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Frank-Olaf Schreyer

Saarland University WS 2020/21



Overview

1. Discrete valuation rings

2. Dynamical intersection numbers

3. A bounds on the number of singular points of plane curves

4. Rational curves

5. The geometric genus



Discrete valuation
Definition. Let L be a field. A discrete valuation on L is a
surjective map

v : L \ {0} → Z
such that for all a, b ∈ L \ {0}

1. v(ab) = v(a) + v(b),
2. v(a+ b) ≥ min{v(a), v(b)}.

Note that the first condition says that (L \ {0}, ·)→ (Z,+) is a
group homomorphism. In particular v(1) = 0. By convention
v(0) =∞. The set

R = {a ∈ L | v(a) ≥ 0}
is a subring of L, which is called the valuation ring of v. The
subset of non-units in R

m = {a ∈ L | v(a) > 0}
is an ideal. Hence (R,m) is a local ring.



Discrete valuation rings
Definition. A discrete valuation ring (DVR) R is an integral
domain such that R is the valuation ring of a valuation v on its
quotient field L = Q(R).

Example. The formal power series ring R = K[[t]] in one variable
over a field K is a DVR. Indeed, the quotient field of R is

L = K((t)) = {
∞∑
n=N

ant
n | N ∈ Z}

the ring of formal Laurent series, and

v(
∑

ant
n) = min{n | an 6= 0}

for a non-zero Laurent series defines a valuation on L with
valuation ring K[[t]]. Following the notion for power series in one
complex variable, we say that f ∈ K[[t]] has a zero of order n if
v(f) = n and f ∈ K((t)) with n = v(f) < 0 is said to have pole
of order −n.



Characterization of DVR’s

Proposition. Let R be a ring. TFAE:

1) R is a DVR.

2) R is a noetherian regular local ring of Krull dimension 1.

Proof. 1)⇒ 2): Suppose R is a DVR. Let t ∈ R be an element
with v(t) = 1. Then any element f ∈ R with v(f) = n is of the
form f = utn with u a unit in R. In particular, t is a generator of
m and the only proper ideals I 6= 0 are of the form I = (tn) = mn

with n = min{v(f) | f ∈ I}. Hence (0) ( m is the only chain of
prime ideals in R and R is PID. So R is noetherian and a regular
local ring of Krull dimension 1, because m is generated by a single
element, i.e., m/m2 is 1-dimensional by Nakayama’s Lemma.



2⇒ 1
Conversely, let R be a noetherian regular local ring of Krull
dimension 1. By Nakayama’s Lemma the maximal ideal m is a
principal ideal, say m = (t). Hence the powers mk = (tk) are
principal ideals as well. Let f ∈ R be a non-zero element. Since⋂∞
k=1m

k = (0) by Krull’s intersection theorem

n = max{k | f ∈ mk}
is the maximum of finitely many integers and f = utn for a unit
u ∈ R. We set v(f) = n. Then v(f1f2) = v(f1) + v(f2). In
particular R is a domain. We extend v to a map

v : Q(R) \ {0} → Z by v(
f1
f2

) = v(f1)− v(f2).

Then v is discrete valuation on Q(R) and R is its valuation
ring.



Smooth points of curves
Corollary. Let p ∈ C be a smooth point of an irreducible curve.
Then OC,p is a DVR.

Remark. We denote the valuation of K(C) corresponding to OC,p
with vp. In case of a smooth projective curve C one can show that

p 7→ vp

induces a bijection between the points of C and the valuations of
the function field v : K(C) \ {0} → Z with v(a) = 0 for all
a ∈ K \ {0}.
Proposition. Let C be a smooth quasi projective curve and
ϕ′ : C 99K Pn a rational map. Then ϕ′ extends to a morphism

ϕ : C → Pn.



Proof
Suppose that ϕ′ is given by a tuple f0, . . . , fn of rational functions.
There are two reasons why [f0(p) : . . . : fn(p)] might be not
defined in p ∈ C. One of the rational functions might have a pole
at p or all rational functions might vanish at p.
Taking k = min{vp(fj) | j = 0, . . . , n} and t ∈ mC,p ⊂ OC,p a
generator we see that [t−kf0 : . . . : t

−kfn] is defined at p ∈ C and
coincides ϕ′ where t has no zeroes or poles.

Remark. The proposition is not true for a higher dimension
source: The morphism

A2 \ {o} → P1, p 7→ [x(p) : y(p)]

has no extension to A2. Instead the closure of the graph is the
blow-up of o ∈ A2.



Projectivity of the Hilbert schemes
Remark. The proposition above explains why the fact that the
Hilbert scheme Hilbp(t)(Pn) is projective is so nice. Let o ∈ C be a
smooth point on a quasi-projective curve. Then every family
X ′ ⊂ C \ {o} × Pn of subschemes X ′q with Hilbert polynomial p(t)
can be extended to a family

X ⊂ C × Pn

where the fibers Xo has Hilbert polynomial p(t) as well. Indeed the
family X ′ corresponds to a rational map C 99K Hilbp(t)(Pn) ⊂ PN
which extends to a morphism. Loosely speaking

lim
q→o

Xq = Xo ∈ Hilbp(t)(Pn)

exists along curves.



