Computer Algebra and Gröbner Bases

Frank-Olaf Schreyer

Saarland University WS 2020/21

Overview

Today's topic is constructive ideal and module theory.

- 1. Intersection of ideals
- 2. Syzygies
- 3. I: J
- 4. Elimination and kernels of ring homomorphisms
- 5. Homomorphism between finitely presented modules

Intersection of ideals

Let $I, J \subset S = K[x_1, \dots, x_n]$ be ideals. We want to compute their intersection.

Algorithm.

Input. f_1, \ldots, f_r generators of the ideal I,

 g_1, \ldots, g_s generators of the ideal J.

Output. Generators of the ideal $I \cap J$.

1. Form the matrix

$$\varphi = \begin{pmatrix} 1 & f_1 & \dots & f_r & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 & g_1 & \dots & g_s \end{pmatrix}$$

2. Compute the syzgy matrix $\psi = (h_{ij})$ whose columns generate the kernel

$$\ker(\varphi:S^{r+s+1}\to S^2).$$

3. Return the entries of the first row

$$h_{11}, h_{12}, \ldots, h_{1t}$$

of the $(r + s + 1) \times t$ -matrix ψ .

Proof of correctness

The equation

$$\begin{pmatrix} 1 & f_1 & \dots & f_r & 0 & \dots & 0 \\ 1 & 0 & \dots & 0 & g_1 & \dots & g_s \end{pmatrix} \begin{pmatrix} h_{1j} \\ h_{2j} \\ \vdots \\ h_{(r+s+1),j} \end{pmatrix} = 0$$

shows that h_{1j} is both a linear combination of the f_i 's and the g_i 's. Hence $h_{1j} \in I \cap J$. Conversely, if $h \in I \cap J$, then

$$h = h_1 f_1 + \ldots + h_r f_r = h'_1 g_1 + \ldots + h'_s g_s$$

for suitable h_i and h'_i . Hence the vector

$$(h,-h_1,\ldots,-h_r,-h_1',\ldots,h_s')^t\in \ker(\varphi).$$

Since the kernel is generated by the columns of ψ we obtain that h is a linear combination of $h_{11}, h_{12}, \ldots, h_{1t}$.

Computation of syzygies

Let $S = K[x_1, ..., x_n]$ be the polynomial ring and $F = S^s$ be a free S-module.

Algorithm.

Input. Vectors $f_1, \ldots, f_r \in F$

Output. A matrix $\psi \in S^{r \times t}$ whose columns generate the kernel of the S-module homomorphism

$$\varphi: S^r \to F, e_i \mapsto f_i.$$

- 1. Choose a monomial order on F and compute a Gröbner basis $f_1, \ldots, f_r, f_{r+1}, \ldots, f_{r'}$ of (f_1, \ldots, f_r) , while keeping track of the Buchberger test syzgies $G^{(i,\alpha)}$.
- 2. Sort the $G^{(i,\alpha)}$ such that the test syzygies which produced new GB elements come first.

Computation of syzygies

3. The matrix with columns $G^{(i,\alpha)}$ has now shape

$$\psi' = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 with $C = \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$

a $(r'-r)\times(r'-r)$ upper triangular square matrix 1's on the diagonal. Return

$$\psi = B - AC^{-1}D.$$

Note that one can compute C^{-1} by applying row operations to the matrix (E|C) to obtain (C'|E). The inverse matrix $C' = C^{-1}$ has entries in S.

Proof of correctness

 ψ' is a $r' \times (r'-r+t)$ -matrix whose columns generate the kernel of the map

$$\varphi': S^{r'} \to F, e_i \mapsto f_i$$

since the $G^{(i,\alpha)}$ form a Gröbner basis of $\ker(\varphi')$. Multiplying

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \text{ with } \begin{pmatrix} E_{r'-r} & -C^{-1}D \\ 0 & E_t \end{pmatrix}$$

yields

$$\widetilde{\psi}' = \begin{pmatrix} A & B - AC^{-1}D \\ C & 0 \end{pmatrix}$$

whose columns still generate $\ker(\varphi')$. Elements of $\ker(\varphi)$ correspond to elements of $\ker(\varphi')$ of shape

$$(h_1,\ldots,h_r,0\ldots,0)^t$$
.

