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Overview

Today we will start to solve the membership problem.

1. Monomials and monomial orders

2. Finite generation of monomial ideals
3. Division with remainder
4

. Grobner basis and Hilbert's basis theorem



Monomials

Definition. A monomial in K[xy,...,xp] is an element of the
form
X = xo1 . . xQn
=Xt X,
where v = (a1, ..., ) € N = ZZ, is a multi-exponent. Thus

xOxP = xotB,

A term in K[xi,..., x| is an element of the form

ax®
with a € K. Every element f € K[x1, ..., xp] is a finite sum of
terms

f=) fux°

where all but finitely many coefficients f, are zero.



A motivating example

Consider the ideal
| = (x2 +xy,y2+xy) C K[x,y]

in a polynomial ring in two variables. Using division with remainder

we can use x° + xy to remove from an f € K|[x, y] any multiple of
2.

X<

f = q(x* + xy) + r with r € K[x] + yK|[x].

Likewise, we can use y? + xy to remove multiples of y2. Can we
use both to remove multiples of x% or y? simultaneously?



A motivating example 2
Consider the ideal
I = (4 xy,y* +xy) C K[x,y]
Can we use both generators to remove multiples of x? or y?
simultaneously?
Answer: No!

If yes, then 1,x,y,Xy would generate K[x, y]/I as a K-vektor
space. But this is an infinite dimensional K-vector space:

Kix,yl/1 — K[x, yl/(x +y) = K[y].

What went wrong?
We did not choose the leading terms x? and y? in a compatible
way!



Monomial orders

Definition. A monomial order > on K[xi,...,x,] > is a
complete order of the monomials in K[xi, ..., x,| satisfying

x* > xP — x> xPx?

for any triple of monomials. For f =" f,x“ we define the lead
term with respect to > as

Lt(f) = £,x“ where x® = max{x” | f3 # 0} and Lt(0) = 0.
Example. Lt(x?> + xy) =x*> = x> >xy = x>y = xy >
y? = Lt(y? + xy) = xy. So our choice above was not
compatible with a monomial order.
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Computation rules

Abusing notation we write for non-zero terms
ax® > bxP if x> x% (1 x> xP or x* = X))
Note that > is not an order on the set of non-zero terms since
ax® > bx? and bx® > ax® = x* = x°

but a # b is possible.

Proposition. Let > be a monomial order. Then
1. Lt(fg) = Lt(f) Lt(g),
2. Lt(f + g) < max(Lt(f), Lt(g))
and equality holds unless Lt(f) + Lt(g) = 0.



Global monomial orders

Definition. A global monomial order on K[xi,...,x,] is a
monomial order satisfying

xj>1forj=1,...n
In contrast, a local monomial order on K[xi, ..., x| is a monomial

order satisfying
xi<lforj=1,...n.

The key property of global monomial orders is that there are no
infinite descending sequences my > my > ... of monomials.

In contrast, for a local monomial order
1>x>x>...>xf > ...

is an infinite descending sequence.
Local orders are useful for computations in powerserie rings
K([x1,---,xn]]. We will consider those only later in the course.



Examples of global monomial orders
1) The lexicographic monomial order is defined by
X >jex X
if the first non-zero entry of o — 5 € Z" is positive. Thus
X1X3 Zlex X1 >lex sz >lex ng.
2) The reversed lexicographic order is defined as follows:
XY > 1ex X7

if deg x® > deg x? or deg x* = deg x® and the last non-zero
entry of « — 3 € Z" is negative. Thus

3 2 2
X3 >rlex X1 >rlex X5 >rlex X1X3-



Degree of a polynomial

Definition. For a monomial x® the degree is defined by

deg x* Z aj = |af.
For a non-zero polynomial f = E fux® the degee is
deg f = max{deg x“ | f,, # 0}

3) Weight orders. Let w = (wy,...,w,) € RZ; be a weight
vector and w(a) = > 71 wjaj. We define

x* >, X7 if w(a) > w(B) or w(a) = w(B) and x* >, x°

where >}, denotes a tiebreak order, for example >.,. If the
weights w; are Q-linearly independent, then >y, is superfluous.
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Monomial ideals and Dixon's Lemma

Definition. Let J be an arbitrary set of polynomials. The ideal
generated by J is

I=)={f|3reN,f,...,j,eJand g1,...,8 € K[x1,...,Xn]
such that f = g1A + ...+ gf }

Definition. A monomial ideal | C K|[x1,...,Xs] is an ideal
satisfying

f=> fox® €l = x* € lVa with f, #0

In other words I is generated by monomials.

