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Grobner basis

We call the definition.

Definition. Let > be a global monomial order and

| C K[xi,...,xs] an ideal. The lead term ideal of / is the ideal
generated by the lead terms of elements of /:

Lt(/) = ({Lt(f) | f € I}).
Elements fi,...,f, € | are a Grobner basis of /| if

Lt(1) = (Lt(A), ..., Lt(£)).

Proposition. Let fi,...,f, € | be a Grobner basis of | and
f € K[xi,...,xn]. Consider the remainder h of f divided by
fi,...,f.. Then

fel < h=0.



Macaulay's theorem

Theorem. Let fi,...,f, be a Grobner basis of an ideal

I C K[xi,...,xn] with respect to a global monomial order. Then
the monomials {x | x* ¢ Lt(I) represent a K-vector space basis
for K[x1,...,xn]/l.

Proof. Let f be an element of K[xy,...,x,]/I and
f € K[x1,...,xn] a representative. Then the remainder h of f
divided by fi,...,f, represents the same element: f = h. Since

Lt(/) = (Lt(f1,...,Lt(f;)), the remainder h is a linear combination
of the x* ¢ Lt(/) by condition 2b). So the x® with x* ¢ Lt(/)
span K|[xi,...,xs]/l as an K-vector space. They are linearly
independent by the proposition. O



Example of a division
Consider fi = x?y — y3, f, = x3 € K[x, y] and >1cx. Then
Lt(f) = x%y and Lt(f) = x°.
We divide f = x3y by f1, fa:

f = xLt(A) +0Lt(f) + 0, hence
f) = f — (xf + 0f +0) = xy°.

In the second step we obtain

xy® = 0Lt(A) 4 0Lt(f) + xy>, hence
F2 = ) _ (0f + 0 + xy®) = 0.

The final result is
f = xA + 0h + xy>.



Same example in a different order

We consider f; = x2y — y3, f = x> € K[x, y] and >¢x with lead

terms Lt(f1) = x?y and Lt(f) = x3 as before.

If we divide f = x3y by x3, x2y — y3 we obtain

f =y Lt(x®) + 0Lt(x?y — y3)) + 0, hence
FO =y — (y(3) + 0Py —y) +0) = 0

and the final resultis f =yfL +0f +0. Thus

Warning: The remainder of the division by polynomials fi, ...

can depend on the order of fi,...,f !
This does not happen if f1,...,f, is a Grobner basis.



Warning

The remainder of the division by polynomials f1,...,f, can depend
on the order of fi,...,f, | The reason is that the condition 2a)
depends very much on the order.

Theorem. Let > be a global monomial order on K[xi, ..., xn],
fi,....f € K[x1,...,xn] non-zero polynomials. For every
f € K[xi,...,xn] there exist uniquely determined
gi,---,8 € K[x1,...,xn] and a unique remainder
h € K[xa,...,xn] satisfying
1) f=gth+...+gf +h
2a) No term of gj Lt(f;) is divisible by a lead term Lt(f;) for some
i<
2b) No term of h is divisible by a lead term Lt(f;).
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Buchberger's Criterion

Let f1,...,f € K[x1,...,xs] be poynomials. How to compute a
Grobner basis for | = (f1,...,£)?
The easiest way to discover a new lead term of (f1,...,f,) is to

consider a difference where the lead terms cancel. Consider the
monomial mj; = ged(Lt(f;), Lt(f;)) and the S-polynomial

_ ), ()

S(fi.£) fi

The lead term in this difference cancels, so we might discover a
new lead term of /.

Theorem. Let fi,...,f, € K[x1,...,x,] be polynomials and > be
a global monomial order. fi,...,f, is a Grobner basis for
(fi,...,f.) if and only if for each pair i,j the remainder of S(f;, f;)
divided by fi, ..., f, is zero.



Buchberger's algorithm

Algorithm.
Input. A global monomial order and polynomials 71, ..., f..
Output. A Grobner basis fi,...,fs for (f,...,f).
1. Initialize s=r and L={f,...,f}
2. forall i,jwithl1 <i<j<sdo
compute the remainder h of S(f;, f;);
if h# 0 then
fopr=h L=LU{fc1};s=s+1;
3. return L.
The algorithm terminates since monomial ideals are finitely
generated.



Example
Consider f; = x3, b = x2y — y3 € K[x,y] and >1¢. Then
Lt(f) = x3, Lt(h) = x°y
mi2 = x% and S(f1, f) = xf, — yfi = —xy3 = 0f; + 0f, — xy> has a
non-zero remainder. Thus

fy = —xy>.

mi3 = x and S(f, ) = x°f3 — (—y3)h = 0.
mo3 = xy and S(f, ) = xf3 — (—y?)fa = —y°. Thus

fo=—y°

The S-polynomials S(f1,f3) and S(f3, f4) are zero. mp4 = y and
S(h, fa) = X2fy — (—y*)fo = —y7 = Of + 0f + 0 + y2fo +0.

So fi,...,f4 is a Grobner basis.