Such an element is a linear combination of the last t columns of $\widetilde{\psi}'$ because of the upper triangular shape of C. Thus the columns of $\psi = B - AC^{-1}D$ generate $\ker(\varphi)$.

1 : J

Algorithm.

Input. f_1, \ldots, f_r generators of the ideal I, g_1, \ldots, g_s generators of the ideal J.

Output. Generators of the ideal I:J.

1. Form the $s \times (rs + 1)$ -matrix

$$\varphi = \begin{pmatrix} g_1 & f_1 & \dots & f_r & & & & & 0 \\ g_2 & & & & f_1 & \dots & f_r & & & \\ \vdots & & & & & \ddots & & \\ g_s & 0 & & & & & f_1 & \dots & f_r \end{pmatrix}.$$

2. Compute the syzgy matrix $\psi = (h_{ij})$ whose columns generate the kernel

$$\ker(\varphi:S^{rs+1}\to S^s).$$

3. Return the entries of the first row $h_{11}, h_{12}, \ldots, h_{1t}$ of the $(rs+1) \times t$ -matrix ψ .

Elimination

Given an ideal $I \subset K[x_1, \ldots, x_n, y_1, \ldots, y_m]$ we want to compute $I \cap K[y_1, \ldots, y_m]$. This can be done by computing a GB with respect to $>_{lex}$. However this computes the whole flag of elimination ideals. Using a product order is often cheaper.

Definition. Let $>_1$ be a global monomial order on $K[x_1,\ldots,x_n]$ and $>_2$ a global monomial order on $K[y_1,\ldots,y_m]$. Then the **product order** $(>_{12})$ **on** $K[x_1,\ldots,x_n,y_1,\ldots,y_m]$ is defined by

$$x^{\alpha}y^{\beta}>_{12}x^{\alpha'}y^{\beta'}$$
 iff $x^{\alpha}>_{1}x^{\alpha'}$ or
$$x^{\alpha}=x^{\alpha'} \text{ and } y^{\beta}>_{2}y^{\beta'}.$$

This order has the key property that

$$Lt(f) \in K[y_1, \ldots, y_m] \implies f \in K[y_1, \ldots, y_m]$$

holds.

Elimination

Algorithm.

Input. f_1, \ldots, f_r generators of an ideal $I \subset K[x_1, \ldots, x_n, y_1, \ldots, y_m]$.

Output. A Gröbner basis of $I \cap K[y_1, \ldots, y_m]$.

- 1. Compute a Gröbner basis $f_1 \ldots, f_{r'}$ of (f_1, \ldots, f_r) with respect to a product order.
- 2. Return all Gröbner basis elements f_j with

$$Lt(f_j) \in K[y_1, \ldots, y_m].$$

Proof. An element $f \in K[y_1, \ldots, y_m]$ lies in I iff the remainder under division by $f_1, \ldots, f_{r'}$ is zero. This division involves only the Gröbner basis elements which we return.

Kernel of a ring homomorphism

Let $\varphi: K[y_1, \ldots, y_m] \to K[x_1, \ldots, x_n]/I$, $y_i \mapsto \overline{g}_i$ be a substitution homomorphism. We want to compute $\ker(\varphi)$.

Algorithm.

Input.
$$f_1, \ldots, f_r$$
 generators of the ideal I

 g_1, \ldots, g_m representatives of the \overline{g}_i .

Output. A Gröbner basis of $ker(\varphi)$.

- 1. Consider the ideal J generated by f_1, \ldots, f_r and $y_1 g_1, \ldots, y_m g_m$ in $K[x_1, \ldots, x_n, y_1, \ldots, y_m]$
- 2. Compute a Gröbner basis of J with respect to a product order and return the Gröbner basis elements with lead terms in $K[y_1, \ldots, y_m]$.

Proof. Let $F \in K[y_1, \dots, y_m]$ be an element of the kernel, i.e.,

$$F(g_1,\ldots,g_m)\in I\iff F\in J\subset K[x_1,\ldots,x_n,y_1,\ldots,y_m].$$

Thus $\ker(\varphi) = J \cap K[y_1, \dots, y_m]$ and a Gröbner basis is obtained by computing a GB of J with respect to $>_{12}$.

