
Topic 1 : Sheaf

Proposition 20 (Adjoint property). Let f : X ! Y be a continuous map between two

topological spaces, F be a sheaf on X, and let G be a sheaf on Y . There are natural maps

f
�1

f⇤F ! F and G ! f⇤f
�1G. There is a natural bijection between two sets

HomX(f�1G,F) = HomY (G, f⇤F).

Hence, we say that f
�1

is a left adjoint of f⇤, and f⇤ is a right adjoint of f�1
.

Proof. Only a hint (excerpted from Vakil’s book) for the adjoint property. Via focusing
on the stalks, one can show that the both sets are bijective to the set of compatible
collections � = {�U,V | U 2 Top(X), f(U) ⇢ V 2 Top(Y )} where

each �U,V : G(V ) ! F(U) is a map between abelian groups satisfying

G(V )
�U,V //

⇢G
V,V 0
✏✏

F(U)

⇢F
U,U0
✏✏

G(V 0)
�U0,V 0

// F(U 0)

for any open U
0 ✓ U ✓ X and V

0 ✓ V ✓ Y with f(U) ✓ V , f(U 0) ✓ V
0.

Proposition 21 (Gluing sheaves). Let X be a topological space, {Ui} be an open cover

of X. Suppose we have a sheaf Fi on each Ui such that there is an isomorphism 'ij :
Fi|Ui\Uj

⇠�! Fj |Ui\Uj for each i, j satisfying

(0) 'ii = id;

(1) (cocycle condition) 'ik = 'jk � 'ij on Ui \ Uj \ Uk for each i, j, k.

Then there is a unique sheaf F on X, together with isomorphisms  i : F|Ui

⇠�! Fi such

that  j = 'ij �  i on Ui \ Uj for each i, j.

Proof. Let V ✓ X be an open subset. Note that {V \ Ui}i2I is an open covering of V .
We define

F(V ) := {(si)i2I | si 2 Fi(V \ Ui), 'ij(si|V \Ui\Uj ) = sj |V \Ui\Uj for each i, j 2 I}.

Note that the cocycle condition is already hidden inside: on V \Ui\Uj \Uk, a section s

of F contains the data of sections si, sj , sk of Fi(V \Ui),Fj(V \Uj),Fk(V \Uk) such that
'ij(si) = sj ,'jk(sj) = sk,'ik(si) = sk on the intersection of two of them. In particular,
'ij(si|V \Ui\Uj\Uk) = sj |V \Ui\Uj\Uk , and hence

('jk � 'ij)(si|V \Ui\Uj\Uk) = 'jk(sj |V \Ui\Uj\Uk) = sk|V \Ui\Uj\Uk

for any s 2 F(V ), i, j, k 2 I.
Let W ✓ V be a smaller open subset. We define the restriction map F(V ) ! F(W ) by
sending each si to si|W\Ui . It is easy to check that F is a sheaf:
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the only part which might be unfamiliar yet is to check the gluing property.
Let us see just a little more detail. Let {Vk} be another open cover of V ,
and let sk := (ski )i2I 2 F(Vk) such that sk|Vk\V 0

k
= s

k0 |Vk\V 0
k
. For each i 2 I

and for any k, k
0, we have s

k
i |Vk\V 0

k\Ui
= s

k0
i |Vk\V 0

k\Ui
2 Fi(Vk \ V

0

k \ Ui).
Hence, they glue together and form a single section si 2 Fi(V \ Ui). It is
straightforward that 'ij(si|V \Ui\Uj ) = sj |V \Ui\Uj .

To complete the proof, we need to find local isomorphisms  i : F|Ui

⇠�! Fi. Let V ✓ Ui,
and let s = (sj)j2I 2 F(V ). We define  i(s) := si 2 Fi(V ). The definition of F(V )
implies that sj = 'ij(si|V \Uj ) for every j 2I, hence, on any open subset V ✓ Ui \ Uj

and a section s 2 F(V ) = F(V \ Ui \ Uj), we have

'ij i(s) = 'ij(si|V \Ui\Uj ) = sj |V \Ui\Uj =  j(s)

as desired. Clearly it is an isomorphism with a two-sided inverse map

si 2 Fi(V ) 7! (sj)j2I 2 F(V ), sj = 'ij(si|V \Uj )

for any open subset V ✓ Ui.

Remark 22. Suppose that we have another Gi on each Ui with local isomorphism
Gi|Ui\Uj ! Gj |Ui\Uj for each i, j satisfying the above conditions. Suppose furthermore
that we have morphisms �i : Fi ! Gi compatible with local isomorphisms. Then we are
able to glue local morphisms �i and to build a global morphism � : F ! G of sheaves
on X.

Exercise 23 (Extension by zero). Let Z ⇢ X be a closed subset, and U = X \Z be the
complement open set. Let i : Z ,! X, j : U ,! X be the inclusions.