Degree of a morphism f : C → P1

Let C ⊂ Pn be a smooth projective curve f ∈ K(C) a
non-constant rational function. By the proposition above the
rational map

C 99K P1, p 7→ [1 : f(p)]

extends to a morphism f : C → P1, which we denote by the same
letter.
Definition. The degree of f is

deg f =
∑

p∈C:vp(f)>0

vp(f)

the number of preimage points of [1 : 0] counted with
multiplicities.

Proposition. Counted with multiplicities each fiber f−1(λ) of
λ ∈ P1 has precisely deg f many points.



Proof
Since rational function are given by quotients of homogeneous
polynomials of the same degree on the ambient Pn the number of
poles

∑
p∈C:vp(f)<0−vp(f) coincides with the number zeroes by

Bézout’s theorem. To see that the number of preimage points of
λ ∈ A1 = K coincides with deg f , we note that f and f − λ have
the same poles.

Remark. One can show that deg f also coincides with the degree
of the field extension [K(C) : K(f)]. Note that K(f) ∼= K(P1).

More generally for a morphism ϕ : C → E between smooth
projective curves the degree can be defined as

degϕ = [K(C) : K(E)]

and this number coincides with the number of preimage points of
any point p ∈ E counted with multiplicities.



Dynamical intersection numbers
We assume that K = C. Let f ∈ K[x, y, z] a square free
polynomial of degree d and g ∈ K[x, y, z] a homogeneous
polynomial of degree e which as no common factor with f . Then

d · e =
∑

p∈V (f,g)

i(f, g; p)

by Bézout’s theorem. We will show that the intersection
multiplicities can be interpreted dynamically.
As an application of Bertini’s theorem we see that there exists a
homogeneous polynomial g1 of degree e such that C = V (f) and
D = V (g1) intersect transversally in d · e distinct points.
Indeed, consider the e-uple embedding

ρ2,e : P2 → P(
e+2
2 )−1

Curves of degree e in P2 correspond to hyperplanes H in P(
e+2
2 )−1

and a general hyperplane H1 intersects every component of
ρ2,e(C) transversally in smooth points of ρ2,e(C).



Dynamical intersection numbers, 2
Let g1 be the polynomial corresponding to the equation of H1 and
consider the pencil of curves of degree e

D = V (t0g + t1g1) ∈ P1 × P2

All but finitely many fibers Dλ over λ ∈ P1 intersect C in d · e
distinct points. Consider now the curve

X ′ = D ∩ (P1 × C)

and the union X of components which dominate P1. Let
σ : Y → X be a birational morphism from a smooth projective
curve and let Y0 the preimage of [1 : 0] ∈ P1 under f = π1 ◦ σ
where π1 denotes the projection onto the first factor of P1 × P2.
Each point of Y0 maps to a point of V (f, g) under π2.



Dynamical intersection numbers, 3

Let q ∈ Y0 be a point and s ∈ mY,q ⊂ OY,q a local generator. The
rational function t = t1/t0 ∈ OP1,[1:0] pullsback to f = usr with
r = vq(f) and u ∈ OY,q a unit. For point λ with |λ| small there
are the precisely r preimage points in the holomorphic chart
defined by s with absolute value approximately ( |λ||u(0)|)

1/r. For
λ→ 0 the images of these points in C approach the image of
p ∈ C ∩D0 of q.

Let p1, . . . , pk denote the distinct points of C ∩ V (g). Let qij for
j = 1, . . . di denote the distinct preimages of pi in Y and rij denote

the ramification numbers as above. Then precisely
∑di

j=1 rij
images of the points in the fiber f−1(λ) approach pi for λ→ 0.



Dynamical intersection numbers, 4
Thus we must have

i(f, g; pi) =

di∑
j=1

rij .

This identity fits with the fact that
∑k

i=1

∑di
j=1 rij = d · e counts

the number of points in the fibers of Y → P1.
To prove this identity one can use that i(f, g; pi) can also be
computed as the multiplicity of the resultant Resx(f, g) ∈ K[y, z]
at the point [bi : ci] for pi = [ai : bi : ci], if our coordinate system
is chosen general enough. For example the [bi : ci]’s should be
pairwise distinct. The resultant Resx(f, gλ) has precisely

∑di
j=1 rij

zeroes counted with multiplicities which approach [bi : ci] for
λ→ 0.



A bound on the number of singular points
Theorem. 1) Let C ⊂ P2 be a plane curve of degree d. Let
rp = mult(C; p) denote the multiplicity of C at p. Then∑

p∈C

(
rp
2

)
≤
(
d

2

)
.

2) If C is irreducible then∑
p∈C

(
rp
2

)
≤
(
d− 1

2

)
.

