
Theorem 80 (Serre). Let S0 be a noetherian ring, S = S0[x0, · · · , xN ] be a polynomial

ring, I ✓ S be a homogeneous ideal not containing S+, and let X = ProjS/I. Let OX(1)
be a very ample invertible sheaf on X, and let F be a coherent OX-module. Then there

is an integer n0 such that for all n � n0, the sheaf F(n) can be generated by a finite

number of global sections.

Proof. Let i : X ,! PN

S0
be a closed immersion of X into a projective space such that

i⇤O(1) = OX(1). Then i⇤F is coherent, and i⇤(F(n)) = (i⇤F)(n) by the projection
formula. Hence, we may replace F(n) by i⇤F(n). In other words, we may assume that
X = PN

S0
.

Take an a�ne open cover of X by D+(xi), 0  i  N . Since F is coherent, there is a

finitely generated module Mi over Bi = S0[x0/xi, · · · , xN/xi] such that F|D+(xi)
' fMi.

For each Mi, there are finitely many elements sij 2 Mi which generate Mi as a Bi-
module. For a su�ciently large integer n, the section xn

i
sij will extend to a global

section of F(n) as discussed previously for the a�ne case. We take a single n to work for
all i, j. Now F(n), which is still coherent, corresponds to a Bi-module M 0

i
on D+(xi),

and the map ·xn
i
: Mi ! M 0

i
induces an isomorphism for every i. In particular, the

sections xn
i
sij generate M 0

i
, and hence the set of global sections {tij}, where tij is an

extension of xn
i
sij , generates the sheaf F(n) everywhere.

Corollary 81. Same assumption as above. Then any coherent sheaf F can be written

as a quotient of a sheaf E, where E is a finite direct sum of twisted structure sheaves

O(n).

Proof. Let n � 0 be a su�ciently large integer so that the twist F(n) is generated by
its global sections. Then we have a surjection

L
OX ! F(n) ! 0, where the first term

is a direct sum of finite copies of OX . Tensoring with OX(�n), we have the desired
surjection.

Remark 82 (Hilbert syzygy theorem). If we have a coherent sheaf F on PN , then the
above corollary gives the existence of a surjection �0 :

L
O(n0,j) ! F ! 0. Its kernel is

also coherent, we have a surjection �1 :
L

O(n1,j) ! ker�0 ! 0. Repeating the process,
we can construct a resolution of F by a direct sum of finitely many line bundles

· · ·
M

O(n2,j) !
M

O(n1,j) !
M

O(n0,j) ! F ! 0.

This is the sheaf-theoretic analogue of a free resolution of a graded module over a poly-
nomial ring. The famous Hilbert syzygy theorem states that the resolution above ter-
minates after a finite step, of length at most N + 1. Applying the ⇠ functor will give a
resolution of a coherent sheaf by direct sums of twisted free modules from a usual free
resolution over a polynomial ring.

In particular, we may show the finite generatedness of the global sections of a coherent
sheaf on a projective variety/scheme:
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Topic 2 – Line bundles, sections, and divisors

Theorem 83. Let k be a field, A be a finitely generated k-algebra, X be a projective

scheme over A, and let F be a coherent sheaf on X. Then �(X,F) is a finitely generated

A-module. In particular, if A = k, then �(X,F) is a finite dimensional k-vector space.

We will omit its proof since we will meet a much more general statement later.

Exercise 84. Let A be a ring, X be a closed subscheme of PN

A
. We define the homoge-

neous coordinate ring S(X) of X for the given embedding to be A[x0, · · · , xN ]/I, where
I = �⇤(IX) is the (largest) ideal defining X.
A schemeX is normal if all the local ringsOX,P are integrally closed. A closed subscheme
X ✓ PN

A
is projectively normal (or, arithemetically normal) for the given embedding, if

its homogeneous coordinate ring S(X) is an integrally closed domain.
Now assume that k is an algebraically closed field, and that X is a connected, normal,
closed subvariety of PN

A
.

(a) Let S(X) be the homogeneous coordinate ring ofX, and letR(X) :=
L

n2Z �(X,OX(n))
be the section ring. Show that S(X) is an integral domain, and that R(X) is its
integral closure.

(b) Show that S(X)d = R(X)d for all su�ciently large d.

(c) Show that S(X)(d) :=
L

n
S(X)(d)n =

L
n
S(X)nd is integrally closed for su�ciently

large d. This implies that the d-uple embedding of X is projectively normal when d
is large enough.

