Proposition 154. Let X be a topological space, 4 an open covering, and let F be a
flasque sheaf of abelian groups on X. Then Hp(il, F) = 0 vanishes for every p > 0. In
particular, an injective sheaf of abelian groups on X has no nonvanishing higher Cech
cohomology groups.

Proof. Consider the Cech resolution 0 — F — € (U, F) as above. Since F is flasque,
and a product of flasque sheaves are flasque, all the sheaves €P (4, F) are flasque for all
p. In particular, this gives a flasque resolution of F, hence, we may use it to compute
the sheaf cohomology instead of an injective resolution of F. But a flasque sheaf F has
no higher cohomology: HP(X,F) = 0 for each p > 0.

On the other hand, we may recover the Cech complex C*(4l, F) by taking the global
section functor T'(X, —). In particular, H’ (8, F) = h?(I'(X, €¢*)) = H?(X,F) =0. O

Lemma 155. Let X be a topological space, and let {1 be an open covering of X. For
each p > 0, there is a natural map, functorial in F,

H' (U, F) — HP(X, F).

Proof. Let 0 — F — Z° be an injective resolution of F. Being injective, we may find
a morphism of complexes from 0 — F — €°*(U, F) to 0 — F — Z°*, which extends the
identity map on F. Applying the functors I'(X, —) and taking the cohomology, we have
a natural induced map which is the desired map. O

Theorem 156. Let X be a noetherian variety over a field k, i be an affine open cover
of X, and let F be a quasi-coherent sheaf on X. Then the above natural map is an
isomorphism for every p > 0.

Proof. For p = 0, both groups coincide with the group of global sections T'(X, F). We
first embed F into a quasi-coherent flasque sheaf G. Let R be the quotient: 0 — F —
G—R—0.

For each ig < --- <y, the intersection of affine open subsets Uy, ... ;, becomes affine.

Let U,V be two affine open subsets. Their intersection U NV coincide with
the diagonal in U x V', passing by a map UNV — U x V sending = — (z,x).
Here, U x V is an affine scheme and the diagonal is a closed subscheme,
hence, U NV is also affine. Inside a general scheme, the diagonal needs not
to be closed; we need the separatedness assumption.

Since F is quasi-coherent, there is no H' on an affine open set, that is, we have a short
exact sequence of abelian groups

0— ./T“(Uiof‘ ) — Q(Uim... ,ip) — R(Uim... ,ip) — 0.

“slp

Taking their products, we have a short exact sequence of Cech complexes

0—>C'(MU,F)—=C*(,G) — C* (U, R) — 0.
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Taking the cohomology, we have a long exact sequence of Cech cohomology groups. We
have H (4, G) = 0 for every p > 0 since G is flasque. In particular, i (U, F)~ HY(X,F)
since both are the cokernel of I'(X,G) — I'(X, R).

Note also that we have an isomorphism H” (4, F) ~ Hp_l(ﬂ, R) for every p > 2. Since
‘R is also quasi-coherent, we may apply the induction on p. ]

Remark 157. On an arbitrary topological space X with an arbitrary sheaf of abelian
groups F on X, Cech cohomology may differ from the sheaf cohomology. In general, we
have a natural map

0 (U, F) — HP (X, F)

for an arbitrary open cover X, which is an isomorphism when p = 0. If we consider
finer open covers (refinements) of 4, they form a direct system. In particular, we have
a direct limit lim H” (8L, F), together with a natural map lig H' (4, F) — HP(X, F) for
each p. This is an isomorphism when p =0 or p = 1.

Exercise 158. Let (X,0Ox) be a ringed space. We denote Pic X by the group of
isomorphism classes of invertible sheaves. Show that Pic X ~ H!(X,0%), where O%
denotes the sheaf whose sections over an open set U are the units in the ring T'(U, Ox),
with the multiplication as the group operation.

[Hint : Let £ be an invertible sheaf. Cover X by open subsets U; on which £ is free.
Fix local isomorphisms ¢; : Oy, = L|y,. On U; N Uj, we have an automorphism api_l o ;
of Oy, ;. These automorphisms give an element of Hl(il, O?) Now use the fact that

lig [ (4, F) = H'(X, )]

Remark 159. When X is a (compact) complex manifold, we have an exponential se-
quence
0—Z— Ox - 0% —0.

