Computer Algebra and Grobner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21



Overview

Today's topic is constructive ideal and module theory.
1. Intersection of ideals
2. Syzygies
3. 1:J
4. Elimination and kernels of ring homomorphisms

5. Homomorphism between finitely presented modules



Intersection of ideals
Let I,J C S = K][xi,...,xn] be ideals. We want to compute their
intersection.
Algorithm.
Input. fi,...,f, generators of the ideal /,
gi,.-.,8s generators of the ideal J.
Output. Generators of the ideal / N J.
1. Form the matrix

(1 f ... f 0 ... 0
Pm10 ...0 @ ... g
2. Compute the syzgy matrix ¢» = (hj;;) whose columns generate

the kernel
ker(p : S"Tt1 — §2),

3. Return the entries of the first row
hi1, h12, ..., b1t
of the (r + s+ 1) x t-matrix 1.



Proof of correctness
The equation

hlj
1 A ... f, 0 ... 0 haj 0
10 ... 0 g1 ... & : -
h(ris+1)

shows that hy; is both a linear combination of the f;'s and the g;'s.
Hence hyj € I'NJ. Conversely, if h€ /N J, then

h:h1f1+...+h,f,:h;g1+...+h;gs
for suitable h; and hj’-. Hence the vector
(h,—h1,...,—h,,—hy, ..., )" € ker(p).

Since the kernel is generated by the columns of 1) we obtain that h
is a linear combination of hi1, hio,..., h1t. ]



Computation of syzygies
Let S = K[xi,...,xy] be the polynomial ring and F = S° be a free
S-module.
Algorithm.
Input. Vectors f1,...,f, € F
Output. A matrix ¢ € St whose columns generate the kernel of
the S-module homomorphism

@:S5" = F,ei—f.

1. Choose a monomial order on F and compute a Grobner basis
fyeoostryfrpt, ... fp of (f1,..., 1), while keeping track of
the Buchberger test syzgies G(-®).

2. Sort the G("®) such that the test syzygies which produced
new GB elements come first.



Computation of syzygies

3. The matrix with columns G("®) has now shape

1

A B
I : _
¢—<C D)WlthC— i

0 1
a (r' —r) x (r' — r) upper triangular square matrix 1's on the

diagonal. Return
v =B—AC™D.

Note that one can compute C~! by applying row operations to the

matrix (E|C) to obtain (C’|E). The inverse matrix C' = C~! has
entries in S.



Proof of correctness

Y is a r’ x (r' — r + t)-matrix whose columns generate the kernel
of the map

o S" = F,erf
since the GU'®) form a Grobner basis of ker(i'). Multiplying

A B\ .. (Ery —C'D
c o)™ 0 E,

~ (A B—ACID
¢_(C 0

whose columns still generate ker(¢'). Elements of ker((p)
correspond to elements of ker(¢’) of shape

(hi,...,hs,0...,0).

Such an element is a linear combination of the last t columns of 1;’
because of the upper triangular shape of C. Thus the columns of
Y = B — AC™1D generate ker(¢p). O

yields



l:J
Algorithm.

Input. fi,...,f, generators of the ideal /,

g1, -.,8s generators of the ideal J.
Output. Generators of the ideal / : J.

1. Form the s x (rs + 1)-matrix

g A ... f 0
82 I
p=1" _
g 0 I
2. Compute the syzgy matrix ¢ = (hj;) whose columns generate
the kernel

ker(p : S™*1 — S%).
3. Return the entries of the first row hy1, hio,

..., hy; of the
(rs + 1) x t-matrix 1.



Elimination
Given an ideal | C K[x1,...,Xn, ¥1,---,Ym] We want to compute
INKl[y1,-..,¥Ym]- This can be done by computing a GB with
respect to >e. However this computes the whole flag of
elimination ideals. Using a product order is often cheaper.

Definition. Let >; be a global monomial order on K[xi, ..., xp]
and >, a global monomial order on K{y1,...,ym]. Then the
product order (>12) on K[xi,...,Xn, ¥1,-..,Ym] is defined by

xyP > x"‘/yﬂ/ iff x* >1 x* or
x* = x* and yP >, yﬁ/.
This order has the key property that
Lt(F) € K[y1, ..., ym] = f €Ky, Yml
holds.



Elimination

Algorithm.
Input. fi,...,f, generators of an ideal
I C K[Xl’”-vxmyla"'aym]'
Output. A Grébner basis of I N K[y1, ..., Ym].

1. Compute a Grobner basis fi ..., f of (fi,...,f;) with respect
to a product order.

2. Return all Grobner basis elements f; with

Lt(f;) € Kly1, .-, Ym]

Proof. An element f € K|yi,...,ym] lies in [ iff the remainder
under division by f ..., f. is zero. This division involves only the
Grobner basis elements which we return. O



Kernel of a ring homomorphism
Let ¢ : K[y1,...,¥m] = K[x1,...,xn]/l,yi — g, be a substitution
homomorphism. We want to compute ker(¢y).

Algorithm.
Input. fi,...,f, generators of the ideal /
g1, -.,8m representatives of the g;.

Output. A Grobner basis of ker(y).

