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Exercise 1. For n ∈ N we define the sequences:

an =
√
n + 1000−

√
n,

bn =

√
n +
√
n−
√
n,

cn =

√
n +

n

1000
−
√
n.

Show that for 1 ≤ n < 1.000.000 we have an > bn > cn, but

lim
n→∞

an = 0, and lim
n→∞

bn =
1

2

and the sequence (cn)n∈N is not bounded.

Exercise 2 (Landau–symbols). Which of the following statements are true?

(a) n3+n+1
2n2−5 ∈ O(n).

(b) n3+n+1
2n2−5 ∈ o(n).

(c) 2n−5
20n
√
n+1000

∈ O
(
1
n

)
.

(d) 20n
√
n+1000

2n−5 ∈ O(n).

Exercise 3 (Convergence of a sequence). We define the sequence (an)n∈N0 by a0 = 1 and

an =
√

1 + an−1 ∀n ≥ 1.

Show that the sequence converges and compute its limit. (Hint: Compute the hypothetical
limit.)

Exercise 4. (a) Let (an) be the Fibonacci-sequence defined by an+2 = an+1 + an where
a1 = 1 and a0 = 0.

1. Show that fn = 1√
5

(
(1+
√
5

2
)n − (1−

√
5

2
)n)
)

satisfies the above recursion.

2. Compute the limit lim
n→∞

an+1

an
.

(b) Let (an) be the sequence defined by an+2 = 2an+1 + an where a1 = 1 and a0 = 0.
Compute the limit lim

n→∞
an+1

an
.