From the cohomology long exact sequence, we have an exact sequence
HY(X,Z) = HY(X,Z) - H'(X,0x) — H'(X,0%) = PicX & H*(X,Z).

The last map c¢; is called the first Chern class map, and the first Chern class of a line
bundle L is defined by the image c1(L) in H?(X,Z). In particular, the Picard group of
X is composed of two parts: first, a discrete part, measured by the first Chern class;
and a continuous part, coming from the complex vector space H(X,Ox) quotient by
the images of H'(X,Z). The vector space H'(X,Oy) identifies with the first order
deformation space of a line bundle Ox. When X is sufficiently good, the continuous
part ker c¢; C Pic X coincides with the quotient space H'(X,Ox) mod out by Z-lattices
of full rank, in other words, a complex torus.

Exercise 160. Let C' be a projective plane curve, defined by a single homogeneous
equation f(z,y,z) =0 of degree d. Assume that (1:0:0) ¢ C, equivalently, f does not
contains a ¢ term.
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(1) Show that C' is covered by two affine open subsets U = C NU, = {y # 0} and
V=CnU,={z+#0}.

(2) Compute the Cech complex explicitly.
(3) Verify that h°(C,O¢) =1 and h'(C,O¢) = (*,).

Remark 161. The coincidence of Cech cohomology and the sheaf cohomology implies a
special case of the dimensional cohomology vanishing. Let X = P" = Proj k[xg, - - , y]
be the projective n-space, and let F be any quasi-coherent sheaf on X. The sheaf
cohomology groups can be computed via an affine open covering; we may take 4 = {U;},
where U; = Dy (x;) = {z; # 0} as a collection of (n + 1) affine open subsets. Since
the Cech complex C*®(4l, F) becomes 0 after (n + 1)-steps, all the cohomology groups
HP(X,F) vanish when p > n + 1.

More generally, let X C PV be a projective variety of dimension n. Let ¢ = N — n be
the codimension. Since X does not intersect with a general linear subspace of dimension
¢ — 1, hence, we may assume that X does not intersect with the linear subspace {[0 :
10 Tpg g2 D ) (e—1)=nte=N]} C PN, after a certain linear change of
coordinates if necessary. In particular, X can be covered by (n + 1) affine open subsets
X NU; ={z; # 0}, 0 <i <n. The same argument shows that H?(X,F) = 0 for every
p > n+ 1 and for every quasi-coherent sheaf F on X.

Exercise 162. Compute the cohomology groups H'(X,Ox) where X = A2\ {(0,0)} is
a punctured affine plane. [Hint : compute Cech cohomology groups with respect to an
affine open cover {U,, Uy}, where U, C {(2,y) | z # 0} C A and U, C {(z,y) | y #
0} C AZ.] Conclude that A2\ {(0,0)} is not affine.

4 Cohomology on projective spaces

We will make explicit computations of the cohomology of sheaves O(n) on a projective
space, and observe some basic properties of cohomology groups of coherent sheaves on
a projective space.

Let A be a noetherian ring, S = Alxg, - ,2,] (r > 1), and let X = ProjS be the
projective r-space P") over A. Let Ox(1) be the twisting sheaf of Serre. We denote by
I.(F) the graded S-module ®,czI'(X, F) for any Ox-module F.

Theorem 163. Let A, S, X, Ox(1),F be as above.

(1) The natural map S — T'«(Ox) = P
S-modules.

nez H (X, Ox (n)) is an isomorphism of graded

(2) (no intermediate cohomology) H'(X,Ox(n)) =0 for 0 <i < r and alln € Z.
(3) H'(X,0x(—r —1)) ~ A.

(4) The natural map H°(X,Ox(n))xH"(X,0x(—n—r—1)) = H"(X,0x(—r—1)) ~ A
is a perfect pairing of finitely generated free A-modules, for each n € 7.
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In particular, HY(X,Ox(n)) can be interpreted as the set of homogeneous polynomials of
degree n in xg, - ,xp, and H"(X,Ox(n)) can be interpreted as the set of homogeneous
Laurent polynomials of degree n in xg, - - - , x,, where in each monomial, each x; appears
with degree at most —1.