(d) Show that a closed subscheme X ✓ PN

A
is projectively normal if and only if it is

normal, and the natural map on global sections �(PN ,OPN (n)) ! �(X,OX(n)) is
surjective for every n � 0.

(e) Let X = {[s4 : s3t : st3 : t4] | [s : t] 2 P1} ✓ P3 be a rational quartic curve in P3.
Let OX(1) = i⇤OP3(1) be the very ample line bundle. Compute S(X) and R(X),
and conclude that X is not linearly normal, that is, �(P3,OP3(1)) ! �(X,OX(1))
is not surjective.
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2 More on: very ample and globally generated line bundles

Now we are ready to discuss a projective morphism determined by a globally generated
line bundle. What we will do is to revert the following process.

Example 85. Let S = k[x0, · · · , xN ] be the polynomial ring, and let X = ProjS. The

very ample line bundle OX(1) comes from the natural identification X
⇠

,! PN

k
. The

homogeneous coordinates x0, · · · , xN of PN

k
give rise to global sections x0, · · · , xN 2

�(X,OX(1)). Since their images spans the stalk OX(1)P over the local ring OX,P for
every point P 2 X, we see that OX(1) is globally generated by the sections x0, · · · , xN .
Similarly, if Y is a projective variety and ' : Y ! PN

k
is any morphism to a projective

space, then the line bundle L := '⇤OPN
k
(1) generated by global sections s0, · · · , sN where

si = '⇤(xi) due to the same reason.

The following statement holds in a general setting, namely, a scheme over a ring, however,
we only deal with the case of a variety over an algebraically closed field for the simplicity.

Theorem 86. Let k be an algebraically closed field, and let X be a (quasi-projective)

variety over k.

(i) If ' : X ! PN

k
is a morphism to a projective space, then '⇤(O(1)) is an invertible

sheaf on X, which is generated by global sections si = '⇤(xi) for i = 0, · · · , N .

(ii) Conversely, if L is a globally generated invertible sheaf, and if s0, · · · , sN 2 �(X,L)
are global sections which generate L, then there is a unique morphism ' : X ! PN

k

such that L ' '⇤(O(1)) and si = '⇤(xi) for i = 0, · · · , N .

Proof. Only for the last statement. Let s 2 �(X,L) be a global section of L. Since
sP 2 LP ' OX,P , we may define s(P ) to be the image of sP in OX,P /mX,P ' k for any
closed point P 2 X. This uniquely determines a function X ! k, which we will denote
also by s. Define '(P ) := [s0(P ) : s1(P ) : · · · : sN (P )] 2 PN

k
. Since s0, · · · , sN generate

L, that is, at least one of the images (s0)P , · · · , (sN )P in LP , a free OX,P -module of
rank 1, is not contained in the maximal ideal mX,P . In particular, there is no P 2 X
such that si(P ) = 0 for every i simultaneously. Hence the map ' is well-defined.

Definition 87. Let L be an invertible sheaf on X. A point P 2 X is called a base point

of L if sP = 0 for every s 2 �(X,L). The set of base points is called the base locus of L;
it is a closed subset of X. We call L is base point free if it has no base points.

Remark 88. The above theorem implies that “base-point-free” is exactly same as “glob-
ally generated”, and the global sections of L provide a morphism from X outside the
base locus to a projective space. When X is projective, L is very ample, s0, · · · , sN are
global sections which generate the vector space �(X,L), then the morphism ' becomes
an embedding; one can check that ' separates both the points and the tangent vectors.
More precisely, for any distinct closed two points P,Q 2 X, there is a section s 2 �(X,L)
such that s(P ) = 0 but s(Q) 6= 0, or vice versa; and for each closed point P 2 X, the
set {s 2 �(X,L) | sP 2 mPLP } spans the k-vector space mPLP /m2

P
LP .
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Topic 2 – Line bundles, sections, and divisors

Note that “very ample” is a relative notion; we have to pick a morphism X ! SpecA
(or, X ! Spec k if X is a k-variety). Hence, it is natural to give an absolute notion
which does not depend on the choice of a base morphism.

Definition 89. An invertible sheaf L on a noetherian scheme X is called ample if for
every coherent sheaf F on X, there is an integer n0 (depending on the choice of F) such
that for every n � n0, the sheaf F ⌦ Ln is generated by its global sections. This is
equivalent to say that: Lm is very ample for some m > 0.

Example 90. (1) Every invertible sheaf on an a�ne variety (or a scheme) X is ample,
since every coherent sheaf on X is generated by its global sections.

