
FREE PROBABILITY THEORY

ROLAND SPEICHER

Lecture 2
Combinatorial Description and Free Convolution

2.1. From moments to probability measures. Before we start to
look on the combinatorial structure of our joint moments for free vari-
ables let us make a general remark about the analytical side of our
“distributions”. For a random variable a we have defined its distribu-
tion in a very combinatorial way, namely just as the collection of all
its moments ϕ(an). Of course, in classical probability theory distribu-
tions are much more analytical objects, namely probability measures.
However, if a is a selfadjoint bounded operator then we can identify
its distribution in our algebraic sense with a distribution in classical
sense; namely, there exists a compactly supported probability measure
on R, which we denote by µa and which is uniquely determined by

ϕ(an) =

∫
R
tndµa(t).

(This is more or less a combination of the Riesz representation theorem
and Stone-Weierstrass.) Of course, the same is also true more general
for normal operators b, then the ∗-distribution of b can be identified
with a probability measure µb on the spectrum of b, via

ϕ(bmb∗n) =

∫
σ(b)

zmz̄ndµb(z) for all m,n ∈ N.

This raises of course the question how we can determine effectively a
probability measure out of its moments. The Stieltjes inversion formula
for the Cauchy transform is a classical recipe for doing this in the case
of a real probability measure.
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Definition 1. For a probability measure µ on R the Cauchy transform
G is defined by

G(z) :=

∫
R

1

z − t
dµ(t).

This is an analytic function in the upper complex half-plane.

If we observe that

G(z) =
∞∑

n=0

∫
R t

ndµ(t)

zn+1

(and, for compactly supported µ, this sum converges for sufficiently
large |z|), then we see that the Cauchy transform of a measure is more
or less the generating power series in its moments. So if we are given a
sequence of momentsmn (n ∈ N), we build out of them their generating
power series

M(z) =
∞∑

n=0

mnz
n,

and in many interesting cases one is able to calculate this M(z) out of
combinatorial information about the mn. Thus we get, via

G(z) =
1

z
M(

1

z
)

the Cauchy transform of the measure which is behind the moments. So
the main question is whether we can recover a measure from its Cauchy
transform. The affirmative answer is given by Stieltjes inversion theo-
rem which says that

dµ(t) = − 1

π
lim
ε→0

=G(t+ iε),

where = stands for the operation of taking the imaginary part of a
complex number. The latter limit is to be understood in the weak
topology on the space of probability measures on R.

Example 1. Let us try to calculate the distribution of the operators
ω := ω(f) from the last lecture. Let f be a unit vector, then we can
describe the situation as follows: We have ω = l + l∗, where l∗l = 1
and l∗Ω = 0. Our state is given by

ϕ(·) = 〈Ω, ·Ω〉.
This information is enough to calculate all moments of ω with respect
to ϕ. Clearly all odd moments are zero, and we have

ϕ(ω2) = ϕ(l∗l) = 1

ϕ(ω4) = ϕ(l∗l∗ll) + ϕ(l∗ll∗l) = 2
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ϕ(ω6) = ϕ(l∗l∗l∗lll) + ϕ(l∗l∗lll∗l)

+ ϕ(l∗l∗ll∗ll) + ϕ(l∗ll∗l∗ll) + ϕ(l∗ll∗ll∗l)

= 5.

A closer look on those examples reveals that the sequences in l∗’s and
l’s which contribute to the calculation of the 2n-th moment of ω can
be identified with Catalan paths of lenght 2n (i.e., with paths in the
integer lattice Z2 which start at (0, 0), end at (2n, 0), always make
steps of the form (1, 1) or (1,−1) and are not allowed to fall under the
x-axis).

As example let us consider the 5 Catalan paths with 6 steps . We
draw them in the pictures below, and for each of them we indicate
the corresponding sequence in the calculation of ϕ(ω6). (Note that you
have to read the sequence in l, l∗ backwards to match it with the path.)

l∗ l∗ l∗ l l l ���
���

���@@R
@@R

@@R

l∗ l∗ l l∗ l l ���
���@@R���@@R

@@R

l∗ l l∗ l∗ l l ���
���@@R

@@R���@@R

l∗ l∗ l l l∗ l ���@@R���
���@@R

@@R
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l∗ l l∗ l l∗ l ���@@R���@@R���@@R

Catalan paths of length 2n are counted by the famous Catalan num-
bers

cn =
1

n+ 1

(
2n

n

)
These are determined by c0 = c1 = 1 and the recurrence relation
(n ≥ 2)

cn =
n∑

k=1

ck−1cn−k.