Lemmal[Hilbert's basis theorem for monomial ideals]. Every
monomial ideal lis finitely generated,
i.e. there exists a finite set J of monomials such that | = (J).



Proof of Dixon's Lemma.

Induction on n. Let | C K[xi,...,xpn] be a
non-zero monomial ideal, x* € [ and a« =
(al, e ,a,,).

Forj=1,...,nand v=0,...,0a; — 1 con-
sider the monomial ideal /; , generated

{x# c K[xl,...,xj,l,xjﬂ,...,xn]]xﬁxﬂ el}

in a polynomial ring with n — 1 variables.
By induction hypothesis all /; , is finitely generated, say by a set of

monomials J; ,. Then

J= e ul " | € g}

1

is a finite set of generators of /. O



The descending chain condition

Proposition. Let > be a global monomial order and
my>my>...> mg > ...adescending chain of monomials.
Then there exists N € N such that

myg = My41 Vk > N.

Proof. A global monomial order > refines divisibility in
Klx,...,xn]:

x¥xP = B-aeclZly = X751 = x>~

Consider the ideal | = ({my | k € N}). By Dixon's Lemma, [ is
generated by a finite set J of monomials. Set

N = max{¢ | my € J}. For k > N every monomial my is
divisible by a generator my € J. Thus we have

Mi41 > My > my > Miy1 and equality holds: myg41 = my. ]
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Division with remainder
Theorem. Let > be a global monomial order on K[xi, ..., xn],
fi,....f € K[x1,...,xn] non-zero polynomials. For every
f € K[xi,...,xn] there exist uniquely determined
g1,---,8 € K[x1,...,xn] and a unique remainder
h € K[xa,...,xn] satisfying
1) f=gth+...+gfr+h
2a) No term of gj Lt(f;) is divisible by a lead term Lt(f;) for some
i<j.
2b) No term of h is divisible by a lead term Lt(f;).



Proof of the Division with Theorem
Uniqueness: Taking difference it suffices that

O=gh+...+gf,+h=g=0,...8,=0,h=0.

Since the non-zero lead terms Lt(gjf;) = Lt(gj) Lt(f;) and Lt(h)
belong to different monomials by condition 2), they cannot cancel
in the sum. So all are zero, hence all gj and h are zero.

Existence: The theorem is trivially true for monomial ideals. Thus
we can write

f=gDLe(A)+...+ &9 Lt(f) + h®
satisfying 2a) and 2b). Consider
FO = f— (g% +...+ 9% + h?).

In the difference on the right hand side, the lead term cancels.
Hence either f(1) = 0 and we are done, or

Lt(F(M)) < Lt(f).



Proof of the Division with Theorem 2
Continuing with (1) we obtain a sequences of polynomials

Flk+1) — gk _ (gl(k)fl R s A )
where
FO = g® Le(R) + ... + g™ Le(F) + hV
whose lead terms form a descending sequence
Lt(f) > Le(FD) > Le(FP) > ...

So after a finite number of steps we arrive at f(N+1) =0, and

N N
the gj = Zgj(k) and h = Z h(k)
k=0 k=0

are the desired coefficients and remainder.



Grobner basis and Hilbert's basis theorem

Definition. Let > be a global monomial order and
I C K[x1,...,xn] an ideal. The lead term ideal of / is the ideal
generated by the lead terms of elements of /:

Lt(/) = ({Lt(F) | f € 1}).
Elements fi,...,f, € | are a Grobner basis of / (with respect to
> ) if

Lt(/) = (Lt(f),. ... Lt(f)).

Theorm (Hilbert, 1899). Every ideal in K[xi,...,xn| is finitely
generated.



Gordon’s proof of Hilbert's basis theorem
Let I C K[xi,...,xs] be an ideal. Consider the lead term ideal
Lt(/). This is a monomial ideal, hence it is finitely generated by
Dixon's Lemma.

Let fi,...,f, € | be elements whose lead terms generate Lt(/). We
claim

I =(f,...,f).
(f,...,f) C lis clear since fi,...,f, € |. For the other inclusion,

let f € I be an arbitrary element. Consider the remainder h of f
divided by fi,..., f,

h= f—(g1f1+...+g,f,).
Then on one hand we have h € | and on the other hand no

non-zero term of h lies in Lt(/) = (Lt(f),...,Lt(f)) by condition
2b). Thus Lt(h) =0. Hence h=0and f € (f,...,f). O
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