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Discrete valuation

Definition. Let L be a field. A discrete valuation on L is a
surjective map
v:L\{0} - Z

such that for all a,b € L\ {0}

1. v(ab) = v(a) + v(b),

2. v(a+b) > min{v(a),v(b)}.
Note that the first condition says that (L \ {0},-) = (Z,+) is a
group homomorphism. In particular v(1) = 0. By convention
v(0) = 0o. The set

R={a€eL|v(a)>0}

is a subring of L, which is called the valuation ring of v. The
subset of non-units in R

m={a€ L|v(a) >0}

is an ideal. Hence (R, m) is a local ring.



Discrete valuation rings
Definition. A discrete valuation ring (DVR) R is an integral
domain such that R is the valuation ring of a valuation v on its
quotient field L = Q(R).

Example. The formal power series ring R = K[[t]] in one variable
over a field K is a DVR. Indeed, the quotient field of R is

L=K(t)={>_ ant" | N cZ}

n=N
the ring of formal Laurent series, and

’U(Z ant™) = min{n | a, # 0}
for a non-zero Laurent series defines a valuation on L with
valuation ring K[[t]]. Following the notion for power series in one
complex variable, we say that f € K[[t]] has a zero of order n if
v(f) =mnand f € K((t)) with n =v(f) < 0 is said to have pole
of order —n.



Characterization of DVR's

Proposition. Let R be a ring. TFAE:
1) Risa DVR.
2) R is a noetherian regular local ring of Krull dimension 1.

Proof. 1) = 2): Suppose R is a DVR. Let ¢ € R be an element
with v(t) = 1. Then any element f € R with v(f) = n is of the
form f = wt™ with w a unit in R. In particular, t is a generator of
m and the only proper ideals I # 0 are of the form [ = (") = m"
with n = min{v(f) | f € I'}. Hence (0) C m is the only chain of
prime ideals in R and R is PID. So R is noetherian and a regular
local ring of Krull dimension 1, because m is generated by a single
element, i.e., m/m? is 1-dimensional by Nakayama's Lemma.



2=1

Conversely, let R be a noetherian regular local ring of Krull
dimension 1. By Nakayama's Lemma the maximal ideal m is a
principal ideal, say m = (¢). Hence the powers m* = (%) are
principal ideals as well. Let f € R be a non-zero element. Since
N, m* = (0) by Krull's intersection theorem

n = max{k | f € m*}

is the maximum of finitely many integers and f = ut™ for a unit

u € R. We set v(f) =n. Then v(f1f2) =v(f1) +v(f2). In
particular R is a domain. We extend v to a map

VIQURN(0 2 by of) = o)~ (fa)

Then v is discrete valuation on Q(R) and R is its valuation
ring.



Smooth points of curves
Corollary. Let p € C' be a smooth point of an irreducible curve.
Then O¢, is a DVR. O

Remark. We denote the valuation of K (C') corresponding to O,
with v,. In case of a smooth projective curve C' one can show that

pl—>Up

induces a bijection between the points of C' and the valuations of
the function field v : K(C) \ {0} — Z with v(a) = 0 for all

ae K\{0}.

Proposition. Let C' be a smooth quasi projective curve and

@'+ C --»P™ a rational map. Then ¢’ extends to a morphism

p:C — P



Proof

Suppose that ¢’ is given by a tuple fo,..., f, of rational functions.
There are two reasons why [fo(p) : ... : fn(p)] might be not
defined in p € C. One of the rational functions might have a pole
at p or all rational functions might vanish at p.

Taking £ = min{v,(f;) | j=0,...,n} andt € mc, C O¢c) a
generator we see that [t™%fy:...:t7%f,] is defined at p € C and
coincides ¢’ where t has no zeroes or poles. O

Remark. The proposition is not true for a higher dimension
source: The morphism

A%\ {o} = PLp— [2(p) : y(p)]

has no extension to A2. Instead the closure of the graph is the
blow-up of 0 € A2



Projectivity of the Hilbert schemes
Remark. The proposition above explains why the fact that the
Hilbert scheme Hilb,,(IP") is projective is so nice. Let o € C be a
smooth point on a quasi-projective curve. Then every family
X" C\ {o} x P" of subschemes X with Hilbert polynomial p(t)
can be extended to a family

XcOoxPpP?

where the fibers X, has Hilbert polynomial p(t) as well. Indeed the
family X’ corresponds to a rational map C' --» Hilb,)(P") C PN
which extends to a morphism. Loosely speaking

lim X, = X, € Hilb,,((P")

q—o

exists along curves.