(2) Let X = Pn

k
be the projective n-space. The sheaf OX(d) is ample if and only if it is

very ample if and only if d > 0. It is globally generated if and only if d � 0.

Remark 91. Thanks to the intersection theory, being “ample” can be checked by ob-
serving the intersection numbers with subvarieties (or, curves and limits of curves; see
Nakai-Moishezon criterion, or Kleiman criterion). On the other hand, being “globally
generated”, or “very ample” are much subtle in this viewpoint. There are several im-
portant open problems which compare those notions.

Exercise 92 (Riemann-Roch problem). Let k be an algebraically closed field, X be a
nonsingular projective variety over k. Let L be an invertible sheaf on X. We want to
describe the number dim�(X,Ln) as an integer-valued function of n.

(i) Assume that L is very ample, and i : X ,! PN

k
is the corresponding embedding in

a projective space. Show that dim�(X,Ln) = PX(n) for su�ciently large n, where
PX is the Hilbert polynomial of X.

(ii) Show that dim�(X,Ln) is a polynomial function for n large enough when L is
ample.

(iii) Show that dim�(X,F ⌦ Ln) is a polynomial function for n large enough when L
is ample and F is coherent (Hint: use Hilbert’s syzygy theorem for i⇤(F ⌦ Ln)).
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3 Divisors

Roughly speaking, the notion of divisors is a generalization of codimension 1 subvarieties.
It gives a better understanding the intrinsic geometry of a given variety itself, and
classifying line bundles. In this section we will study divisors, both Weil divisors and
Cartier divisors, linear equivalence, and the divisor class group. The last one is an abelian
group which is an important invariant of a variety. We will also observe the connection
between Weil divisors, Cartier divisors, and invertible sheaves (= line bundles).
Codimension 1 subvarieties are much easier than subvarieties of higher codimension. For
instance, a codimension 1 subvariety of a projective space is defined by the vanishing
locus of a homogeneous polynomial, whereas a subvariety of codimension r (r � 2) is
not always defined by the vanishing locus of r homogeneous polynomials (e.g., a twisted
cubic in P3). In general, every codimension 1 subvariety of a smooth variety is defined
by a single equation, in a small open neighborhood of each point.

Example 93. Let C ⇢ P2

k
be a nonsingular projective curve of degree d over an al-

gebraically closed field k. If we choose a line L ✓ P2, then the intersection L \ C
is consisted of d points, if we count the points with the multiplicity. We may write
L \ C = DL =

P
P2C

nP · P , where P 2 C is a point on a curve and nP is the multi-
plicity at P . Note that this formal sum is finite; nP = 0 all but finitely many P ’s. As L
varies, we have a family of sets of d-points, parametrized by the set of all lines in P2. In
other words, we have the following incidence set

IC := {(L,DL) | DL = L \ C} ✓ (P2)⇤ ⇥ C(d)

where C(d) = (C ⇥C ⇥ · · ·⇥C)/Sd is the symmetric d-th power of C. We may recover
the embedding C ✓ P2 as follows.

Let P 2 P2 be a point. Take a subset ⌅P := {P}+C(d�1) ✓ C(d) as the locus
of d-points of C which contains P as supports, that is, nP � 1. Note that
⌅P is nonempty only when P 2 C. Then the set pr1(pr

�1

2
⌅P ) coincides with

the set of all lines L 2 (P2)⇤ passing through P . This uniquely determines
the point P 2 C ✓ P2. Varying the choice of P , we may recover C ✓ P2

completely.

Let us observe a relation between two di↵erent divisors. Let L1, L2 be two lines, and let
l1, l2 be the corresponding homogeneous equations, respectively. The ratio l1/l2 gives
a rational function on P2, and on C when we restrict. By construction, the rational
function l1/l2 on C has zeroes at the points of D1 = L1 \ C, and poles at the points of
D2 = L2 \ C. We will say two divisors D1 and D2 are linearly equivalent if there is a
rational function whose set of zeroes is D1 and set of poles is D2.

In this section, all the varieties X (in particular, they are irreducible) are assumed to be
normal, that is, every local ring is an integrally closed domain.

