k) f| for some k > 0,
where f is the fiber of the ruling F,, — P! and o is the unique irreducible section so
that 02 = —n. Note that the canonical divisor is given by Kg, = —20 — (n+2)f. Since
deg F = H? = g — 2, we have

g—2=0*+2n+1+k)of+n+1+Ek)>2f2=n+2k+2

Since C' C F is a divisor, C € |ro+ sf| for integers r, s, given by the intersection number
r=C.f and s = C.0 4+ rn. By the adjunction formula, we have

deg Ko =29—2=—-r(r—2)n+(r—2)s+r(s—n-—2).
On the other hand, C is a canonical curve, hence its degree 2g — 2;
degC=CH=29g—2=—-rn+s+r(n+1+k).

Therefore, we have

g—n—4
2 )

r

s = (29-2)-5(g-n-2),

0 = (9—2)r"+(8—"5g)r+ (69 —6) = (r — 3)[(g — 2)r — 2(g — 1)].

k: pr—

Since g > 4, the only integral solution is 7 = 3. Thus the fiber of the ruling 7 : F — P!
intersects 3 times with C, induces a triple cover o : C — P!. Therefore C is trigonal.
O
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Remark 294. One can imitate the above arguments for a curve which is not trigonal
nor isomorphic to a plane quintic. Then, each G, is generated by quadratic equations
{fi;} as in the proof of the Enriques-Petri theorem, and hence give a linear syzygy among
{fij} from the cocycle condition on {G,}. To classify potential counterexamples, there
are more subcases; for instance, C is contained in a threefold of minimal degree. All the
possible cases of curves C' are classified by Ehbauer.

Remark 295. For general and special curves, there are several attempts on Green’s
conjecture. The next case to the Enriques-Petri theorem, describing the property (Ns)
with the exceptional cases of tetragonal curves/plane sextics, is known to be true by
Voisin and Schreyer independently. During 90s, several people containing Bayer and
Eisenbud studied a degeneration of curves and observed the behavior of syzygies. They
tried to solve Green’s conjecture for general curves, by considering a family of curves
whose limit is fairly easy to compute; for instance, tends to be a hyperelliptic curve, or a
degenerate hyperelliptic curve (ribbon). Unfortunately, it was not very much successful
at the time.

Voisin showed that Green’s conjecture holds for a general curve of genus g (as a gen-
eral element of the moduli space M,). Using Lefschetz theorem on Koszul cohomology
groups, the syzygies K ,(C, K¢) can be computed from the syzygies of K3 surfaces. To-
gether with computational techniques using the Hilbert scheme of points on K3 surfaces,
she found a K3 surface whose general hyperplane section is a canonical curve of genus
g for each g. Aprodu showed that the conjecture holds for a general k-gonal curve of
genus g (as an element of the gonality strata M, C My). Aprodu and Farkas showed
that the conjecture holds for arbitrary smooth curves on K3 surfaces. However, when
g > 11, a general curve of genus g is not embedded in any K3 surface.
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