Thus we have finally

ϕ(ωk) =

{
cn, if k = 2n

0, if k odd.

Let us now see whether we can get the corresponding probability mea-
sure out of those moments. The recurrence relation for the Catalan
numbers results in the quadratic equation

G(z)2 − zG(z) + 1 = 0

for the corresponding Cauchy transform G, which has the solution

G(z) =
z ±

√
z2 − 4

2
.

Since we know that Cauchy transforms must behave like 1/z for z
going to infinity, we have to choose the “−”-sign; applying the Stieltjes
inversion formula to this gives us for µω a probability measure on [−2, 2]
with density

dµω(t) =
1

2π

√
4− t2dt.

This is known as a semi-circular distribution and an operator s with
such a distribution goes in free probability under the name of semi-
circular variable. (To be more precise, we have here a semi-circular
variable of variance ϕ(s2)=1; semi-circular variables of other variances
can be reduced to this by scaling; in this notes a semi-circular will
always be normalized to variance 1.) Thus we see that the sum of
creation and annihilation operators on the full Fock space are semi-
circular variables. We can then state our result from the last lecture
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also in the form that the free group factor L(Fn) can be generated by
n free semi-circular variables.

2.2. Free convolution. In classical probability theory the distribu-
tion of the sum of independent random variables is given by the con-
volution of the two distributions. Much of the basic body of classical
probability theory centers around the understanding of this operation.
So, if freeness wants to be a serious relative of independence then it
better should also provide some interesting analogous theory of free
convolution. The succesful treatment of this type of questions were the
first steps of Voiculescu into the free probability world.

Notation 1. In analogy with the usual convolution we introduce the
notion � of free convolution as operation on probability measures on
R by

µa+b = µa � µb if a, b are free.

Note that the moments of a+ b are just sums of mixed moments in a
and b, which, for a and b free, can be calculated out of the moments of
a and the moments of b. Thus it is clear that µa+b depends only on µa

and µb. In order to get a binary operation on all compactly supported
probability measure we must be able to find for any pair of compactly
supported probability measures µ and ν operators a and b which are
free and such that µ = µa and ν = µb. This can be achieved by some
general free product construction (which is the free analogue of the
construction of a product measure).

By approximation techniques one can extend � also to all probability
measures on R.

Defining the free convolution is of course just the zeroth step, the
crucial question is whether we can develop tools to deal with it succes-
fully.

2.3. Some moments. We would like to understand freeness better, in
particular, we want to describe the structure of free convolution. On
the level of moments one has the following formulas:

ma+b
1 = ma

1 +mb
1

ma+b
2 = ma

2 + 2ma
1m

b
1 +mb

2

ma+b
3 = ma

3 + 3ma
1m

b
2 + 3ma

2m
b
1 +mb

3

ma+b
4 = ma

4 + 4ma
1m

b
3 + 4ma

2m
b
2

+ 2ma
2m

b
1m

b
1 + 2ma

1m
a
1m

b
2 − 2ma

1m
b
1m

a
1m

b
1 + 4ma

3m
b
1 +mb

4.
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This does not reveal much; it is better to look more general on the
formulas for mixed moments.

Let us take a look at very small examples. If we have {a1, a2, a3}
free from {b1, b2, b3} then one can calculate with increasing effort that

ϕ(a1b1) = ϕ(a1)ϕ(b1)

ϕ(a1b1a2b2) = ϕ(a1a2)ϕ(b1)ϕ(b2)

+ ϕ(a1)ϕ(a2)ϕ(b1b1)− ϕ(a1)ϕ(b1)ϕ(a2)ϕ(b2)

ϕ(a1b1a2b2a3b3) = · · · (very complicated)

Also this does not tell so much, in particular, it is hard to guess how
this table will continue for higher moments. The main point here is to
give you the feeling that on the level of moments it is not so easy to
deal with freeness.

However, one feature which one might notice from the above formulas
is some kind of “non-crossingness”. Namely, the patterns of arguments
of the ϕ’s which appear on the left-hand side are of the form

a1 b1 a2 b2

,

a1 b1 a2 b2

,

a1 b1 a2 b2

,

however, the following pattern (which would show up for independent
random variables)

a1 b1 a2 b2

,

does not appear. It seems that free probability favours non-crossing
patterns over crossing ones. I will now present a combinatorial de-
scription of freeness which makes this more explicit.

