
Let H be a Hilbert space. On B(H), there is a whole zoo of topologies weaker than the norm

topology – and all of them are considered when it comes to von Neumann algebras. It is,

however, a good idea to concentrate on one of them right from the definition. My choice – and

Murphy’s [Mur90, Chapter 4] – is the strong (or strong operator=STOP) topology:

Definition. A von Neumann algebra is a ∗–subalgebra A ⊂ B(H) of operators acting nonde-

generately(!) on a Hilbert space H that is strongly closed in B(H).

(Every norm convergent sequence converges strongly, soA is a C∗–algebra.)

This does not mean that one has not to know the other topologies; on the contrary, one has

to know them very well, too. But it does mean that proof techniques are focused on the strong

topology; if we use a different topology to prove something, then we do this only if there is a

specific reason for doing so.

One reason why it is not sufficient to worry only about the strong topology, is that the strong

topology (unlike the norm topology of a C∗–algebra) is not determined by the algebraic structure

alone: There are “good” algebraic isomorphisms between von Neumann algebras that do not

respect their strong topologies. A striking feature of the strong topology on B(H) is that B(H)

is order complete:

Theorem (Vigier). If
(
aλ

)
λ∈Λ is an increasing self-adjoint net in B(H) and bounded above

(∃c ∈ B(H) : aλ ≤ c∀λ), then aλ converges strongly in B(H), obviously to its least upper bound

in B(H).

(One may simply restrict to bounded nets, by passing to the subnet indexed by {λ ≥ λ0} for

some λ0 so that now aλ0 ≤ aλ ≤ c.)

Since the strong limit of a net in a von Neumann algebraA ⊂ B(H) is again inA, the order

completeness turns over toA.

Corollary. A von Neumann algebra is unital. In fact, the least upper bound of the standard

approximate unit (of any C∗–subalgebra of B(H) that acts nondegenerately) has no choice but

being idH.

The order structure of any C∗–algebra is determined by its algebraic structure alone. (In

fact, a is positive if and only if it can be written as b∗b.)

Definition. A positive(!) linear map ϕ : A → B between von Neumann algebras is normal if

it is order continuous, that is, if l.u.b. ϕ(aλ) = ϕ(l.u.b. aλ) for each increasing bounded net.

We see: Algebraic isomorphisms between von Neumann algebras are normal.

Also, normality is a matter of bounded subsets.

We shall see later on how normality relates to continuity in certain topologies.
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Elements a ∈ B(H) allow polar decomposition a = v |a| where v is the uniquely determined by

this equation and the condition ker v = ker a, and bound to be a partial isometry. It is important

to note that if a is from a von Neumann algebra A ⊂ B(H), then, apart from |a|, also v is in A.

(If a = aα |a|α with unique aα ∈ aC∗(|a|), then aα
α↑1
−−→ v, strongly.)

Let S be a subset of B(H). By S
s

we denote its strong closure. Define the commutant

commutant os S as S ′ := {a ∈ B(H) : as = sa (s ∈ S )}. Clearly, S ′ is a strongly closed , unital

(and, therefore, nondegenerate) subalgebra of B(H). If S = S ∗ (or, weaker, if (spans S )∗ =

spans S ), then S ′ is a von Neumann algebra on H. Exercise: Like for orthogonal complements

in Hilbert spaces, we have S ′′ ⊃ S and S ′′′ = S ′.

For a pre-Hilbert subspace D of a Hilbert space H we have D⊥⊥ = span D. Is the same true

for ∗–subalgebras of B(H)? The basic theorem on von Neumann algebras is von Neumann’s

double commutant theorem. It has two versions – and the second is by far more important,

because it answers our question in the affirmative sense.

Theorem. LetA ⊂ B(H) be a ∗–algebra of operators acting on the Hilbert space H. Then:

1. A is a von Neumann algebra if and only ifA = A′′.

2. IfA acts non degenerately, thenA′′ = A
s
.

Note: In particular, A
s

is an algebra! Since operator multiplication is not jointly strongly

continuous, it is far from evident why the product of two elements in the strong closure is again

in the strong closure. One way out would be the Kaplansky density theorem ....

Theorem. If A is a ∗–subalgebra of B(H), then the ball of A is strongly dense in the ball of

A
s
.

(Likewise for the self-adjoint elements and for the balls in the self-adjoint elements and, ifA

is unital, for the unitaries. Actually, the statements about self-adjoint elements is proved first.)

.... if this theorem was not usually proved after the double commutant theorem. It is impor-

tant for other reasons, for instance, if we wish to control norms in sets of products (like simple

tensors in tensor products).

Exercise: Examine what happens in the double commutant theorem if we drop in (2) non-

degeneracy.

A strongly closed ideal I in a von Neumann algebra A ⊂ B(H) is a von Neumann algebra

(though acting on the Hilbert space spanIH, only). Therefore, it is unital, with unit q, say.

