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Overview

Today we will start to solve the membership problem.

1. Monomials and monomial orders

2. Finite generation of monomial ideals

3. Division with remainder

4. Gröbner basis and Hilbert’s basis theorem



Monomials
Definition. A monomial in K [x1, . . . , xn] is an element of the
form

xα = xα1
1 · . . . · x

αn
n

where α = (α1, . . . , αn) ∈ Nn = Zn
≥0 is a multi-exponent. Thus

xαxβ = xα+β.

A term in K [x1, . . . , xn] is an element of the form

axα

with a ∈ K . Every element f ∈ K [x1, . . . , xn] is a finite sum of
terms

f =
∑

fαx
α

where all but finitely many coefficients fα are zero.



A motivating example

Consider the ideal

I = (x2 + xy , y2 + xy) ⊂ K [x , y ]

in a polynomial ring in two variables. Using division with remainder
we can use x2 + xy to remove from an f ∈ K [x , y ] any multiple of
x2:

f = q(x2 + xy) + r with r ∈ K [x ] + yK [x ].

Likewise, we can use y2 + xy to remove multiples of y2. Can we
use both to remove multiples of x2 or y2 simultaneously?



A motivating example 2
Consider the ideal

I = (x2 + xy , y2 + xy) ⊂ K [x , y ]

Can we use both generators to remove multiples of x2 or y2

simultaneously?
Answer: No!
If yes, then 1, x , y , xy would generate K [x , y ]/I as a K -vektor
space. But this is an infinite dimensional K -vector space:

K [x , y ]/I � K [x , y ]/(x + y) ∼= K [y ].

What went wrong?
We did not choose the leading terms x2 and y2 in a compatible
way!



Monomial orders

Definition. A monomial order > on K [x1, . . . , xn] > is a
complete order of the monomials in K [x1, . . . , xn] satisfying

xα > xβ =⇒ xαxγ > xβxγ

for any triple of monomials. For f =
∑

fαx
α we define the lead

term with respect to > as

Lt(f ) = fαx
α where xα = max{xβ | fβ 6= 0} and Lt(0) = 0.

Example. Lt(x2 + xy) = x2 =⇒ x2 > xy =⇒ x > y =⇒ xy >
y2 =⇒ Lt(y2 + xy) = xy . So our choice above was not
compatible with a monomial order.
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Computation rules
Abusing notation we write for non-zero terms

axα ≥ bxβ if xα ≥ xβ (:⇔ xα > xβ or xα = xβ.)

Note that ≥ is not an order on the set of non-zero terms since

axα ≥ bxβ and bxβ ≥ axα =⇒ xα = xβ

but a 6= b is possible.

Proposition. Let > be a monomial order. Then

1. Lt(fg) = Lt(f ) Lt(g),

2. Lt(f + g) ≤ max(Lt(f ), Lt(g))
and equality holds unless Lt(f ) + Lt(g) = 0.



Global monomial orders
Definition. A global monomial order on K [x1, . . . , xn] is a
monomial order satisfying

xj > 1 for j = 1, . . . n.

In contrast, a local monomial order on K [x1, . . . , xn] is a monomial
order satisfying

xj < 1 for j = 1, . . . n.

The key property of global monomial orders is that there are no
infinite descending sequences m1 > m2 > . . . of monomials.

In contrast, for a local monomial order

1 > x1 > x21 > . . . > xk1 > . . .

is an infinite descending sequence.
Local orders are useful for computations in powerserie rings
K [[x1, . . . , xn]]. We will consider those only later in the course.



Examples of global monomial orders

1) The lexicographic monomial order is defined by

xα >lex xβ

if the first non-zero entry of α− β ∈ Zn is positive. Thus

x1x3 >lex x1 >lex xk2 >lex x22 .

2) The reversed lexicographic order is defined as follows:

xα >rlex xβ

if deg xα > deg xβ or deg xα = deg xβ and the last non-zero
entry of α− β ∈ Zn is negative. Thus

x33 >rlex x21 >rlex x22 >rlex x1x3.



Degree of a polynomial
Definition. For a monomial xα the degree is defined by

deg xα =
n∑

j=1

αj = |α|.

For a non-zero polynomial f =
∑

fαx
α the degee is

deg f = max{deg xα | fα 6= 0}

3) Weight orders. Let w = (w1, . . . ,wn) ∈ Rn
>0 be a weight

vector and w(α) =
∑n

j=1 wjαj . We define

xα >w xβ if w(α) > w(β) or w(α) = w(β) and xα >tb xβ

where >tb denotes a tiebreak order, for example >lex. If the
weights wj are Q-linearly independent, then >tb is superfluous.
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Monomial ideals and Dixon’s Lemma

Definition. Let J be an arbitrary set of polynomials. The ideal
generated by J is

I = (J) = {f | ∃r ∈ N, f1, . . . , jr ∈ J and g1, . . . , gr ∈ K [x1, . . . , xn]

such that f = g1f1 + . . .+ gr fr }

Definition. A monomial ideal I ⊂ K [x1, . . . , xn] is an ideal
satisfying

f =
∑

fαx
α ∈ I =⇒ xα ∈ I ∀α with fα 6= 0

In other words I is generated by monomials.

Lemma[Hilbert’s basis theorem for monomial ideals]. Every
monomial ideal I is finitely generated,
i.e. there exists a finite set J of monomials such that I = (J).