Degree of a morphism f : C' — P!
Let C C P" be a smooth projective curve f € K(C) a
non-constant rational function. By the proposition above the
rational map

C-——Plp—[1:f(p)

extends to a morphism f : C' — P!, which we denote by the same
letter.
Definition. The degree of f is

degf= > vlf)
peC:vp(f)>0
the number of preimage points of [1 : 0] counted with
multiplicities.

Proposition. Counted with multiplicities each fiber f~1()\) of
A\ € P! has precisely deg f many points.



Proof

Since rational function are given by quotients of homogeneous
polynomials of the same degree on the ambient P™ the number of
poles > i, (f)<0 —Up(f) coincides with the number zeroes by
Bézout's theorem. To see that the number of preimage points of
A € Al = K coincides with deg f, we note that f and f — X have
the same poles. O

Remark. One can show that deg f also coincides with the degree
of the field extension [K(C) : K(f)]. Note that K(f) = K(P!).

More generally for a morphism ¢ : C' — E between smooth
projective curves the degree can be defined as

degy = [K(C) : K(E)]

and this number coincides with the number of preimage points of
any point p € E counted with multiplicities.



Dynamical intersection numbers
We assume that K = C. Let f € K[z,y, 2] a square free
polynomial of degree d and g € K|z, y, z] a homogeneous
polynomial of degree e which as no common factor with f. Then

d-e= Y i(figp)
peV(f.9)

by Bézout's theorem. We will show that the intersection
multiplicities can be interpreted dynamically.
As an application of Bertini's theorem we see that there exists a
homogeneous polynomial g; of degree e such that C' = V(f) and
D = V(g1) intersect transversally in d - e distinct points.
Indeed, consider the e-uple embedding

o P2 o p(73)
Curves of degree e in IP’Q correspond to hyperplanes H in p(37)-1

and a general hyperplane H; intersects every component of
p2,¢(C) transversally in smooth points of py (C).



Dynamical intersection numbers, 2
Let g1 be the polynomial corresponding to the equation of H; and
consider the pencil of curves of degree e

D =V(tog +tig1) € P* x P

All but finitely many fibers Dy over A € P! intersect C' in d-e
distinct points. Consider now the curve

X'=Dn(P'xO)

and the union X of components which dominate P'. Let

o :Y — X be a birational morphism from a smooth projective
curve and let Y the preimage of [1:0] € P! under f =700
where 7, denotes the projection onto the first factor of P! x P2
Each point of Yy maps to a point of V(f, g) under 7.



Dynamical intersection numbers, 3

Let ¢ € Yp be a point and s € my,;, C Oy,4 a local generator. The
rational function ¢ =t /g € Op1 1,9 pullsback to f = us" with

r =vg(f) and u € Oy, a unit. For point A with || small there
are the precisely 7 preimage points in the holomorphic chart
defined by s with absolute value approximately ( ’\ 1/7". For

A — 0 the images of these points in C' approach the image of

p e CNDyofg.

Let p1, ..., px denote the distinct points of C' NV (g). Let g;; for
J = 1,...d; denote the distinct preimages of p; in Y and r;; denote
the ramification numbers as above. Then precisely Z?;l Tij
images of the points in the fiber f~!()\) approach p; for A — 0.



Dynamical intersection numbers, 4
Thus we must have

i(f,9:pi) Zw

This identity fits with the fact that Zle Z;-lizl rij = d - e counts
the number of points in the fibers of Y — P!

To prove this identity one can use that i(f, g;p;) can also be
computed as the multiplicity of the resultant Res,(f, g) € K|y, 2]
at the point [b; : ¢;] for p; = [a; : b; : ¢;], if our coordinate system
is chosen general enough. For example the [b; : ¢;]'s should be
pairwise distinct. The resultant Res;(f, gx) has precisely Z?;l Tij
zeroes counted with multiplicities which approach [b; : ¢;] for

A— 0. O]



A bound on the number of singular points

Theorem. 1) Let C C P? be a plane curve of degree d. Let
rp = mult(C; p) denote the multiplicity of C' at p. Then

Z (Tp> : <d>
peC 2 2
2) If C is irreducible then

> (3)=(")

peC

Remark. Both bounds are sharp: A general union of d lines has
(g) double points. The image of P! under a general morphism

defined by forms of degree d has (*,") double points.