Remark. Both bounds are sharp: A general union of d lines has(
d
2

)
double points. The image of P1 under a general morphism

defined by forms of degree d has
(
d−1
2

)
double points.



Proof of the bounds
Let I(C) = (f). Then f is square free and
Csing = V (f, ∂f∂x ,

∂f
∂y ,

∂f
∂z ) is a finite set. In general coordinates f

and ∂f
∂x have no common factor. If p ∈ C is a point of multiplicity

rp then ∂f
∂x has multiplicty ≥ rp − 1 at p. Thus by Bézout and the

bound on intersection multiplicities we have∑
p∈C

rp(rp − 1) ≤ d(d− 1).

For the second case we may assume d ≥ 2. Let p1, . . . , ps denote
the singular points of C, and let r1, . . . , rs denote their
multiplicity. The vector space

L(d− 1; (r1 − 1)p1, . . . , (rs − 1)ps)

has dimension ≥
(
d+1
2

)
−
∑s

i=1

(
ri
2

)
which is at least d by the first

bound.



Proof of the bounds continued
In particular t =

(
d+1
2

)
−
∑s

i=1

(
ri
2

)
− 1 ≥ 1. Choose t further

points q1, . . . , qt on C. Then

L(d− 1; (r1 − 1)p1, . . . , (rs − 1)ps, q1, . . . , qt)

contains a non-zero element g. f and g have no common factor,
because f is irreducible and deg g < d. So they intersect only in
finitely many points and Bézout gives

d(d− 1) ≥
s∑
i=1

ri(ri − 1) + t.

Since t =
(
d+1
2

)
−
∑s

i=1

(
ri
2

)
− 1 ≥ 1 this inequality is equivalent to

the assertion:

d(d− 1)− (d+ 1)d

2
+ 1 =

1

2
(d2 − 3d+ 2).



Rational curves
Theorem. Let C ⊂ P2 be a irreducible plane curve of degree d
with points of multiplicity rp. If∑

p∈C

(
rp
2

)
=

(
d− 1

2

)
then there exists a birational map P1 → C.
Proof. With notation of the proof above we consider now only
t− 1 additional q1, . . . , qt−1. Then

P(L(d− 1; (r1 − 1)p1, . . . , (rs − 1)ps, q1, . . . , qt−1) ∼= P1

is pencil. The dimension cannot be larger, because otherwise we
could find a curve in the which passes through 2 further point, too
many for Bézout. So for every point
q ∈ C \ {p1, . . . , ps, q1, . . . , qt−1} there is a unique curve D in the
pencil which passes through q. This defines a birational map
C 99K P1 whose inverse extends to a birational morphism
P1 → C.



Rational curves
Remark. The equality above is sufficient but not necessary for
rationality.
Example. The curve V (z2y3 − x5) is rational but has only two
singular point of multiplicity 2 and 3. So(

4

2

)
>

(
2

2

)
+

(
3

2

)
.

Note that in the blow-up of the affine curve z2 − x5 we get
another double point u2 − x3 in the chart (x, z) = (x, ux). Over
the triple point y3 − x5 we find a further double point w3 − x2
under the transformation (x, y) = (x,wx)
Taking these singular points into account we get equality

6 = 1 + 3 + 1 + 1.



Infinitesimal near points
Let X2 → X1 → P2 be the blow-up of a point p followed by a
blow-up of a point q on the exceptional E1 ⊂ X1. Then we call a
points p1 ∈ E1 an infinitesimal near points to p of first order and
the points p2 ∈ E2 in the exceptional curve of X2 → X1

infinitesimal near points of p of second order.
So we have an infinite tree of infinitesimal near points to every
point p ∈ P2.
Theorem. Let C ⊂ P2 be an irreducible curves of degree d. Then(

d− 1

2

)
≥
∑
p

(
rp
2

)
where the sum runs over all points of P2 including infinitesimal
near points, and rp denotes the multiplicity of the strict transfom
at p. Equality holds if and only if C is birational to P1.



The genus and its toplogical interpretation
Definition. The difference g =

(
d−1
2

)
−
∑

p

(
rp
2

)
as above is called

the geometric genus of the plane curve C.
If C is a smooth projective curve then the genus g of C is defined
as the genus of a birational plane model of C.

A smooth projective curve C over the complex numbers C is also a
Riemann surface. As differential manifold this a compact
orientable surface S. Their differentiable classification depend only
on the integer g. It is a handle body with g handles.

The number g can also be recovered from any triangulation of S.
If we have a triangulation with c0 vertices c1 edges and c2 faces of
S then the topological Euler characteristic is

χ(S) = c0 − c1 + c2 = 2− 2g.



The Hilbert polynomial of a smooth projective curve

The genus g of a smooth projective curve can also be computed
from the Hilbert polynomial.

Theorem. The Hilbert polynomial of a smooth projective curve
C ⊂ Pn of degree d has the form

p(t) = dt+ 1− g.

Corollary. The constant term of the Hilbert polynomial p(t) of a
smooth projective curve C does not depend on the embedding
C ↪→ Pn.