Geometric interpretation

Suppose $K[x_1,\ldots,x_n]/I=K[A]$ is the coordinate ring of an algebraic set $A\subset \mathbb{A}^n$ and $(\overline{g}_1,\ldots,\overline{g}_r)$ are the components of a morphism

$$\phi: A \to \mathbb{A}^m$$
.

Then the kernel J of $\varphi: K[y_1, \ldots, y_m] \to K[x_1, \ldots, x_n]/I$ is a radical ideal. Indeed.

$$F \in \operatorname{rad}(J) \implies F^N \in J \text{ for some N}$$

$$\implies \varphi(F^N) = 0$$

$$\implies (F(g_1, \dots, g_m))^N \in I$$

$$\implies F(g_1, \dots, g_m) \in I \text{ because } I \text{ is a radical ideal}$$

$$\implies F \in \ker(\varphi) = J.$$

 $B = V(J) \subset \mathbb{A}^m$ is the Zariski closure $B = \overline{\phi(A)}$ of the image $\phi(A)$.

Description of module homomorphisms

Let $\varphi:M\to N$ be a homomorphism between two finitely presented $R=K[x_1,\ldots,x_n]$ -modules. Then φ can be lifted to a commutative diagram between the presentations

Here M is a module with r_0 generators m_1,\ldots,m_{r_0} which are the image of the basis e_1,\ldots,e_{r_0} and the columns of the matrix ϕ generate the kernel $\ker(R^{r_0}\to M)$. Thus $M=\operatorname{coker}(\phi)$. Similarly, $N=\operatorname{coker}(\psi)$.

To obtain φ_0 we choose a preimage $f_i \in R^{s_0}$ of $\varphi(m_i)$ and define

$$\varphi_0 = (f_1 | \dots | f_{r_0})$$

to be the $s_0 \times r_0$ -matrix with column vectors f_i .

Description of module homomorphisms

Proposition. A $s_0 \times r_0$ -matrix φ_0 induces a well-defined R-module homomorphism $\varphi: M \to N$ if and only if φ_0 can be completed to a commutative diagram

Proof. φ_0 induces a well-defined map $\varphi: M \to N$ iff the composition $R^{r_1} \xrightarrow{\phi} R^{r_0}$

composition
$$R^{r_1} \xrightarrow{\varphi} R^{r_0}$$

$$\downarrow^{\varphi_0}$$
 $R^{s_0} \longrightarrow N$

is zero. Since
$$R^{s_1} \xrightarrow{\psi} R^{s_0} \longrightarrow N \longrightarrow 0$$
 is exact at R^{s_0} , this is the case iff $\operatorname{im}(\varphi_0 \circ \phi) \subset \operatorname{im}(\psi)$ $\iff \exists \varphi_1 \text{ with } \varphi_1 \circ \psi = \varphi_0 \circ \phi, \text{ since } R^{r_1} \text{ is free.}$

Lifting

Given two matrices A and B we want to decide whether A can be factor over B, i.e., whether there exists a matrix C with A = BC

If C exists then C is called a **lifting of** A **along** B.

Algorithm. Can A be factored over B?

Input. Matrices $A \in R^{s \times r}$ and $B \in R^{s \times t}$ over $R = K[x_1, \dots, x_n]$.

Output. A boolean value, and in case of **true** a matrix $C \in R^{t \times r}$ such that A = BC.

- 1. Compute a Gröbner basis of the column vectors a_1, \ldots, a_r of A.
- 2. Divide each column vector b_j of B by the Gröbner basis. If one of the remainders is non-zero return **false**.

Lifting

3. If all remainders are zero, express the b_i as a linear combination of the original generators a_1, \ldots, a_r of the image im(A):

$$b_i = \sum_{j=1}^r c_{ij} a_j.$$

4. Return **true** and $C = (c_{ij})$.

Using this algorithm we can decide whether a matrix φ_0 induces a well-defined homomorphism $\varphi:M\to N$

by computing a lifting φ_1 of $\varphi_0\phi$ along ψ .