(1) Let F be a sheaf on Z. Show that the stalk of the sheaf i⇤F on X at P 2 X is FP

if P 2 Z, and 0 otherwise (If there is no confusing, we sometimes omit i⇤.)

(2) Let G be a sheaf on U . Let j!G be the sheaf associated to the presheaf V 7! F(V ) if
V ✓ U , and 0 otherwise. Show that the stalk of the sheaf j!G at P is GP if P 2 U ,
and 0 otherwise. The sheaf j!G is called the sheaf obtained by extending G by zero

outside U .

(3) Show that there is a natural bijection of sets HomX(j!G,F) = HomU (G,F|U ) for
any sheaves F on X and G on U , that is, j�1 is a right adjoint of j! and j! is a left
adjoint of j�1.
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Topic 1 : Sheaf

3 Sheaves of rings, ringed spaces, and schemes

Even though we are not going to study the scheme theory, it is important to men-
tion that how it plays a significant role in the modern algebraic geometry. A philos-
ophy what we learned is that an a�ne (resp. projective) variety is determined by its
a�ne(resp. homogeneous) coordinate ring. Suppose that we have an a�ne variety
X ⇢ AN . Nullstellensatz implies that we have a correspondence between X and a prime
ideal I(X) = {f 2 k[x1, · · · , xN ] | f(P ) = 0 for every P 2 X}, or equivalently, with an
a�ne coordinate ring A(X) = k[x1, · · · , xN ]/I(X). Moreover, a morphism between two
a�ne varieties ' : X ! Y corresponds to a ring homomorphism A(') : A(Y ) ! A(X).
In particular, the functor A : X 7! A(X) induces an equivalence of categories between
the category of a�ne varieties and the opposite category of finitely generated integral
domains. Hence, a natural generalization of an a�ne variety should be a geometric
object corresponds to a ring (or a k-algebra) with the functorial property.

Question 24. Let A,B be commutative rings (with unity),  : B ! A be a ring
homomorphism. Let I ⇢ A be an ideal.

(1) Is  �1(I) an ideal of B?

(2) Suppose that I is prime. Is  �1(I) also prime?

(3) Suppose that I is maximal. Is  �1(I) also maximal?

(Hint : Consider the inclusion Z ,! Q for instance.)

From the strong Nullstellensatz, the only maximal ideal of an a�ne variety X ⇢ AN has
the form (x1 � k1, · · · , xN � kN ) for some k1, · · · , kN 2 k. In other words, X is same
as the set of maximal ideals in k[x1, · · · , xN ] containing I(X), or equivalently, the set
of maximal ideals in A(X). Unfortunately, the set of maximal ideals (called maximal
spectrum) does not always have the functorial property. Instead of considering only the
maximal ideals, we should also collect the prime ideals in A(X).

Definition 25. As a set, SpecA is the set of all prime ideals of A. If I ✓ A is an ideal
of A, we define the subset V (I) ✓ SpecA be the set of all prime ideals containing I. For
an element s 2 A, we denote by D(s) the complement of V ((s)) in SpecA.

The following lemma is elementary but useful.

Lemma 26. Let A be a ring (= commutative ring with unity).

(i) If I and J are two ideals of A, then V (IJ) = V (I) [ V (J).

(ii) If {Ii} is any set of ideals of A, then V (
P

Ii) = \V (Ii).

(iii) Let I and J be ideals of A. V (I) ✓ V (J) if and only if
p
I ◆

p
J .

An open subset of SpecA has the form Spec(A)\V (I) for some ideal I ✓ A. This makes
SpecA as a topological space.
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Lemma 27. The collection {D(s) | s 2 A} forms a basis of SpecA.

Proof. Let U = D(I) be an open subset of SpecA for some ideal I ✓ A. Let {fi} be
a set of generators of I. For each fi 2 I, we have V ((fi)) ◆ V (I) since (fi) ✓ I. In
particular, D(fi) ✓ D(I). Note also that the union

S
i2I D(fi) = D(I) since V (I) =T

i2I V ((fi)).

Remark 28. While on proving the lemma, we see that
S

i2I D(fi) = D(1) = Spec(A)
if and only if {fi} generates the unit ideal (1) = A.

We define the structure sheaf OSpecA as follows. Assign OSpecA(D(s)) = As, where As

is the localization of A by s. To conclude that OSpecA is a sheaf, we need to verify
that it satisfies a gluing property. Let t 2 A be another element. On the intersection
D(s)\D(t) = D(st), we have an isomorphism on the intersection, followed by a further
localization. Since SpecA is covered by distinguished open subsets {D(s) | s 2 A}, they
glue together and form a sheaf OSpecA on SpecA. In particular, a stalk ⇠p 2 OSpecA,p

is represented by a pair (D(s), a/sm) for some a 2 A, s 2 A \ p and for some integer m.
(Do you agree that this looks similar as the definition of regular functions for (a�ne)
varieties?)