Definition 94. A prime divisor on X is a closed subvariety Y of codimension 1. A Weil

divisor is an element of the free abelian group DivX generated by the prime divisors,
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Topic 2 – Line bundles, sections, and divisors

that is,

D =
X

Y

nY Y

where Y are the prime divisors in X, and nY are the integers all but finitely many of
them are 0. If all the nY � 0, we say that D is e↵ective and denote by D � 0.
If Y is a prime divisor on X, then the local ring at its generic point OX,Y (this is
why we deal with schemes and their topological nature) is integrally closed domain of
Krull dimension 1 by the assumption. Hence, there is a corresponding discrete valuation
vY : K(X) \ {0} ! Z where K(X) is the function field of X. Let f 2 K(X) \ {0} be
any nonzero rational function on X. We define the divisor of f by the sum

(f) :=
X

vY (f)Y

taken over all the prime divisors Y on X. A divisor of the form (f) for some nonzero
rational function on X is called a principal divisor.
Since (fg) = (f)+(g) for any f, g 2 K(X)\{0}, the image of K(X)\{0} in DivX forms
a subgroup. Hence, it is natural to consider the equivalence classes of divisors. We say
two divisors D1 and D2 are linearly equivalent, denoted by D1 ⇠ D2, if D1 � D2 is a
principal divisor on X. The group DivX quotient by the subgroup of principal divisors
is called the divisor class group, and is denoted by ClX.

Remark 95. This notion also makes sense in a general setting: X is a noetherian
integral separated scheme which is regular in codimension 1. For instance, we may take
X = Z. In this case, a prime divisor is a nonzero prime ideal in Z. Hence, any divisor is
a formal sum of finitely many primes with the integer coe�cient, namely, D =

P
ni · pi.

Hence, D can be identified with a rational number qD :=
Q

pni
i

2 Q. When we apply
this process to a Dedekind domain, we will have a group of fractional ideals of the ring
of integers, and will lead to the ideal class group by taking the quotient by the subgroup
of principal ideals.

The divisor class group measures the failure of unique factorizations as in the ideal class
group for Dedekind domains:

Proposition 96. Let A be a noetherian domain. Then A is a unique factorization

domain if and only if X = SpecA is normal and ClX = 0.

Proof. Note that A is a UFD if and only if every height 1 prime ideal is principal. We
leave the details in Hartshorne’s book II.6.2 and references therein.

Proposition 97 (Algebraic Hartogs’s lemma). Let A be an integrally closed noetherian

domain. Then

A =
\

ht p=1

Ap

where the intersection is taken over all prime ideals of height 1.
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It is worthwhile to consider a parallel statement in complex geometry. Roughly speaking,
a rational function f 2 K(A) does not lie in Ap means that f has a pole at [p]. Hence,
A, the set of regular functions, coincides with the intersection of Ap implies that a
rational function which does not have a pole at any height 1 primes (= codimension 1
subvarieties) is indeed regular. In particular, if we have a rational function, has pole
possibly on a closed (algebraic) subset of codimension at least 2, then we may extend it
as a regular function.

Example 98. Let X = Spec k[x1, · · · , xn] be an a�ne n-space over a field k. Then
ClX = 0 since the polynomial ring is a UFD.

Proposition 99. Let X = Pn

k
be a projective n-space over a field k. Let D =

P
niYi

be a divisor. We define the degree of D by degD =
P

ni(deg Yi), where deg Yi is the

degree of the hypersurface Yi. Let H be the hyperplane (x0 = 0). Then:

(i) if D is a divisor of degree d, then D ⇠ dH;

(ii) for any f 2 K(X) \ {0}, deg(f) = 0;

(iii) the degree map deg : ClX ! Z is an isomorphism.

Proof. Let S = k[x0, · · · , xn] be the homogeneous coordinate ring of X. If g 2 S is
a homogeneous polynomial of degree d, we can factor it into a product of polynomials
g = gn1

1
· · · gnr

r . Note that gi defines a hypersurface Yi of degree di = deg gi. The divisor
of g is (g) =

P
niYi, which is of degree d =

P
nidi. Since a rational function f is a

quotient g/h of homogeneous polynomials of the same degree, and (f) = (g) � (h), we
have deg(f) = deg(g)� deg(h) = 0.
If D is a divisor of degree d, then we may write it as a di↵erence D1 � D2 of e↵ective
divisors of degree d1 and d2 with d1 � d2 = d (collect terms with positive coe�cients
and call it D1, and collect terms with negative coe�cients and call it D2, for instance).
Since any e↵ective divisor

P
niYi is a divisor of a polynomial

Q
gni
i

where Yi is defined
by gi, we may write D1 = (g1) and D2 = (g2). Now D� dH = (f) where f = g1/xd0g2 is
a rational function on X, that is, D ⇠ dH. The last statement follows from the above
and the fact degH = 1.