Since for every a ∈ A, we have I 3 qa = qaq = aq ∈ I, we see that q is a central projection. In

fact, the central projections and the strongly closed ideals are in one-to-one correspondence via

q ↔ qA = Aq. An analogue argument for strongly closed hereditary subalgebras of A shows

that strongly closed right (left) ideals are in one-to-one correspondence with projections p (not

necessarily central) via p↔ pA (p↔ Ap).
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We meticulously avoided the question if with a subset S also the subset S ∗ is strongly closed.

In general, the answer is no; however, for convex subsets it is yes. A way to seeing this, is an

instance of where we can no longer avoid other topologies. Every topology on B(H) gives rise

to the relative topology on the subsetA, and, as topology onA, will carry the same name.

The weak operator (=WOP) topology is generated by seminorms |〈x, •y〉|. Obviously, it is

weaker than the strong topology, and, unlike the strong topology, it is ∗–invariant. We collect

some properties, relating it also to the strong topology.

Proposition.

1. A convex subset of B(H) (for instance, a subspace) is strongly closed if and only if it is

weakly closed. Therefore, a weakly closed subset is ∗–strongly closed.

2. The weakly continuous linear functionals are precisely the elements of span{〈x, •y〉}.

3. The strongly continuous and weakly continuous linear functionals are the same. There-

fore, since the continuous functionals in a duality determine the topology, and since

strong and weak topology do not coincide (for instance, because the strong topology

is not ∗–invariant), the strong topology cannot be induced via a duality.

The trace on B(H) is defined as tr a :=
∑

i〈ei, aei〉 “whenever it reasonably exists”, where
(
ei
)

is any ONB of H (it does not depend on the choice). The trace is the example of a semi-finite,

normal weight on a von Neumann algebra, a concept that carries that positive functionals to

possibly unbounded (and, therefore, not everywhere defined) positive functionals. Weights are

defined only on a (sufficiently dense subset of) the positive elements. An operator a ∈ B(H) is

trace class if tr |a| < ∞. The set of trace class operators on H is denoted by L1(H).

Once in a while, by ∗ attached to a space we shall mean its topological dual. In the lecture

they won’t occur. Only the pre-dual ∗ survives.

Proposition [Mur90, Sections 2.4 and 4.2].

1. The trace norm ‖a‖1 := tr |a| is a ∗–invariant (improper) norm on B(H). Therefore, L1(H)

with ‖•‖1 is an involutive normed space.

2. We have F(H) ⊂ L1(H) ⊂ K(E) and F(H) is dense in L1(H) for ‖•‖1.

3. The trace tr a exists absolutely for all a ∈ L1(H).

4. ‖ab‖1 ≤ ‖a‖1 ‖b‖ so that L1(H) is an ideal in B(H).

5. K(H)∗ = L1(H) and L1(H)∗ = B(H) under the duality (a, b) 7→ tr(ab) for a ∈ L1(H) and

b ∈ K(H) or a ∈ B(H). In particular, L1(H) is complete.
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The weak∗ topology induced on B(H) by being the dual space of L1(H) is called the σ–weak (or

ultra weak) topology. Since F(H) ⊂ L1(H) (this includes that tr((xy∗)a) = 〈y, ax〉), the σ–weak

topology is stronger than the weak topology. It is not comparable to the (∗–)strong topology.

Theσ–weakly continuous or justσ–weak linear functionals are precisely the elements of L1(H).

Therefore:

Proposition. For checking σ–weak convergence on a bounded subset, it is sufficient to check

convergence with functionals

1. 〈x, •y〉 with x, y from a total subset of H, or

2. 〈x, •x〉 with x from a dense subset of H.

Observation. By definition, a is trace class if |a| is trace class. It follows that with a = a∗ also

a+ and a− are trace class. Moreover, the functional tr(a•) is positive, if (and only if, as long as

we are speaking about B(H)) a is positive. Therefore, each L1(H) is a linear combination of

four positive σ–weak functionals.

Lemma [Mey93, Appendix 4.3.5+6]. LetA ⊂ B(H) a von Neumann algebra.

1. A positive σ–weak functional on A extends to a positive σ–weak functional on B(H).

(Uses diagonalization of self-adjoint elements of K(H).)

2. A positive functional onA is σ–weak if and only if it is normal. (Uses Zorn.)

Corollary. Being σ–weak is a matter of bounded subsets and, therefore, may be checked as in

the preceding proposition.

Theorem.

1. Every von Neumann algebra is the dualA = (A∗)∗ of its pre-dualA∗ := L1(H)/N, where

N := ker(ϕ 7→ ϕ � A).

2. The pre-dual is unique as a Banach space. (A = B∗ ⇒ B
isom
� A∗.)

3. A∗ consists precisely of the σ–weak linear functionals onA. It is spanned by its normal

elements and, therefore, pre-dual and σ–weak topology are intrinsic to the von Neumann

algebraA.