Remark 29. Here is a little more detail on the gluing property what we skipped in
the above paragraph, sometimes called a “partition of unity”. In classical topology,
or in di↵erential geometry, we divide the unity function as a sum of functions which
are supported locally. For instance, we define the integration over a manifold which
naturally extends the integration over Euclidean spaces, or to show the existence of a
Riemannian metric. In particular, we are able to extend the notions/properties, which
make sense locally, to global notions/properties.
Suppose that there is an open covering

S
i2I D(fi) of SpecA. Then there is a finite

subset, namely, D(f1), · · · , D(fr) such that SpecA =
Sr

i=1
D(fi), that is, A = (1) =

(f1, · · · , fr) (quasi-compactness of SpecA). Suppose we have a section s 2 A such that
s|D(fi) = 0 2 Afi for every 1  i  r. In other words, there is an integer mi such
that f

mi
i s = 0. Let m be the maximum of mi. Since (fm

1
, · · · , fm

r ) = A (Hint: write
1 =

Pr
i=1

aifi and consider an expression for 1M with M � 0), there are gi 2 A such
that

Pr
i=1

gif
m
i = 1. Hence,

s =

 
rX

i=1

gif
m
i

!
s =

rX

i=1

gi(f
m
i s) = 0

as desired. We may check this property for any distinguished open subset D(s) and open
covering by distinguished open subsets of D(s), by replacing A by As.
We next check the gluing property. Assume that we have a finite covering by dis-
tinguished open subsets D(f1), · · · , D(fr) of SpecA. Suppose that we have elements
si = ai/f

mi
i 2 Afi which agree on the intersection Afifj . The assumption si and sj

agree on the intersection D(fi) \ D(fj) = D(fifj) means that there is an integer mij

such that
(fifj)

mij (f
mj

j ai � f
mi
i aj) = 0
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Topic 1 : Sheaf

in A. By taking enough large m, we may write it as:

(fifj)
m(f

mj

j ai � f
mi
i aj) = f

m+mj

j (aif
m
i )� f

m+mi
i (ajf

m
j ) = 0.

Since A = (fm+m1
1

, · · · , fm+mr
r ), we may represent 1 =

Pr
i=1

gif
m+mi
i for some gi 2 A.

We define an element s =
Pr

i=1
gi(aifm

i ). Note that

sf
m+mj

j =
rX

i=1

gi(aif
m
i )f

m+mj

j =
rX

i=1

gi(ajf
m
j )fm+mi

i = ajf
m
j ,

in other words, s = (ajfm
j )/(f

m+mj

j ) = aj/f
mj

j on D(fj). The gluing property also holds
for an arbitrary infinite covering

S
i2I D(fi) of SpecA via an easy observation. First

we take a finite subcover D(f1), · · · , D(fr), and an open subset D(fc) not contained
in the subcover we chose. We have two sections a, a

0 2 A, corresponding to finite
coversD(f1), · · · , D(fr) andD(f1), · · · , D(fr), D(fc), respectively. Since the restrictions
of a and a

0 coincide on D(f1), · · · , D(fr), we conclude that a = a
0 2 A and hence

a|D(fc) = a
0|D(fc), for arbitrary choice of D(fc). In other words, the construction of the

“glued section” a does not depend on the choice of finite subcovers.

Together with the underlying space, we call (SpecA,OSpecA) the spectrum of A.

Exercise 30. Let A be a ring, and (SpecA,OSpecA) be its spectrum. Check that

(1) For any p 2 SpecA, the stalk Op of OSpecA is isomorphic to the local ring Ap.

(2) The global section �(SpecA,OSpecA) is isomorphic to A.

Since the structure sheaf is constructed from the localizations, a morphism between two
spectrums ' : (SpecA,OSpecA) ! (SpecB,OSpecB) should contain both data:

(i) set-theoretically, ' : SpecA ! SpecB is a continuous map between two topological
spaces;

(ii) a ring homomorphism B ! A compatible with the localizations.

Definition 31. A ringed space is a pair (X,OX) consisting of a topological space X and
a sheaf of rings OX on X. A morphism of ringed spaces is a pair (f, f#) : (X,OX) !
(Y,OY ) where f : X ! Y is a continuous map and f

# : OY ! f⇤OX is a map of sheaves
of rings on Y . A ringed space (X,OX) is called a locally ringed space if the stalk OX,P

is a local ring for every P 2 X. A morphism of locally ringed spaces is a morphism
of ringed spaces whose induced map f

#

P : OY,f(P ) ! OX,P is a local homomorphism
of local rings for every P 2 X, that is, the preimage of the maximal ideal mX,P is the
maximal ideal mY,f(P ). An a�ne scheme is a locally ringed space which is isomorphic
to the spectrum of a ring. A scheme is a locally ringed space which is locally isomorphic
to an a�ne scheme.
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Proposition 32. If ' : B ! A be a homomorphism of rings, then ' naturally induces

a morphism of locally ringed spaces

(f, f#) : (SpecA,OSpecA) ! (SpecB,OSpecB).