Proof of Dixon’s Lemma.

Induction on n. Let I ⊂ K [x1, . . . , xn] be a
non-zero monomial ideal, xα ∈ I and α =
(α1, . . . , αn).
For j = 1, . . . , n and γ = 0, . . . , αj − 1 con-
sider the monomial ideal Ij ,γ generated

{xβ ⊂ K [x1, . . . , xj−1, xj+1, . . . , xn]|xγj x
β ∈ I}

in a polynomial ring with n − 1 variables.
By induction hypothesis all Ij ,γ is finitely generated, say by a set of
monomials Jj ,γ . Then

J = {xα} ∪
⋃
j ,γ

{xγj x
β | xβ ∈ Jj ,γ}

is a finite set of generators of I .



The descending chain condition

Proposition. Let > be a global monomial order and
m1 ≥ m2 ≥ . . . ≥ mk ≥ . . . a descending chain of monomials.
Then there exists N ∈ N such that

mk = mk+1 ∀k ≥ N.

Proof. A global monomial order > refines divisibility in
K [x1, . . . , xn]:

xα|xβ ⇐⇒ β − α ∈ Zn
≥0 =⇒ xβ−α > 1 =⇒ xβ > xα.

Consider the ideal I = ({mk | k ∈ N}). By Dixon’s Lemma, I is
generated by a finite set J of monomials. Set
N = max{` | m` ∈ J}. For k ≥ N every monomial mk+1 is
divisible by a generator m` ∈ J. Thus we have
mk+1 ≥ m` ≥ mN ≥ mk+1 and equality holds: mk+1 = mN .
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Division with remainder
Theorem. Let > be a global monomial order on K [x1, . . . , xn],
f1, . . . , fr ∈ K [x1, . . . , xn] non-zero polynomials. For every
f ∈ K [x1, . . . , xn] there exist uniquely determined
g1, . . . , gr ∈ K [x1, . . . , xn] and a unique remainder
h ∈ K [x1, . . . , xn] satisfying

1) f = g1f1 + . . .+ gr fr + h

2a) No term of gj Lt(fj) is divisible by a lead term Lt(fi ) for some
i < j .

2b) No term of h is divisible by a lead term Lt(fj).



Proof of the Division with Theorem
Uniqueness: Taking difference it suffices that

0 = g1f1 + . . .+ gr fr + h⇒ g1 = 0, . . . gr = 0, h = 0.

Since the non-zero lead terms Lt(gj fj) = Lt(gj) Lt(fj) and Lt(h)
belong to different monomials by condition 2), they cannot cancel
in the sum. So all are zero, hence all gj and h are zero.
Existence: The theorem is trivially true for monomial ideals. Thus
we can write

f = g
(0)
1 Lt(f1) + . . .+ g

(0)
r Lt(fr ) + h(0)

satisfying 2a) and 2b). Consider

f (1) = f − (g
(0)
1 f1 + . . .+ g

(0)
r fr + h(0)).

In the difference on the right hand side, the lead term cancels.
Hence either f (1) = 0 and we are done, or

Lt(f (1)) < Lt(f ).



Proof of the Division with Theorem 2
Continuing with f (1) we obtain a sequences of polynomials

f (k+1) = f (k) − (g
(k)
1 f1 + . . .+ g

(k)
r fr + h(k))

where
f (k) = g

(k)
1 Lt(f1) + . . .+ g

(k)
r Lt(fr ) + h(k)

whose lead terms form a descending sequence

Lt(f ) > Lt(f (1)) > Lt(f (2)) > . . . .

So after a finite number of steps we arrive at f (N+1) = 0, and

the gj =
N∑

k=0

g
(k)
j and h =

N∑
k=0

h(k)

are the desired coefficients and remainder.



Gröbner basis and Hilbert’s basis theorem
Definition. Let > be a global monomial order and
I ⊂ K [x1, . . . , xn] an ideal. The lead term ideal of I is the ideal
generated by the lead terms of elements of I :

Lt(I ) = ({Lt(f ) | f ∈ I}).
Elements f1, . . . , fr ∈ I are a Gröbner basis of I (with respect to
> ) if

Lt(I ) = (Lt(f1), . . . , Lt(fr )).

Theorm (Hilbert, 1899). Every ideal in K [x1, . . . , xn] is finitely
generated.



Gordon’s proof of Hilbert’s basis theorem
Let I ⊂ K [x1, . . . , xn] be an ideal. Consider the lead term ideal
Lt(I ). This is a monomial ideal, hence it is finitely generated by
Dixon’s Lemma.

Let f1, . . . , fr ∈ I be elements whose lead terms generate Lt(I ). We
claim

I = (f1, . . . , fr ).

(f1, . . . , fr ) ⊂ I is clear since f1, . . . , fr ∈ I . For the other inclusion,

let f ∈ I be an arbitrary element. Consider the remainder h of f
divided by f1, . . . , fr ,

h = f − (g1f1 + . . .+ gr fr ).

Then on one hand we have h ∈ I and on the other hand no
non-zero term of h lies in Lt(I ) = (Lt(f1), . . . , Lt(fr )) by condition
2b). Thus Lt(h) = 0. Hence h = 0 and f ∈ (f1, . . . , fr ).
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