Proof. Let F = @,,c; Ox(n) be a quasi-coherent sheaf on X. Since the cohomology
functor commutes with direct sums, the cohomology of F will decompose into a direct
sum of the cohomology of Ox(n)’s.

For each 0 < i < r, let U; be the distinguished affine open set D (z;). We can compute
the cohomology of F by using Cech cohomology with respect to the covering { = {U;}.
For any set of indices igp < --- < iy, the open set Us,...;, = Dy (x4, ---x;,), we have
J—"(Uim..‘,ip) = Szio"'xip' Also note that the grading on JF corresponds to the natural
grading of Sx¢0-~-mz~,,- Thus, the Cech complex of F is given by

C*(WLF) : [ Sasy = [ Seigesy, = -+ = Segrr-

Note that H°(X, F) = ﬁo(ﬂ, F) is the kernel of the first map, which is just S.

Next, we consider H" (X, F), which is the cokernel of the last map d" 1 : [, Szq-ay-ap. —
Szo-z.- We regard Sg,...,. as a free A-module of Laurent polynomials, with basis
xé‘) - 'lL"fT, l; € Z. The image of d"~! is the free submodule generated by those ba-
sis elements for which at least one ; > 0 is nonnegative. Thus, H"(X,F) is a free
A-module with basis consisting of the negative monomials

{abo bl | 1, <0 for every r},

equipped with the natural grading > ¢;. There is only one such monomial of degree
—r — 1, namely xgl R

To check the last statement, first note that both HY(X,Ox(n)) and H"(X,Ox(—n —
r — 1)) vanish when n < 0. For n > 0, H°(X,Ox(n)) identifies with the free A-module

with basis
{af® - [ mi >0,) m;=n}.

The natural pairing with H" (X, Ox(—n—r—1)) into H"(X, Ox(—r —1)) is determined
by
(a0 ) - (afp ) = o0 gt

where the object on the right becomes 0 if there is an ¢ such that m; + ¢; > 0. It is
clear that this gives a perfect pairing; H"(X,Ox(-n —r — 1)) ~ H°(X,0x(n))"Y with
the dual basis consisting of elements of the form

—mo—1 .

—my—1
IZI‘O .

..x7

corresponding to z(' - - - x
It remains to show that there is no intermediate cohomology. We will use the induction
on 7. When r = 1, there is nothing to prove, so let » > 1. Consider the exact sequence
of graded S-modules

zs
oo

0—S(-1)% 8 = S/(x,) 0.
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This gives the exact sequence of sheaves
0= Ox(—1) B Ox -0y —0

where H = (2, =0) = IP)TA_l is the hyperplane defined by x,.. Twisting by all n € Z and
taking the direct sum, we have

0= F(-1)ZF—=Fyg—0
where F = @,,c;, On(n). Taking the cohomology long exact sequence, we have
= HY(X, F(-1)) 3 HY(X,F) —» H(X,Fg) = H'(H, Fy) = HT (X, F(-1)) — - -

Since (H,Opg(1)) = (IP’TAA, Opz—l(l)), we may apply the induction hypothesis so that

H (X, Fg)=0for0<i<r—1.
At the beginning of the long exact sequence, we have

0— HYX,F(-1)) 8 H'(X,F) = H (X, Fy) — 0,
since H(X, Fy) = S/(x,). In particular, we have a bijection
0— HYX,F(-1)) B HY(X,F) — 0.
At the end of the long exact sequence, we have
H™Y(X, Fy) > H'(X, F(—1)) % H"(X, F) — 0.

(The surjectivity of the map (-z,) is clear; we may regard both spaces as the space of
negative Laurent polynomials, or we may apply the dimensional cohomology vanishing.)
The kernel of the map (-z,) is the free A-module generated by negative Laurent mono-
mials 2 - 2f with I, = —1. Since H"~'(X, Fp) is the free A-module generated by

negative Laurent monomials 20 - - - xffll, the map 4 identifies with the division by z;,

we observe that § is injective. In particular, H"~1(X, F(—1)) =% H"~1(X, F) is bijective.
We conclude that (-z,) : HY(X, F(—1)) — H'(X, F) is bijective for each 0 < i < 7.