2.4. From moments to cumulants. “Freeness” of random variables
is defined in terms of mixed moments; namely the defining property is
that very special moments (alternating and centered ones) have to van-
ish. This requirement is not easy to handle in concrete calculations.
Thus we will present here another approach to freeness, more com-
binatorial in nature, which puts the main emphasis on so called “free
cumulants”. These are some polynomials in the moments which behave
much nicer with respect to freeness than the moments. The nomencla-
ture comes from classical probability theory where corresponding ob-
jects are also well known and are usually called “cumulants” or “semi-
invariants”. There exists a combinatorial description of these classical
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cumulants, which depends on partitions of sets. In the same way, free
cumulants can also be described combinatorially, the only difference to
the classical case is that one has to replace all partitions by so called
“non-crossing partitions”.

Definition 2. A partition of the set S := {1, . . . , n} is a decomposition

π = {V1, . . . , Vr}
of S into disjoint and non-empty sets Vi, i.e. for all i, j = 1, . . . , r with
i 6= j we have

Vi 6= ∅, Vi ∩ Vj = ∅
and

S = ∪̇r
i=1Vi.

We denote the set of all partitions of S with P(S).
We call the Vi the blocks of π.
For 1 ≤ p, q ≤ n we write

p ∼π q if p and q belong to the same block of π.

A partition π is called non-crossing if the following does not occur:
There exist 1 ≤ p1 < q1 < p2 < q2 ≤ n with

p1 ∼π p2 6∼π q1 ∼π q2.

The set of all non-crossing partitions of {1, . . . , n} is denoted byNC(n).
We denote the “biggest” and the “smallest” element in NC(n) by 1n

and 0n, respectively:

1n : = {(1, . . . , n)}, 0n := {(1), . . . , (n)}.

Non-crossing partitions were introduced by Kreweras in 1972 in a
purely combinatorial context without any reference to probability the-
ory.

Example 2. We will also use a graphical notation for our partitions;
the term “non-crossing” will become evident in such a notation. Let

S = {1, 2, 3, 4, 5}.
Then the partition

π = {(1, 3, 5), (2), (4)} =̂

1 2 3 4 5

is non-crossing, whereas

π = {(1, 3, 5), (2, 4)} =̂

1 2 3 4 5

is crossing.
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Remark 1. 1) In an analogous way, non-crossing partitions NC(S)
can be defined for any linearly ordered set S; of course, we have

NC(S1) ∼= NC(S2) if #S1 = #S2.

2) In most cases the following recursive description of non-crossing
partitions is of great use: a partition π ist non-crossing if and only if
at least one block V ∈ π is an interval and π\V is non-crossing; i.e.
V ∈ π has the form

V = (k, k + 1, . . . , k + p) for some 1 ≤ k ≤ n and p ≥ 0, k + p ≤ n

and we have

π\V ∈ NC(1, . . . , k − 1, k + p+ 1, . . . , n) ∼= NC(n− (p+ 1)).

Example: The partition

{(1, 10), (2, 5, 9), (3, 4), (6), (7, 8)} =̂

1 2 3 4 5 6 7 8 9 10

can, by successive removal of intervals, be reduced to

{(1, 10), (2, 5, 9)}=̂{(1, 5), (2, 3, 4)} ∈ NC(5)

and finally to

{(1, 5)}=̂{(1, 2)} ∈ NC(2).

3) By writing a partition π in the form π = {V1, . . . , Vr} we will always
assume that the elements within each block Vi are ordered in increasing
order.

Now we can present the main object in our combinatorial approach
to freeness.

Definition 3. Let (A, ϕ) be a probability space, i.e. A is a unital
algebra and ϕ : A → C is a unital linear functional. We define the free
cumulants as a collection of multilinear functionals

kn : An → C (n ∈ N)

(indirectly) by the following system of equations (which we address as
moment-cumulant formula):

ϕ(a1 · · · an) =
∑

π∈NC(n)

kπ[a1, . . . , an] (a1, . . . , an ∈ A),

where kπ denotes a product of cumulants according to the block struc-
ture of π:

kπ[a1, . . . , an] := kV1 [a1, . . . , an] . . . kVr [a1, . . . , an]
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for π = {V1, . . . , Vr} ∈ NC(n) and

kV [a1, . . . , an] := kl(av1 , . . . , avl
) for V = (v1, . . . , vl).