Moreover, any morphism of locally ringed spaces from SpecA to SpecB is induced by a

homomorphism of rings B ! A.

Proof. We define a map f : SpecA ! SpecB by f(p) = '
�1(p). If b ⇢ B is an

ideal, then the preimage f
�1(V (b)) of a closed subset coincides with a closed subset

V ('(b)) ✓ SpecA, hence f is continuous. For each open subset D(s) ✓ SpecB, we have
a homomorphism of rings

f
# : OSpecB(D(s)) = Bs ! OSpecA(f

�1(D(s))) = OSpecA(D('(s))) = A'(s)

by the definition. This is compatible with a further localization, and in particular, with
a local homomorphism

'p : B'�1(p) ! Ap

obtained by localizing ' at a point p 2 SpecA. This gives a morphism of sheaves
f
# : OSpecB ! f⇤OSpecA, with the induced map on the stalk at p 2 SpecA is just 'p.

Conversely, suppose that we have a morphism of locally ringed space (f, f#) from SpecB
to SpecA. Taking the global sections, f# gives a homomorphism of rings

' = �(SpecB, f
#) : �(SpecB,OSpecB) = B ! �(SpecA,OSpecA) = A.

Since (f, f#) is a morphism of locally ringed space, we have a local homomorphism on

the stalks f
#

p : Bf(p) ! Ap for each p 2 SpecA which must be compatible with ' and
the localization. We have the following commutative diagram

B
' //

✏✏

A

✏✏
Bf(p)

f#
p // Ap

Since f
# is a local homomorphism, f(p) should coincide with '�1(p). Hence, the above

diagram exactly coincides with the localization of ' : B ! A at p, for any choice of
p. We conclude that the morphism (f, f#) indeed comes from the ring homomorphism
' : B ! A.

Now we will define an important class of schemes, analogous to projective varieties. Let
S =

L
Sd be the graded ring, S+ =

L
d>0

Sd be the distinguished ideal.

Definition 33. We define ProjS the set of all homogeneous prime ideals p which do not
contain S+. For a homogeneous element f 2 S+, we take D+(f) = {p 2 ProjS | f /2 p}.
The topology of ProjS is induced by the basis {D+(f)}f2S+ . For each D+(f), we assign
a subring S(f) ⇢ Sf consisted of degree 0 elements in the localized ring. This induces a
sheaf of rings OProjS .
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Exercise 34. (D+(f),OProjS |D+(f)) ' SpecS(f). In particular, (ProjS,OProjS) is a
scheme.

Example 35. (a) An a�ne scheme SpecA[x1, · · · , xn] is called an a�ne n-space over
a ring A. When A is an algebraically closed field, then the set of closed points in
SpecA[x1, · · · , xn] identifies naturally to the a�ne space An

A.

(b) A scheme ProjA[x0, · · · , xn] is called a projective n-space over a ring A. When A

is an algebraically closed field, then the set of closed points in ProjA[x0, · · · , xn]
identifies naturally to the projective space Pn

A.

(c) (Coordinate-free description) Let V be an (n + 1)-dimensional vector space over a
field k. We define the projectivization of V , denoted by PV , as Proj(Sym•

V
_) where

Sym•
V

_ = k � V
_ � Sym2

V
_ � · · ·

is the symmetric algebra of the dual of V . In particular, if we take {x0, · · · , xn} as
a basis for V

_, then Sym•
V

_ = k[x0, · · · , xn] coincides with the usual polynomial
ring.

(d) Let A be a ring, I ⇢ A be an ideal. Let X = SpecA, Y = SpecA/I. The natural
ring homomorphism A ! A/I induces a morphism of schemes i : Y ,! X which
is a closed immersion (that is, it gives a homeomorphism onto a closed subset of
the topological space X, and the induced map i

# : OX ! f⇤OY is surjective). The
map i is a homeomorphism of Y onto the closed subset V (I) ✓ X of X, and the
induced map i

# : OX ! f⇤OY is surjective since it is surjective on stalks, which are
localizations of A and A/I.

Exercise 36. Describe a�ne schemes SpecZ, SpecR[x], SpecC[x, y] as topological spaces.

Exercise 37. Show that the projective space Pn
k (n > 0) over a field k is not a�ne.

(Hint : what is the global section of the structure sheaf OPn
k
?)
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