If we localize the Cech complex C*(4,F) by z,, we get the Cech complex for the
sheaf F|y, on the affine open space U,, with respect to the affine open covering {U; N
Uy }o<i<r—1. Since a quasi-coherent sheaf on an affine scheme does not have any nonva-
nishing higher cohomology group, we conclude that

HY(X,Fly,) = H(X,F)s, =0

for each i > 0. In other words, every element of H'(X,F), for i > 0, is annihilated by
some powers of z,. Now the bijectivity of the map (-x,) : HY(X, F(-1)) — HY(X,F)
implies that HY (X, F) =0 for 0 <i < r.

0
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Theorem 164 (Serre vanishing). Let X be a closed subscheme of a projective space
", over a noetherian ring A, and let Ox (1) be the very ample invertible sheaf on X
corresponding to the given embedding. Let F be a coherent sheaf on X. Then:

(1) for eachi >0, H'(X,F) is a finitely generated A-module;

(2) there is an integer ng (depending on F) such that for each i > 0 and n > ny,
H{(X,F(n))=0.

Proof. Let i : X < P’y be the given embedding, so that Ox (1) = i*Opr, (1). Since i.F
is coherent and the cohomology is the same, thus, we may reduce to the case X = P’,.
Note that the statements we want to show are obvious when F = Ox(q) for some ¢ € Z.
For i > r, we have H'(X, F) = 0 and hence there is nothing to prove. Given a coherent
sheaf F on X, there is a surjection £ = @ Ox(g;) = F — 0 where &£ is a finite direct
sum of line bundles. Let R be the kernel, which is also coherent. Using the descending
induction hypothesis on i, we have the finite generatedness of H*(X, F) since there is an
exact sequence of A-modules

= HY(X,E) » H(X,F) - HTY (X, R) — - -

with both terms on the left and on the right are finitely generated.

To show the second statement, we just twist the above sequence by a sufficiently large
number n >> 0; the module on the left vanishes unless ¢ = 0 because £ is a direct sum
of Ox(¢;), and the module on the right vanishes thanks to the induction hypothesis.
Hence HY(X,F(n)) = 0 for n > 0. Since there are only finitely many i’s involved in
the sequence, namely 0 < i < r, we may take ng as the maximum of integers what we
obtained separately for each 1. ]

As an application, we give a cohomological criterion of the ampleness of an invertible
sheaf:

Proposition 165. Let X be a closed subscheme of a projective space Py over a noethe-
rian ring A. Let L be an invertible sheaf on X. Then the following are equivalent:

(i) L is ample;

(ii) For each coherent sheaf F on X, there is an integer ng (depending on F) such that
for each i > 0 and n > ng, we have the vanishing cohomology group H (X, F ®
L") =0.

Proof. (=) Note that £™ is very ample for some m > 0. We take the corresponding
projective morphism, so that we have another embedding i : X < P¥ into a projective
space such that i*(’)Pg (1) = L£™. Now apply the Serre vanishing for F, F Q L, -+ | F ®
£t

(<) We need to show that for any coherent sheaf F on X, there is an integer mg such
that F @ L™ is globally generated for each m > my.

66



Let P be a closed point of X, and let .#p be the ideal sheaf of the closed subset {P}.
We have a short exact sequence

0— IpF >F—>FRk(P)—0
where k(P) is the skyscraper sheaf Ox /.#p. Tensoring with £™, we have
0— IpFRL" - FRL" 5> FRL"RK(P)— 0.