Definition 100. Let D be a Weil divisor on X. We define the sheaf OX(D) by

�(U,OX(D)) := {t 2 K(X) \ {0} | div|U t+D|U � 0} [ {0}.

In other words, OX(D) is the sheaf of rational functions which can have poles at most
“D”. A positive coe�cient of D allows a pole of that order, and a negative coe�cient
of D forces a zero of that order. Away from the support of D, it is isomorphic to the
structure sheaf. This is a quasi-coherent sheaf on X.

The sheaf OX(D) becomes an invertible sheaf in many examples, however, it is not
always an invertible sheaf since the irreducible subvarieties of codimension 1 does not
work very well. However, any invertible sheaf can be understood as a divisor in the
following way:
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Lemma 101. Let L be an invertible sheaf, s be a rational section of L, that is, a section

over a dense open subset of X (note that two rational sections are equivalent when

they coincide on a further dense open subset), which do not vanish everywhere on any

irreducible component of X. Then s determines a Weil divisor

div(s) :=
X

Y

vY (s)[Y ].

as usual. Then O(div(s)) ' L.

Proof. Only for a rough sketch. For a small enough open subset U ✓ X, we may define
�U : O(div(s))(U) ! L(U) by sending a rational function t (with zeroes and poles are
constrained by div(s)) to s · t. Since div(s) + div(t) have no pole in U , we see that the
rational section s · t is well-defined on every point of U , that is, a section of L on U .
Now check that this map induces an isomorphism of sheaves O(div(s)) ' L.

This leads to the notion of Cartier divisors.

Definition 102. Let X be a scheme. For each open subset U , let S(U) denote the set
of elements in �(U,OX) which are not zero divisors in each local ring OX,x for x 2 U .
The rings S(U)�1�(U,OX) form a presheaf, and we call its sheafification K the sheaf

of total quotient rings of O. We denote by K
⇥ the sheaf (of multiplicative groups) of

invertible elements in K . We denote O⇥ the sheaf of invertible elements in OX . Since
all the regular functions are rational, we have the following short exact sequence

0 ! O⇥ ! K
⇥ ! K

⇥/O⇥ ! 0.

A global section of K
⇥/O⇥ is called a Cartier divisor on X. Hence, a Cartier divisor

is represented by a collection of pairs (Ui, fi), where {Ui} is an open covering of X, and
fi 2 �(Ui,K ⇥) is a rational element such that fi/fj 2 �(Ui\Uj ,O⇥). In other words, it
is “locally” defined by a single rational function, and the ratio of such rational functions
on the intersection is regular.
A Cartier divisor is principal if it is in the image of �(X,K ⇥), in other words, it is
globally defined by a single rational function. Two Cartier divisors are linearly equivalent

if their ratio is principal. A Cartier divisor is e↵ective if it can be represented by {(Ui, fi)}
where all the fi 2 �(Ui,OUi).

Note that a Cartier divisor is Weil; a rational function fi can have poles or zeroes only
along the codimension 1 subsets, hence, the divisor div(fi) on Ui is well-defined and
gives a Weil divisor on Ui. On the intersection Ui \ Uj , we see that the both the ratios
fi/fj and fj/fi are regular. In particular, a regular function fi/fj does not have any
zeroes or poles, hence, defines a zero Weil divisor. This implies that we can glue the
Weil divisors div(fi) on Ui’s, and we obtain the Weil divisor on X as a result. Following
this way, an e↵ective Cartier divisor gives an e↵ective Weil divisor, which also coincides
with the closed subscheme defined by the sheaf of ideals I which is locally generated
by fi.
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A Weil divisor D is Cartier if and only if the sheaf OX(D) is invertible. If we have a
Cartier divisorD = {(Ui, fi)}, the mapOUi ! OX(D)|Ui defined by 1 7! f�1

i
becomes an

isomorphism. However, the three notions: Weil divisors, Cartier divisors, and invertible
sheaves coincide in many cases.

Theorem 103. Let X be a normal variety whose local rings are unique factorization

domains (X locally factorial). There are isomorphisms between three groups:

(i) ClX, the group of Weil divisors on X modulo linear equivalences;

(ii) CaClX, the group of Cartier divisors on X modulo linear equivalences;

(iii) Pic(X), the group of invertible sheaves under ⌦ modulo isomorphisms.

Proof. See Hartshorne’s book (II.6.11) and (II.6.14).