Proof of the bounds

Let I(C) = (f). Then f is square free and

Csing =V (f, %, ?‘Tgv %) is a finite set. In general coordinates f
and g—i have no common factor. If p € C'is a point of multiplicity
rp then % has multiplicty > r, — 1 at p. Thus by Bézout and the

bound on intersection multiplicities we have

er(rp —1)<d(d-1).

peC
For the second case we may assume d > 2. Let pq,...,ps denote
the singular points of C, and let r1,...,rs denote their

multiplicity. The vector space
L(d—1;(r1 — D)p1,...,(rs — 1)ps)

has dimension > (1) — 327_, (%) which is at least d by the first
bound.



Proof of the bounds continued
In particular t = (“31) — 3%, (%) — 1 > 1. Choose t further
points q1,...,q: on C. Then
L(d - 1a (7"1 - 1)p1a ey (’l“s - 1)pqula R 7qt)

contains a non-zero element g. f and g have no common factor,
because f is irreducible and deg g < d. So they intersect only in
finitely many points and Bézout gives

d(d— 1) > ZS:T’Z‘(TZ' — 1) + t.
=1

Since t = (dH) -3 (7"2’) — 1 > 1 this inequality is equivalent to

2
the assertion:
1 1
d(d—1) — (dJ;)dH = 5(c12—:3cl+2).



Rational curves
Theorem. Let C C P? be a irreducible plane curve of degree d
with points of multiplicity r,. If
Z T'p _ d—1
2) \ 2
peC
then there exists a birational map P! — C.

Proof. With notation of the proof above we consider now only
t — 1 additional ¢q,...,q_1. Then

]P)(L(d - 1) (Tl - 1)p11 R (Ts - 1)1037 qi1,-- -, qtfl) = ]P)l
is pencil. The dimension cannot be larger, because otherwise we
could find a curve in the which passes through 2 further point, too
many for Bézout. So for every point
g€ C\{p1,...,ps,q1,-..,q—1} there is a unique curve D in the
pencil which passes through ¢. This defines a birational map

C --» P! whose inverse extends to a birational morphism
Pl — C. O



Rational curves
Remark. The equality above is sufficient but not necessary for
rationality.
Example. The curve V(22y® — 2°) is rational but has only two
singular point of multiplicity 2 and 3. So

4 2 3
()>(G)+ ()
Note that in the blow-up of the affine curve 22 — 2° we get
another double point u? — x3 in the chart (x,z) = (x,ux). Over
the triple point 3 — 2% we find a further double point w? — 22
under the transformation (z,y) = (x,wz)

Taking these singular points into account we get equality

6=1+3+1+1.



Infinitesimal near points
Let X5 — X; — P2 be the blow-up of a point p followed by a
blow-up of a point ¢ on the exceptional F; C X;. Then we call a
points p1 € F1 an infinitesimal near points to p of first order and
the points po € E5 in the exceptional curve of Xy — X3
infinitesimal near points of p of second order.
So we have an infinite tree of infinitesimal near points to every
point p € P2,
Theorem. Let C C P? be an irreducible curves of degree d. Then

d—1 r
> p
p
where the sum runs over all points of P? including infinitesimal

near points, and r,, denotes the multiplicity of the strict transfom
at p. Equality holds if and only if C is birational to P*.



The genus and its toplogical interpretation
Definition. The difference g = (%,') — >, (3) as above is called
the geometric genus of the plane curve C.
If C'is a smooth projective curve then the genus g of C is defined
as the genus of a birational plane model of C.

A smooth projective curve C' over the complex numbers C is also a
Riemann surface. As differential manifold this a compact
orientable surface S. Their differentiable classification depend only
on the integer g. It is a handle body with g handles.

The number g can also be recovered from any triangulation of S.
If we have a triangulation with ¢y vertices ¢; edges and co faces of
S then the topological Euler characteristic is

X(S)=co—c1+c2=2-—2g.



The Hilbert polynomial of a smooth projective curve

The genus g of a smooth projective curve can also be computed
from the Hilbert polynomial.

Theorem. The Hilbert polynomial of a smooth projective curve

C C P" of degree d has the form
p(t)=dt+1—g.
Corollary. The constant term of the Hilbert polynomial p(t) of a

smooth projective curve C does not depend on the embedding
C — P".