Example: 3 x 3-minors of a 3 X 5-matrix

Consider the ideal | C K[xi, ..., zs5] generated by the 3 minors of
the matrix

X1 X2 X3 X4 X

Yi Y2 Y3 Y4 Y5

Z1 22 2Z3 Zy Zy

and >jx. There are 10 = (g

Grobner basis we have to check 45 = (%) S-pairs. Changing
slightly the focus in Buchberger's criterion one can get away with
15 tests only.

We are going to explain how this works next.

Definition. Let /,J C R be ideals in a ring. Then the colon ideal
is

) minors. To check that they form a

l:J={reR|rJCI}.
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A second version of Buchberger's criterion

Notation. Let fi,...,f, € K[x1,..., x| be polynomials. We
define r — 1 monomial ideals as follows

M; = (Lt(f, ..., Lt(fi-1)) : Lt(F)

forj=2,...,r.
For each minimal generator x* € M; the multiple x“f; is an
expression not allowed in the division theorem by condition 2a).

Theorem. With notation as above, fi, ..., f, is a Grébner basis for
(f,...,f) if and only if for each j = 2,...,r and each minimal
generator x* of M; the remainder of x*f; divided by fi,...,f, is

Zero.



Example: 3 x 3-minors of a 3 X 5-matrix, 2

X1 X2 X3 X4 X5

yi Y2 ¥z Y4 Y5
Z1 2 23 Zy Zx

Jo L) | M
1 X1Y223 0 X1 X2 X3 Xa
2 | x1y0zs | (23) . Yi y2 Y3 ya
0 = det
3 | xiysza | (y2) 7 2 3 oz
4 | xoy3z4 | (x1) 721 22 3 oz
5 | xuyezs | (z,z2) 23fy = z4fy + 2ofs — 21, 4+ 0.
6 | xiyszs | (v2,24) _
7 | xoy3z5 | (x1,2s) Similarly, all other remainders are
8 | xiyazs | (y2,y3) %Mo
9 | xoyazs (Xl»)’3§ Hence f1,..., fip is a Grobner basis.
1

0 | xayazs | (x1,x2



Modules

For our proof of Buchberger's criterion we need the concept of
modules and division with remainder in free modules.

Definition. Let R be a ring. An R-module M is an abelian group
together with an operation

Rx M — M, (a,m) — am
satisfying the usual associativity and distributivity laws:
a(bm) = (ab)m Va,be RVme M
Im=m VmeM

(a+b)m=am+bm Va,be RVme M

alm+n)=am-+an Yaec RVmne M

For a field K a K-module is simply a K-vector space.



Examples of modules

R is an R-module.

A free module is module of the form F = R". It has basis vectors
e =(0,...,1,...,0)" with 1 in the j-th position. An element of F
is simply a column vector

(a1,...,a,)" = Z ajej

with entries in R.
A submodule N C M of a module M is a subgroup N satisfying

nelN=aneN Vae RVne N.

Thus an ideal / is a submodule of R.
If f1,...f, € M then

(h....f,)={@fi+...+&f | g €R}

is a submodule of M.



Homomorphism

An R-module homomorphism ¢: M — N is a group
homomorphism satisfying additionally ¢(am) = ap(m).

ker ¢ is a submodule of M and im(y) is a submodule of N.
To say that a module is generated by elements fi,...,f, € M is
equivalent to say that

p:F=R"— M, e — f;

defines a surjective R-module homomorphism.

Definition. A syzygy between elements fi,...,f, € M is an
element (g1,...,8-)" € F = R" satisfying > gjf; = 0.

In other words, it is an element of ker p where ¢ : F = R" — M is
defined by e; — f;.
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Quotient modules

Let N C M be a submodule. Then
f=g modN:f—-—gelN
defines an equivalence relation on M with equivalence classes
f+N={f+h|he N}
The set of equivalence classes
M/N={f+N|feM}c2¥
carries a unique R-module structure such that
T M—M/N, f—f+N

becomes an R-module homomorphism.



Homomorphism theorem

Theorem. Let ¢o: M — N be an R-module homomorphism. Then

im(p) = M/ ker(p).

Proof. f + ker(yp) — ¢(f) is a well-defined isomorphism.

For p: M — N we define the cokernel of ¢ as

coker(p) = N/im(y).



Finitely presented modules

Definition. An R-module M is finitely generated if there exists a
surjection
0:RT > M

M is finitely presentable, if one can choose the surjection
¢ : R" — M such that the syzygy module ker(y) is finitely
generated as well. In that case we obtain a sequence

RS- R 2o M 0

with im(p1) = ker(y) and M = coker(y1). Such sequence is called
a finite presentation of M.

Since a homomorphism R®* — R" between free modules can be
described by r x s-matrices with entries in R we can simply specify
a finitely presented module via a matrix ¢1.



Tasks of constructive module theory

Not so easy are the following tasks: Given two finitely presented
modules

RS 1L Rr M 0

and
Y1

R Rk N 0,

1. decide whether M and N are isomorphic,

2. compute the R-module Hom(M, N) of all R-module
homomorphisms.

We will approach these questions in case of R = K|[x1, ..., Xp]
using Grobner basis for submodules of free modules.

part 4