1. Consider the ideal J generated by f1,..., f, and
Yi—81---5Ym— 8m in K[X17-~7Xn7)/1,- "7.ym]

2. Compute a Grobner basis of J with respect to a product order
and return the Grobner basis elements with lead terms in
Klyi, s Yml-

Proof. Let F € K[y1,...,Ym] be an element of the kernel, i.e.,

Flgi,....gm) €l <= FeJCK[x1,....,Xn Y1, Ym]-

Thus ker(¢) = JN K[y1,...,¥m] and a Grobner basis is obtained
by computing a GB of J with respect to >17. O



Geometric interpretation
Suppose K[xi,...,xs]/l = K[A] is the coordinate ring of an

algebraic set A C A" and (g4,...,8,) are the components of a
morphism
¢ A— A",
Then the kernel J of ¢ : K[y1,...,¥m] = K[x1,...,xn]/l is a
radical ideal.
Indeed,
F crad(J) = FN € J for some N

= p(F") =0

— (F(g1,....gm)V €l

— F(gi1,...,8m) € | because [ is a radical ideal

= F € ker(p) = J.

B = V(J) C A™ is the Zariski closure B = ¢(A) of the image
$(A).



Description of module homomorphisms
Let ¢ : M — N be a homomorphism between two finitely

presented R = K|[x1,...,xs]-modules. Then ¢ can be lifted to a
commutative diagram between the presentations
R —2 - RN M 0
e |-
S w S
R*1 R0 N 0.
Here M is a module with ry generators my, ..., m, which are the
image of the basis ey, ..., e, and the columns of the matrix ¢
generate the kernel ker(R® — M). Thus M = coker(¢). Similarly,
N = coker(v)).
To obtain o we choose a preimage f; € R of ¢(m;) and define
wo = (f]...|fy)

to be the sy x rg-matrix with column vectors f;.



Description of module homomorphisms
Proposition. A sy X rg-matrix g induces a well-defined R-module
homomorphism ¢ : M — N if and only if g can be completed to a

commutative diagram
¢

er s Rl’o
34,01l \L‘PO
R s RS
Proof. g induces a well-defined map ¢ : M — N iff the
¢
_? . PRn

Joo

R% —— N

composition Rn

is zero. Since psi Y. R% N 0

is exact at R, this is the case iff im(pg 0 ¢) C im(v))
<= dp1 with 1 019 = g o ¢, since R is free. U



Lifting
Given two matrices A and B we want to decide whether A can be
factor over B, i.e., whether there exists a matrix C with A = BC

Rr

o
Rt L_ RS
If C exists then C is called a lifting of A along B.
Algorithm. Can A be factored over B?
Input. Matrices A € R**" and B € RS*! over R = K|[x1, ..., Xa].
Output. A boolean value, and in case of true a matrix C € Rt*"
such that A= BC.
1. Compute a Grobner basis of the column vectors ay, ..., a, of
A.
2. Divide each column vector b; of B by the Grobner basis. If

one of the remainders is non-zero return false.



Lifting
3. If all remainders are zero, express the b; as a linear
combination of the original generators ay, ..., a, of the image

im(A):
b,' = Z Cijaj.
j=1

4. Return true and C = (cj).

Using this algorithm we can decide whether a matrix ¢g induces a
well-defined homomorphism ¢ : M — N
@

R R M 0
\ l ¥o
R Y R N 0

by computing a lifting 1 of wo¢ along .



Cokern and image of an R-module homomorphism
Given a homomorphism ¢ : M — N represented by a matrix g

R %L Rro M 0
]
R Y. R N 0

we will descibe presentations of coker(y), im(y) and ker(yp). We
have presentations

R™ ® Rsl(wolm R* —— coker(¢) —=0
and

(Al¢)

Rt &y R 22 RO s im(p) —= 0

where A is part of the syzygy matrix (2) of (golv):

(5) (o)

Rt — <% R ¢ RS —— R%,



Kernel of an R-module homomorphism

The computation of the presentation of ker(y) takes more steps:

1. Compute the syzygy matrix <g> of (vol?):

(5) (pol¥)
Rt —% R0 @ R s R0,

2. Compute the syzygy matrix <g) of (Al¢):
(5) A
Rt ¢ Rt @ RN (ﬂ) R

3. Then C is the presentation matrix of ker(y):

Rt S Rto ker(p) — 0.



Proof of correctness

We have a commutative diagram

Rt —C o Rto o coker(C) ——=0

_Dl ¢ lA |

R" R M 0
CR |+

S: w S(
R R0 N 0

The map ¢ induced by A maps into the ker(y) because ppA
induces the zero map as ppA = —¢B.
L : coker(C) — ker(¢) is surjective: An element of

feR®mapsto 0 € N <= po(f) € im(v).

Such element is of the form f = Ag because B

matrix of (o). This also shows that the description of
im(p) = coker(A|¢) above is correct.

A> .
is the syzygy



Proof of correctness continued

¢ : coker(C) — ker(¢y) is injective: An element

gERYmapsto 0 e M <= Ag € im(¢).

These elements are of the form Ch for some h € R because <g>
is the syzygy matrix of (A|¢). Hence g — 0 € coker(C).

We conclude that
¢ : coker(C) — ker(y)

is an isomorphism.

O



o