If K is a separable infinite-dimensional Hilbert space, then the weak and the σ–weak linear

functionals on the von Neumann algebra(!) A ⊗ idK on H ⊗ K coincide, and since the pre-dual

does not depend on the representation, both coincide withA∗. (Effectively, since every ϕ ∈ A∗
can be written as

∑∞
n=1〈xi, •yn〉 for sequences in H with

∑
n ‖xn‖

2 < ∞ and
∑

n ‖yn‖
2 < ∞, we

get ϕ = 〈x, (• ⊗ idK)y〉 for suitable x, y ∈ H ⊗ K.) The strong topology in this representation is

called the σ–strong topology; it is intrinsic, too.
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Just for completeness (not that we needed it ....): A W∗–algebra is a C∗–algebra that admits a

pre-dual. So, every von Neumann algebra is a W∗–algebra. Conversely, every W∗–algebra is

(algebraically) isomorphic to a von Neumann algebra (via a weak∗ continuous, hence normal,

monomorphism into some B(H)). See Sakai [Sak71].

Let us close with some results:

[Ske16, Lemma B.2] (Dini’s theorem for nets). For each t ∈ [a, b] let ϕt a normal (hence,

positive) linear functional on the von Neumann algebra A ⊂ B(H), such that for each a ∈ A

the function t 7→ ϕt(a) is continuous. Let
(
aλ

)
be a net inA increasing to a ∈ A. Then for every

ε > 0 there exists λ0 such that ϕt(a) − ϕt(aλ) < ε for all t and all λ ≥ λ0.

[Ske16, Lemma A.2] (joint weak continuity for semigroups). Let T =
(
Tt

)
t∈R+

by a weakly

continuous one-parameter semigroup of weakly continuous maps Tt on a von Neumann algebra

A ⊂ B(H). Then for each bounded subset B of A, the map (t, a) 7→ Tt(a) from Rt × B to A is

jointly continuous for the (relative) (σ–)weak topologies either side.

The latter result passes to the pre-dual semigroup (Tt)∗ : A∗ → A∗ defined by ϕ 7→ (a 7→

ϕ ◦ Tt(a)), and, then, applying to that strongly continuous semigroup standard result about

C0–semigroups. A really excellent reference for such semigroup is the little book by Engel and

Nagel [EN06]. (Well, at least as long continuity is concerned. Who wishes to study measurable

semigroups, has to use the classics [HP57] by Hille and Phillips.)
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Appendix: [BDH88]’s σ– and s–topologies. By passing toA⊗ idK ⊂ B(H ⊗ K) if necessary,

we may assume that A ⊂ B(H) is spatially stable, that is, that A and A ⊗ idK are unitarily

equivalent. Recall that the weak and σ–weak functionals on such A coincide; see bottom of

p.4.

Definition [BDH88]. Let E be a pre-Hilbert module over a W∗–algebra B.

1. The σ–topology of E is generated by seminorms
∑

n∈N ϕn◦〈xn, •〉with ϕn ∈ B∗ and xn ∈ E

such that
∑

n∈N ‖ϕn‖ ‖xn‖ < ∞.

2. The s–topology of E is generated by seminorms
√
ϕ(|•|2) with ϕ ∈ B∗.

Proposition. Suppose B ⊂ B(G) is a von Neumann algebra.

1. The σ–topology coincides with the (relative) σ–weak topology of E
s
(⊃ E).

2. The s–topology coincides with the (relative) σ–strong topology of E
s
(⊃ E).

Proof. Assume B is spatially stable, and recall that σ–weak and σ–strong topology do not

depend on how we represented B.

(1) By shifting the factor ‖xn‖ over to ϕn (provided ϕn , 0; otherwise cancel that summand),

we may assume that ‖xn‖ = 1. Every ϕn has the form
∑

i〈ωn,i • ω
′
n,i〉 for a vectors ωn,i, ω

′
n,i in

G with
∑

i ‖ωn,i‖ ‖ω
′
n,i‖ = ‖ϕn‖. We may assume that ‖ωn,i‖ = ‖ωn,i‖ =

√
‖ωn,i‖ ‖ω

′
n,i‖ =: cn,i.

Note that cn,i is square-summable over (n, i). Stabilizing once more, we find that the vector

h ∈ H := E � G that corresponds to
∑

n,i(xn � (ωn,i ⊗ en,i) in E � (G ⊗ K) � E � G = H and

the vector g ∈ G that corresponds to
∑

n,i ωn,i ⊗ en,i in G ⊗K � G (
(
en,i

)
some ONB of K), fulfill∑

n∈N ϕn ◦ 〈xn, •〉 = 〈h, •g〉. Therefore the σ–topology is weaker than the σ–weak topology.

On the other hand, the functionals ϕ〈x, •〉 form a total subset of the weak, hence, of the

σ–weak functionals. [BDH88] argue that the space of functionals they use is complete. There-

fore, contains all σ–weak functionals, so that the σ–topology is also stronger than the σ–weak

topology.

(2) The proof for s–topology and σ–strong topology is very similar after recalling that also

the σ–strong topology of B is generated by seminorms
√
ϕ(|•|)2.
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