Since £pF R L™ is also coherent, there is an integer mg such that Hl(X, IpFRL™) =0
for each m > my. In particular,

T(X,F®L™) = D(X,F®L" @ k(P))

is surjective for each m > mg. Thanks to Nakayama’s lemma, this implies that the stalk
of F ® L™ at P is generated by global sections. Since it is coherent, there is an open
neighborhood U of P (it may depend on m) such that the global sections of F @ L™
generate the sheaf at every point in U.
In particular, taking 7 = Ox, we find that there is an integer m; > 0 and an open
neighborhood V' of P such that £™! is globally generated by global sections over V. On
the other hand, the above argument gives a neighborhood U; of P such that F @ £™0FJ
is generated by global sections over U; for each 0 < j < m; — 1. Now let Up :=
VNnUoN---NUp,—1. Then over Up, all of the sheaves F ® L™, m > my are generated
by global sections since it can be expressed as a product of globally generated invertible
sheaves

(FoLmot) g (L£m)k
for some 0 < j<mj;—1andk > 0.
Now cover X by a finitely number of the open sets Up, for various closed points P (since
X is quasi-compact). Let ng be the maximum of the mg’s corresponding to those points
P. Then F ® L™ is generated by global sections over all of X, for all n > ny. O

Exercise 166. Let X be a projective scheme over a field k, Ox (1) a very ample invertible
sheaf, and let F be a coherent sheaf on X. We define the Euler characteristic of F by

X(F) = (~=1)' dimy H'(X, F).

(1) If0 — F — F — F” — 0 is a short exact sequence of coherent sheaves on X, show
that x(F) = x(F') + x(F").

(2) Show that there is a polynomial P(z) € Q[z] such that x(F(n)) = P(n) for alln € Z.
This is called the Hilbert polynomial of F with respect to Ox(1).

(3) Show that there is an integer ng such that h°(X, F(n)) = P(n) for all n > ny.

Exercise 167. Let X be a projective scheme over a noetherian ring A, and let F' —
F? — ... F" be an exact sequence of coherent sheaves on X. Show that there is an
integer ng such that for all n > ng, the sequence of global sections

DX, FHY - T(X,F}) = - = T(X, F")

is exact.
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5 Ext groups, sheaves, and higher direct images

Let (X,Ox) be a ringed space. If F and G are Ox-modules, there are two objects:
Homx (F, G) the group of O x-module homomorphisms, and Hom x (F, G) the sheaf Hom.
For a fixed F, they give left exact covariant functors: Homx (F,—) : 9Mod(X) — Ab,
Homx (F,—) : Mod(X) — Mod(X). Since Mod(X) has enough injectives, we may
consider their right derived functors as follows.

Definition 168. Let (X, Ox) be a ringed space, and let F be an Ox-module. We define
the functors Ext’y (F, —) as the right derived functors of Homy (F, —), and &xt' (F, —)
as the right derived functors of Homx (F, —).

An additive functor F : 2l — 9B is called effaceable if for each object A in 2, there is a
monomorphism u : A — M for some M such that F'(u) = 0. The following lemma is
useful during this and the next sections.

Lemma 169. Let T = (T%);>0 be a covariant §-functor from A — B. If T? is effaceable
for every i > 0, then T is universal.

Lemma 170. Let Z be an injective object in Mod(X ). Then for any open subset U C X,
Z|y is an injective object in Mod(U).

Proof. Let j : U — X be the inclusion. Given any inclusion of Oy-modules F — G,
and a given morphism F — Z|7, we have an inclusion j(F) < ji1(G) and a morphism
J(F) = jZlu, where ji denotes the extension by zero outside of U. Since jiZ|y is a
subsheaf of Z, we have a morphism 5 F — Z to an injective object. This extends to a
map jiG — Z. Taking the restriction onto U gives the required map G — Z|y. ]

In particular, when G is an injective object in Mod(X), we have Ext’ (F,G) = 0 and
&t (F,G) = 0 for any Ox-module F and i > 0.

Proposition 171. For any open subset U C X, we have Ext'y (F,G)|v =~ Ext'y (Flu, Glv).

