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Overview

Today's topic is Hilbert's syzygy theorem and the Hilbert
polynomial

1. The syzygy theorem
2. Maps between graded modules

3. The Hilbert polynomial



Hilbert's syzygy theorem
Theorem. Let M be a finitely generated S = k[xi, ..., Xs]
module. Then M has a finite free resolution

P1

0 M Fo F

of length ¢ < n.

Here the F; = S” are free S-modules and the maps ¢; : F; — Fi_1
satisfy
ker(v;) = im(pjt1)

and the map ¢ gives a free presentation of M = coker(p1):

0 M Fo Fi.




Proof of the syzygy theorem
We give an algorithm which computes from a presentation

/

$1

0 M Fo F1

of M a finite free resolution. Choose a global monomial order on Fy
and compute a Grobner basis fi, ..., fp, of im(¢]). In first step we
replace ¢} by 1 = (fi|f2] ... |fp,). The Buchberger test syzygies
G(h) form a Grobner basis of ker(yp1) with respect to the induced
order and we take » as the matrix which has these test syzygies
as columns. Computing the Buchberger test syzygies of the G(:®)
yields the 3 and continuing in this way produces a free resolution.
We still have a lot of choice in this process. We will show that
under a suitable ordering of the Grobner basis elements the process
will stop after ¢ < n steps with a matrix ¢, which has a trivial
kernel.



Proof of the syzygy theorem continued
Choose ¢ minimal such that

Lt(f),...,Lt(fy) € k[x1,...,x]? C k[x1,...,xd]>.
In the worst case £ = n. Now sort fi,..., fp, such that for every p
xp | Lt(f;) = x7|Lt(f;) for j < i
holds. Then
Lt(GU) € k[xq, ..., x—1]" C K[x1, ..., x,]*

because the power of x; in Lt(f;) is at least as large as the power
of x; in any Lt(f;) with j < i. Sorting the G(®) and the higher
test syzygies similarly we obtain for the columns H; = HU:) of .

Lt(HU) C k[xa]P C kx1, ..., xq] !

after ¢ < £ < n steps and there are no more tests to do: Each lead
term has a different component part since the column ideal
M; = (x{"*) C k[x1] is a principal ideal. O



Example
We consider the ideal J C S = k[w, x, y, z] generated by the
entries of the first column in the following table

w? — xz —X 3% 0 -z 0 —y? + wz
WX — yZ w —X | —y 0 z z°
X% — wy -z w 0 -y 0 0
xy — z2 0 0 w X —y —yz
y? — wz 0 0 -z | —w X w?
0 y —X w -z 1
2 2 _ w2
y t+wz | z wy | yz w X

The original generators turn out to be a Grobner basis and the
algorithm produces a free resolution of shape

0 S/J S 552 g6 % g2 0

with matrices 21 Sof as above.
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Free resolution over noetherian rings

Let R be a noetherian ring and M a finitely generated R-module.
Then M has a free resolution

0+ M« Rbo Rt Rbi |

where bg is the number of generators and b; the number of
generators of the kernel of R? — M and so on. What is so
remarkable about k[xi,...,x,] is that the free resolution ends after
finitely many steps. In general this is not true.

Example. Consider R = k[x, y]/(xy) and the R-module
M = R/(X). The kernel of the presentation matrix

0 M R<"—R

is generated by y. The kernel of the matrix (y) is generated by X
and the free resolution becomes periodic

0 M R<* R<Y R<* R<Z



Graded modules

Definition. Let R = @, Ry be a graded ring. A graded
R-module is an R-module with a decomposition

M = @Md
deZ

as abelian group satisfying
Re : Md C Me+d

for the multiplication. A homomorphism ¢ : M — N of graded
R-modules is an R-module homomorphism which respects the
degree:

¢©(Mqg) C Ng.



Degree shift
With this notation, the R-module homomorphism
R—+R
given by multiplication with a homogeneous element f € R, of
degree d # 0 is not an homomorphism of graded R-modules. To
remedy this situation we define M(d) as the graded R-module with

M(d)e = Mg4e. The multiplication with an homogeneous element
f € Ry induces graded R-module homomorphisms

M —'> M(d) and M(—d) LM

Example. Let S = k[xo, ..., xn] be the standard graded
polynomial ring in n+ 1 variables. Then S(—j) is the free graded
S-module with generator in degree j:

1€ 5(=))j = S-j+j = So-



Hilbert's syzygy theorem in the graded case
Theorem. Let S = k[xp,...,xs] be the standard graded
polynomial ring in n+ 1 variables and let M be a finitely generated
graded S-module. The M has a finite free resolution

Pc—1

0 M Fo <2 F <22 Fo1<<—F, 0

of length ¢ < n+ 1 where
Fi=@PS(—j)"
J

is a free graded S-module with (3;; generators in degree j.

Proof. The same procedure as before, we just keep track of the
degrees in addition. O
The fj; are called graded Betti numbers of the the resolution F,



Example
The ideal J C S = k[w, x, y, z] from above is generated by
homogeneous forms of degree 2

w? — xz —X 3% 0 -z 0 —y? + wz
WX — yZ w —X | —y 0 z z°
X% — wy -z w 0 -y 0 0
xy — z2 0 0 w X —y —yz
y2 —wz 0 0 -z | —w X w?
0 y —X w -z 1
2 2 _ w2
y t+wz | z wy | yz w X

and the resolution is graded:

0 S/J+ S S(—2)° < S(—3)°®S(—4) + S(—4)dS(-5) + 0.



The Hilbert function

Let S = k[xo, ..., xn] be the standard graded polynomial ring in
n+ 1 variables and let M be a finitely generated graded S-module.
Then each My is a finite-dimensional k-vector space.