Note: the above equations have the form

ϕ(a1 · · · an) = kn(a1, . . . , an) +
∑

π∈NC(n)
π 6=1n

kπ[a1, . . . , an];

since the terms with π 6= 1n involve only lower order cumulants, this
can be resolved for the kn(a1, . . . , an) in a unique way.

Example 3. The best way to understand this definition is by examples.
Let me give the the cumulants for small n.

• n = 1

ϕ(a1) = k [a1] = k1(a1),

thus

k1(a1) = ϕ(a1).

• n = 2

ϕ(a1a2) = k [a1, a2] + k [a1, a2]

= k2(a1, a2) + k1(a1)k1(a2),

thus

k2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2).

• n = 3

ϕ(a1a2a3) = k [a1, a2, a3] + k [a1, a2, a3] + k [a1, a2, a3]

+ k [a1, a2, a3] + k [a1, a2, a3]

= k3(a1, a2, a3) + k1(a1)k2(a2, a3) + k2(a1, a2)k1(a3)

+ k2(a1, a3)k1(a2) + k1(a1)k1(a2)k1(a3),

and thus

k3(a1, a2, a3) = ϕ(a1a2a3)− ϕ(a1)ϕ(a2a3)− ϕ(a1a3)ϕ(a2)

− ϕ(a1a2)ϕ(a3) + 2ϕ(a1)ϕ(a2)ϕ(a3).

3) For n = 4 we consider only the special case where all ϕ(ai) = 0 (this
reduces the number of terms from 14 to 3). Then we have

k4(a1, a2, a3, a4) = ϕ(a1a2a3a4)− ϕ(a1a2)ϕ(a3a4)− ϕ(a1a4)ϕ(a2a3).
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2.5. Freeness and vanishing of mixed free cumulants. That this
is actually a good definition in the context of free random variables
is the content of the following basic theorem. Roughly it says that
freeness is equivalent to the vanishing of mixed cumulants.

Theorem 1. Let (A, ϕ) be a probability space and consider unital sub-
algebras A1, . . . ,Am ⊂ A. Then A1, . . . ,Am are free if and only if we
have the following: We have for all n ≥ 2 and for all ai ∈ Aj(i) with
1 ≤ j(1), . . . , j(n) ≤ m:

kn(a1, . . . , an) = 0 if there exist 1 ≤ l, k ≤ n with j(l) 6= j(k).

An example of the vanishing of mixed cumulants is that for a, b free
we have k3(a, a, b) = 0, which, by the definition of k3 just means that

ϕ(aab)− ϕ(a)ϕ(ab)− ϕ(aa)ϕ(b)− ϕ(ab)ϕ(a) + 2ϕ(a)ϕ(a)ϕ(b) = 0.

This vanishing of mixed cumulants in free variables is of course just a
reorganization of the information about joint moments of free variables
– but in a form which is much more useful for many applications.

The above characterization of freeness in terms of cumulants is the
translation of the definition of freeness in terms of moments – by using
the moment-cumulant formula. One should note that in contrast to the
characterization in terms of moments we do not require that j(1) 6=
j(2) 6= · · · 6= j(m) or ϕ(ai) = 0. (That’s exactly the main part of
the proof of that theorem: to show that on the level of cumulants the
assumption “centered” is not needed and that “alternating” can be
weakened to “mixed”.) Hence the characterization of freeness in terms
of cumulants is much easier to use in concrete calculations.

Since the unit 1 is free from everything, the above theorem contains
as a special case the following statement.

Proposition 1. Let n ≥ 2 und a1, . . . , an ∈ A. Then we have:

there exists a 1 ≤ i ≤ n with ai = 1 =⇒ kn(a1, . . . , an) = 0.

Note also: for n = 1 we have

k1(1) = ϕ(1) = 1.

2.6. Free cumulants of random variables. Let us now specialize
the information contained in the cumulants to one random variable.

Notation 2. For a random variable a ∈ A we put

ka
n := kn(a, . . . , a)

and call the sequence of numbers (ka
n)n≥1 the free cumulants of a.
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Our main theorem on the vanishing of mixed cumulants in free vari-
ables specifies in this one-dimensional case to the linearity of the cu-
mulants.

Proposition 2. Let a and b be free. Then we have

ka+b
n = ka

n + kb
n for all n ≥ 1.