Proof. Fix F. Both sides are universal d-functors in G from 9t00(X) to Mod(U). Since
they agree on i = 0, they must coincide. (To be precise, one has to show that the functor
from the left-hand-side is “universal”, which can be checked by showing that the functor
is effaceable.) O

When we take F = Ox, both the functors Ext and £zt become very simple as follows.
Proposition 172. For any G € Mod(X), we have:

(1) &t(Ox,G) = G;

(2) Ext'(Ox,G) =0 fori > 0;

(3) Ext'(Ox,G) ~ H(X,G) for alli > 0;
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Proof. Note that the functor Hom(Ox, —) is the identity functor, and hence, it does not
have nontrivial derived functors for 4 > 0. The functor hom(Ox, —) = I'(X, —) is the
global section functor, and its derived functors are the sheaf cohomology functors. [

If there is a short exact sequence 0 — G’ — G — G” — 0 of Ox-modules, then we im-
mediately have a cohomology long exact sequence from the construction. The following
proposition corresponds to a converse direction;

Proposition 173. If0 — F' — F — F" — 0 is a short ezact sequence of Ox-modules,
then for any Ox-module G, we have a long exact sequence

0 — Hom(F”,G) — Hom(F,G) — Hom(F',G)
—  ExtY(F",G) — Ext'(F,G) — Ext}(F,G)
— Ext*(F".G) — -,

and similarly for Ext sheaves.

Proof. Let 0 — G — Z°® be an injective resolution of G. Since the functor Hom(—,Z) is
exact, we have a short exact sequence of complexes

0 — Hom(F",Z°%) — Hom(F,Z*) — Hom(F',Z*) — 0.

Now take the associated long exact sequence of cohomology groups h'.
Using the Hom(—,Z) which is an exact functor from 9Mod(X) to Mod(X), we get the
analogous statement for &xt’s. O

In particular, &t sheaves can be computed from a locally free resolution of F; we do not
need to take an injective resolution. Since any coherent sheaf on a noetherian scheme is
finitely generated and finitely presented; thus any coherent sheaf on X has a locally free
resolution £* — F — 0 (may have infinite length).

Proposition 174. Suppose that there is an exact sequence
e L2t L F 0

in Mod(X), where L* are locally free sheaves of finite rank. Then for any G € Mod(X),
we have

Ext'(F,G) ~ h™ (Hom(L*,G)).

Proof. Note that both sides vanish for ¢ > 0 and G injective; since the functor Hom(—, G)
is exact. This implies that they are effaceable §-functors, hence universal. They are equal
for ¢ = 0, we have the natural isomorphism. O

Caution. It does not mean that Ext or &zt can be constructed as a derived functor in its
first variable, since the category 9t0d(X) does not have enough projectives in general.

Recall that we have a natural isomorphism Hom(F,G ® £Y) ~ Hom(F ® L, G) where £
is a locally free sheaf of finite rank. We will show the analogous isomorphism for Ext
groups and &zt sheaves.
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Lemma 175. Let L be a locally free sheaf on X of finite rank, and let T be an injective
Ox-module. Then L ® T is injective.

Proof. Tt is enough to show that the functor Hom(—, £ ® Z) is exact, which is the same
as the functor Hom(— ® £Y,T). Since it is a composition of two exact functors (—® L")
and Hom(—,7), we are done. O

Proposition 176. Let £ be a locally free sheaf of finite rank, and let LV be its dual.
For any F,G € Moo (X), we have

Ext'(F® L,G) ~ Ext'(F,G @ L")
for each i, and similarly
Et' (F®L,G) ~ &t (F,Go LY) ~ &t (F,G) @ L.

Proof. We already know the case ¢ = 0. For the general case, one can show that all of
them are effaceable d-functors, hence, universal. O

Proposition 177. Let X be a variety, F be a coherent sheaf on X, and let G be any
Ox-module. For any point x € X, we have

Sxt&(]:, G)a =~ Extsz@ (F,Gz)
for any i, where the right-hand-side is the Ext group over the (local) ring Ox 4.

Proof. Since the question is local, we may assume that X is affine. Then F has a (locally)
free resolution £L* — F — 0 (from a finitely generated A = I'(X, Ox)-module I'( X, F)).
On the stalks at x, it gives a free resolution of modules over the local ring Ox ,. We
may compute the both sides by using these locally free resolutions, which coincide when
i = 0. Note that without the assumption F being coherent, even the case ¢ = 0 is not
true in general. O

Proposition 178. Let X be a projective variety over a field k, and let Ox (1) be a very
ample invertible sheaf on X, and let F,G be coherent sheaves on X. There is an integer
no > 0 (depending on F,G,i) such that for every n > ng we have

Exti(]:,g(n)) ~ (X, Exti(}',g(n))).