Definition. The function
h/\//Z 7 — Z, d— h/w(d) = dimk Md
is called the Hilbert function of M.

Example.
d+n
hs(d) = .
Proof.
X=X X



Polynomial nature of the Hilbert function

Theorem. Let S = k[x,...,xs] be the standard graded
polynomial ring in n+ 1 variables and let M be a finitely generated
graded S-module. Then there exists a polynomial pp(t) € Q[t]
and an dy € Z such that

huv(d) = pm(d) for all d > dy.

pm(t) is called the Hilbert polynomial of M.

Example.

ps(t) = ’ N

(t+n)(t+n—1)-...-(t+1) _ (t+n>

for t > —n.



Proof
Let
P1

©2 Pc—1 e

0 M Fo F Fe_1 Fc

be a finite free resolution of M with F; = @©;S(—j)%. Then for
each d € Z the sequence
0 My <+ (Fo)g < (F1)g < ...« (Fc)a+ 0

is an exact complex of finite-dimensional k-vectorspaces. Thus

Cc

dim My = > "(~1) dim(F;)q
i=0

=" )



Proof continued
Interpreting the binomial coefficients as polynomials

(t—j+n>:(t—j+n)-...~(t—j+1)EQ[t]
n n!
the formula
- i t—j+n
(=3 (-1 L a(* L") < ol
i=0 K

defines the Hilbert polynomial, and hy(d) = pm(d) holds for all
d > dy with

do = min{j ’ 37 with BU 75 0}
[
Corollary. S/J and S/ Lt(J) have the same Hilbert function and
Hilbert polynomial.
Proof. The graded Betti numbers of our resolution of S/J depend
only on Lt(J). O



Example: Hypersurfaces
Let X = V/(f) be a hypersurface defined by a (square free)
homogeneous polynomial of degree d. Then

0<~—S/(f)=—S<~"5(-d)=—0

is a free resolution and

()27

2 2
th o+ n 2+n t"_l th (n 2+n o dn)t”_l

n—2
o n! n! * O(t )
tnfl
= dm + lower terms.
n—1)!

In particular
deg PS/(f) =n—1=dmX

and the leading coefficient has the form (n%"l)!.



Degree of projective varieties

Theorem. Let J C S = k[xp,...,xn] be a homogeneous ideal, and
let X = V(J) C P" be the algebraic set defined by J. The Hilbert
polynomial of S/J has degree r = dim X and leading term

tr

"
for some positive integer d. We call d the degree of J.

Definition. For a projective algebraic set X C IP” the degree is
defined by
deg X = degl(X)

where I1(X) C K[xo, ..., xn| denotes its homogeneous ideal.



Proof

Let C(J) C A" be the cone defined by J. Since the Hilbert
function of S/J depends only on Lt(J) we may assume that kK = K
is algebraically closed, in particular we may assume that k is an
infinite field. Then there exists a triangular linear change of
coordinates such that in these new coordinates J satisfies the
assumption of the tower of projection theorem: There exist an r
such that projection A" — A" onto the last r + 1 coordinates
induces a finite surjection

C(J) = A
and the elimination ideals Jx = K[xk, ..., x,] N J contain an
xk-monic polynomial for k =0,...,n—r — 1. Thus S/J is a finite

T = k[xn—r, ..., Xn]-module.



Proof continued 1
Thus as an graded T-module S/J has a finite free resolution

0 S/J Go<2 G <2 LG < Ga~——0
of length ¢’ < r + 1 where
G =P T(—j)%
J

is a free graded T-module with ﬁfj generators in degree j and

ps/s(t) => (-1 Zﬁu (t —i r)
i=0

r

is an alternating sum of ponnomlals of degree r. Thus
r

t
ps/s(t) = d— + lower terms
r!
with d € Z.



Proof continued 2

To see that d > 0 holds, we notice that T-1C S/Jis a
T-submodule. Thus

hsyate) = hr(0) = (1)

growths at least as fast as a polynomial of degree r for t — oc.

It remains to identify r with the dimension of X. For this consider
the charts U; = {x; #0} = A" for i =n—r,...,n and the
corresponding substitution homomorphism

©j - S— k[Xo,...,X,',l,X,'Jrl,. . .,Xn], xj — 1.

©i(J) satisfies the assumption of the tower of projections theorem.
Thus X N U; — A" is a finite surjection and all the affine algebraic
sets X N U; have dimension r.



Proof continued 3

Since rad(J + (Xp—ry- -+, %n)) = (X0, - - -, Xn) due to the monic
polynomials in the elimination ideals we see that

V(NN V(xp—r,-.., %) =0 equivalently X C U,_, U...U U,
Thus dim X = r if we define
dim X = max{dimXNU;|j=0,...,n}.
Ol
Corollary. Let J C K|xp,...,xn| be a proper homogeneous ideal.

Then dimension of the projective algebraic set V(J) C P" and the
affine cone C(J) C A"t differ by one:

dim C(J) = dim V(J) + 1.

Here we use the convention that dim() = —1.