Corollary 104. If X = Pn

k
for some field k, then every invertible sheaf on X is isomor-

phic to O(d) for some d 2 Z.

Proposition 105. Let D be an e↵ective Cartier divisor on X, and let Y be the associated

locally principal subscheme. Then IY = O(�Y ).

Proof. O(�Y ) is the subsheaf of K generated locally by fi. Since D is e↵ective, this is
actually a subsheaf of OX .

The following proposition is quite useful to compute the divisor class group.

Proposition 106. Let Z be a proper closed subset of X, and let U = X \Z. Then there

is a surjective homomorphism ClX ! ClU sending D =
P

niYi to
P

ni(Yi \U), where
we ignore Yi \ U if it is empty.

In particular, when Z is of codimension at least 2, the above homomorphism is an iso-

morphism. When Z is irreducible of codimension 1, then there is an exact sequence

Z ! ClX ! ClU ! 0

where the first map is defined by 1 7! 1 ·Z (sometimes called the excision exact sequence

for class groups).

Proof. The first statement is clear since every prime divisor of U is the restriction of
its closure in X. Removing a closed subset of codimension at least 2 does not change
the class group; it does not change Weil divisors and principal divisors. When Z is an
irreducible closed subset of codimension 1, then we have the following exact sequence

0 ! Z ! DivX ! DivU ! 0.

By taking the quotient by principal divisors, we may lose the exactness on the left.
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Example 107. Let X = Spec k[x, y, z]/(xy � z2) be a quadric cone. For the simplicity,
assume that the characteristic of the field k is not equal to 2. Let D be the line (x = z =
0). Note that D is defined by x set-theoretically, however, the divisor of x is 2D since
x = 0 implies z2 = 0, and z (not z2) generates the maximal ideal of the local ring at the
generic point of D. The natural map ClX ! Cl(X \ D) is surjective, whose kernel is
consisted of Weil divisors whose support is contained in D. Hence, we have the following
right exact sequence

Z ! ClX ! Cl(X \D) ! 0,

where the first map sends 1 7! 1 ·D. Note also that X \D ' Spec k[x, x�1, y, z]/(xy �
z2) ' k[x, x�1, z], which is a spectrum of a UFD, hence Cl(X \D) = 0. Therefore, ClX
is generated by D and 2D = 0, that is, either ClX = 0 or ClX = Z/2Z.
We show that D is not a principal divisor. Let m = (x, y, z) be the maximal ideal of
k[x, y, z]/(xy�z2) corresponding to the origin. Note that m/m2 is a 3-dimensional vector
space generated by x, y, z. Now the image of ID = (x, z) in m/m2 contains x, z; hence it
forms at least 2-dimensional subspace. In particular, the ideal ID cannot be principal;
if it was, then the image in m/m2 is defined by the image of a generator (an application
of Krull’s Hauptidealsatz). We conclude that ClX = Z/2Z.
The above argument also proves that D is not a Cartier divisor. If it was, then it must
coincide with a principal divisor at a neighborhood of the origin. However, there is no
principal ideal whose image in m/m2 coincides with the image of ID = (x, z) in m/m2.
In particular, CaClX ' Pic(X) = 0.

Exercise 108. Let X = P1

k
⇥ P1

k
= Proj k[x, y, z, w]/(xy � zw) be a smooth quadric

surface in P3

k
. Let D1 = {pt}⇥ P1

k
, and let D2 = P1

k
⇥ {pt}.

(i) Show that there is a surjection Z� Z ! ClX (Hint : remove D1 and D2 from X.
The complement is X \(D1[D2) ' A2, a spectrum of a UFD, hence has the trivial
divisor class group.)

(ii) Show that O(D1) restricts to O on D1 ' P1

k
, and to O(1) on D2 ' P1

k
. Similarly,

show that O(D2) restricts to O(1) on D1, and to O on D2.

(iii) Conclude that the homomorphism Z�Z ! ClX defined by (a, b) 7! aD1 + bD2 is
an isomorphism.

Exercise 109. Show that P2

k
and P1

k
⇥P1

k
are birational but not isomorphic (Hint : what

are the divisor class group of them?). Can you find two varieties, which are birational
but not isomorphic, having the same divisor class group?

Exercise 110 (Torsion Picard group). Let Y ✓ Pn

k
be an irreducible hypersurface of

degree d. Show that Pic(Pn

k
\ Y ) ' Z/dZ. It is related to the fact that the fundamental

group ⇡1(Pn

k
\ Y ) ' Z/dZ.
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