Cokern and image of an R-module homomorphism

Given a homomorphism $\varphi:M o N$ represented by a matrix $arphi_0$

$$R^{r_1} \xrightarrow{\phi} R^{r_0} \longrightarrow M \longrightarrow 0$$

$$\downarrow^{\varphi_1} \qquad \downarrow^{\varphi_0} \qquad \downarrow^{\varphi}$$

$$R^{s_1} \xrightarrow{\psi} R^{s_0} \longrightarrow N \longrightarrow 0$$

we will describe presentations of $\operatorname{coker}(\varphi)$, $\operatorname{im}(\varphi)$ and $\operatorname{ker}(\varphi)$. We have presentations

$$R^{r_0} \oplus R^{s_1} \xrightarrow{(\varphi_0|\psi)} R^{s_0} \longrightarrow \operatorname{coker}(\varphi) \longrightarrow 0$$

and

$$R^{t_0} \oplus R^{r_1} \xrightarrow{(A|\phi)} R^{r_0} \longrightarrow \operatorname{im}(\varphi) \longrightarrow 0$$

where A is part of the syzygy matrix $\begin{pmatrix} A \\ B \end{pmatrix}$ of $(\varphi_0|\psi)$:

$$R^{t_0} \xrightarrow{\binom{A}{B}} R^{r_0} \oplus R^{s_1} \xrightarrow{(\varphi_0|\psi)} R^{s_0}.$$

Kernel of an R-module homomorphism

The computation of the presentation of $ker(\varphi)$ takes more steps:

1. Compute the syzygy matrix $\begin{pmatrix} A \\ B \end{pmatrix}$ of $(\varphi_0|\psi)$:

$$R^{t_0} \xrightarrow{\binom{A}{B}} R^{r_0} \oplus R^{s_1} \xrightarrow{(\varphi_0|\psi)} R^{s_0}.$$

2. Compute the syzygy matrix $\begin{pmatrix} C \\ D \end{pmatrix}$ of $(A|\phi)$:

$$R^{t_1} \xrightarrow{\binom{C}{D}} R^{t_0} \oplus R^{r_1} \xrightarrow{(A|\phi)} R^{r_0}.$$

3. Then *C* is the presentation matrix of $ker(\varphi)$:

$$R^{t_1} \xrightarrow{C} R^{t_0} \longrightarrow \ker(\varphi) \longrightarrow 0.$$

Proof of correctness

We have a commutative diagram

$$R^{t_{1}} \xrightarrow{C} R^{t_{0}} \longrightarrow \operatorname{coker}(C) \longrightarrow 0$$

$$-D \downarrow \qquad \qquad \downarrow A \qquad \qquad \downarrow \iota$$

$$R^{r_{1}} \xrightarrow{\phi} R^{r_{0}} \longrightarrow M \longrightarrow 0$$

$$\downarrow \varphi_{1} \qquad \qquad \downarrow \varphi_{0} \qquad \qquad \downarrow \varphi$$

$$R^{s_{1}} \xrightarrow{\psi} R^{s_{0}} \longrightarrow N \longrightarrow 0$$

The map ι induced by A maps into the $\ker(\varphi)$ because φ_0A induces the zero map as $\varphi_0A = -\psi B$.

 $\iota: \mathsf{coker}(\mathcal{C}) o \mathsf{ker}(\varphi)$ is surjective: An element of

$$f \in R^{r_0}$$
 maps to $0 \in N \iff \varphi_0(f) \in \operatorname{im}(\psi)$.

Such element is of the form f=Ag because $\binom{A}{B}$ is the syzygy matrix of $(\varphi_0|\psi)$. This also shows that the description of $\operatorname{im}(\varphi)\cong\operatorname{coker}(A|\phi)$ above is correct.

Proof of correctness continued

 $\iota : \mathsf{coker}(\mathit{C}) \to \mathsf{ker}(\varphi)$ is injective: An element

$$g \in R^{t_0}$$
 maps to $0 \in M \iff Ag \in \operatorname{im}(\phi)$.

These elements are of the form Ch for some $h \in R^{t_1}$ because $\begin{pmatrix} C \\ D \end{pmatrix}$ is the syzygy matrix of $(A|\phi)$. Hence $g \mapsto 0 \in \operatorname{coker}(C)$.

We conclude that

$$\iota : \mathsf{coker}(C) \to \mathsf{ker}(\varphi)$$

is an isomorphism.