Proof. Fix F. Note that the functor Ext!(F, —) is the composition of two left exact
functors T'(X, —) and &xt'(F, —). As aspecial case of the Grothendieck spectral sequence,
there is a convergent spectral sequence

EY? = HP(X, &t'(F,G)) = ExtP™4(F,G)

for any coherent sheaf G on X. Since Ox(1) is ample and &t'(F,G(n)) ~ &t'(F,G) ®
Ox(n), it does not have nonvanishing higher cohomology groups HP(X, &xt'(F,G(n))) =
0 for all p > 0 and sufficiently large n > 0 by Serre vanishing. When it happens,
HO(X, Ext'(F,G(n))) = Ey? ~ Es? = Ext(F,G(n)) as desired. O
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Exercise 179 (Yoneda extension). Let (X,Ox) be a ringed space, and let F', F"’ €
Mod(X). An extension of F” by F' is a short exact sequence

0—>F - F—=F' =0

Two extensions are isomorphic if there is an isomorphism of short exact sequences,
inducing the identity maps on F' and F”. Given an extension as above, consider the
long exact sequence arising from Hom(F”,—). In particular, we have a connecting
morphism

§ : Hom(F", F") — Ext*(F", F').

Let ¢ € Ext!(F”, F') be the image of the identity morphism §(idz~). Show that this
process gives a 1-1 correspondence between the isomorphism classes of extensions of F”
by F’, and elements of the group Ext!(F”, F/).

Higher direct images are useful when we deal with a relative case, that is, studying a
morphism f : X — Y of varieties, or schemes. One may think this is a family of schemes
over Y, where the members of the family are the fibers X, := X xy Spec k(y) for various
points y € Y. We need some form of “relative cohomology theory of X over Y”, or
equivalently, “cohomology theory along fibers of X over Y”. This allows us to fulfill a
philosophy: “geometry of X” is determined by the geometry of Y and the geometry of
fibers.

Definition 180. Let f: X — Y be a continuous map of topological spaces. We define
the higher direct image functors R'f, : 2b(X) — Ab(Y) to be the right derived functors
of the direct image functor f,.

The first and the most important property is that they give cohomology on fibers:

Proposition 181. For each i > 0 and each F € Ab(X), R'f.(F) is a sheaf associated
to the presheaf '
Vi H(fTHV), Fly1)-

onY.

In the case of noetherian schemes and quasi-coherent sheaves, we have a better situation:
affine open subschemes of Y are good enough.

Proposition 182. Let X,Y be noetherian schemes, and let f : X — 'Y be a morphism.
For any quasi-coherent sheaf F on X, the sheaves R'f.(F) are quasi-coherent on Y.
When Y = Spec A is affine, we have

R'f.F ~ H(X,F)~
for any quasi-coherent sheaf F on X.

Proof. We address an idea only, and skip the details. Both functors are universal J-
functors which coincide when ¢ = 0. 0
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Topic 3 — Derived functors and cohomology

In general, the cohomology of F on X is determined by the cohomology of all the higher
direct images R'f,F on Y.

Theorem 183 (Leray spectral sequence). Let X, Y be topological spaces, f : X — Y be
a continuous map, and let F be a sheaf of abelian groups on X. Then there is a spectral
sequence EY = HP(Y, R1f.(F)) which converges to E5X! = HPYI(X | F).

Corollary 184. Let X,Y be noctherian scheme, and let f : X — Y be a morphism.
Assume that f is finite, or f is affine, that is, X ~ Speca/ for some quasi-coherent
Oy -algebra /. Then H'(X, F) ~ H (Y, f.F).

Proof. We have R f,(F) = 0 for all i > 0 in such cases. Let 0 — F — Z* be an injective
resolution of F. Note that H' (X, F) = h'(['(X,Z®)) = hi(T'(Y, f.Z*)). Note that f.Z* is
a resolution of f,F since it does not have nonzero cohomology R'f, for i > 0. Since '
is injective for each i, we observe that both Z and f,Z° are flasque. Therefore, f,Z° is
indeed a flasque resolution of f.F. Taking the global section functor I'(Y, —) and then
the cohomology, we have H(Y, f..F) as results. O
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