Proof. We have

ka+b
n = kn(a+ b, . . . , a+ b)

= kn(a, . . . , a) + kn(b, . . . , b)

= ka
n + kb

n,

because cumulants which have both a and b as arguments vanish by
our main theorem that freeness is the same as the vanishing of mixed
cumulants. �

Thus, free convolution is easy to describe on the level of cumulants;
the cumulants are additive under free convolution. It remains to make
the connection between moments and cumulants as explicit as possi-
ble. On a combinatorial level, our definition specializes in the one-
dimensional case to the following relation.

Proposition 3. Let (mn)n≥1 and (kn)n≥1 be the moments and free
cumulants, respectively, of some random variable. The connection be-
tween these two sequences of numbers is given by

mn =
∑

π∈NC(n)

kπ,

where
kπ := k#V1 · · · k#Vr for π = {V1, . . . , Vr}.

Example: For n = 3 we have

m3 = k + k + k + k + k

= k3 + 3k1k2 + k3
1.

Example 4. Our formula for the moments of a semi-circular element,
together with the fact that the Catalan number cn counts also the
number of non-crossing pairings of 2n elements (a pairing is a partition
where each block has exactly 2 elements), gives for the cumulants of a
semi-circular element s the following:

ks
n =

{
1, if n = 2

0, otherwise
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2.7. Analytic description of free convolution: the R-transform
machinery. For concrete calculations, however, one would prefer to
have a more analytical description of the relation between moments
and cumulants. This can be achieved by translating the above relation
to corresponding formal power series.

2.8. Theorem. Let (mn)n≥1 and (kn)n≥1 be two sequences of complex
numbers and consider the corresponding formal power series

M(z) := 1 +
∞∑

n=1

mnz
n,

C(z) := 1 +
∞∑

n=1

knz
n.

Then the following three statements are equivalent:

(i) We have for all n ∈ N

mn =
∑

π∈NC(n)

kπ =
∑

π={V1,...,Vr}∈NC(n)

k#V1 . . . k#Vr .

(ii) We have for all n ∈ N (where we put m0 := 1)

mn =
n∑

s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is=n−s

ksmi1 . . .mis .

(iii) We have

C[zM(z)] = M(z).

Proof. We rewrite the sum

mn =
∑

π∈NC(n)

kπ

in the way that we fix the first block V1 of π (i.e. that block which
contains the element 1) and sum over all possibilities for the other
blocks; in the end we sum over V1:

mn =
n∑

s=1

∑
V1 with #V1 = s

∑
π∈NC(n)

where π = {V1, . . . }

kπ.

If

V1 = (v1 = 1, v2, . . . , vs),
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then π = {V1, . . . } ∈ NC(n) can only connect elements lying between
some vk and vk+1, i.e. π = {V1, V2, . . . , Vr} such that we have for all
j = 2, . . . , r: there exists a k with vk < Vj < vk+1. There we put

vs+1 := n+ 1.

Hence such a π decomposes as

π = V1 ∪ π̃1 ∪ · · · ∪ π̃s,

where π̃j is a non-crossing partition of {vj +1, vj +2, . . . , vj+1−1}, i.e.,
with ij := vj+1 − vj − 1 we have π̃j ∈ NC(ij). For such π we have

kπ = k#V1kπ̃1 . . . kπ̃s = kskπ̃1 . . . kπ̃s ,

and thus we obtain

mn =
n∑

s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is+s=n

∑
π=V1∪π̃1∪···∪π̃s

π̃j∈NC(ij)

kskπ̃1 . . . kπ̃s

=
n∑

s=1

ks

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is+s=n

( ∑
π̃1∈NC(i1)

kπ̃1

)
. . .

( ∑
π̃s∈NC(is)

kπ̃s

)

=
n∑

s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is+s=n

ksmi1 . . .mis .

This yields the implication (i) =⇒ (ii).
We can now rewrite (ii) in terms of the corresponding formal power
series in the following way (where we put m0 := k0 := 1):

M(z) = 1 +
∞∑

n=1

znmn

= 1 +
∞∑

n=1

n∑
s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is=n−s

ksz
smi1z

i1 . . .misz
is

= 1 +
∞∑

s=1

ksz
s
( ∞∑

i=0

miz
i
)s

= C[zM(z)].

This yields (iii).
Since (iii) describes uniquely a fixed relation between the numbers
(kn)n≥1 and the numbers (mn)n≥1, this has to be the relation (i). �
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If we rewrite the above relation between the formal power series in
terms of the Cauchy-transform

G(z) :=
∞∑

n=0

mn

zn+1

and the so-called R-transform

R(z) :=
∞∑

n=0

kn+1z
n,

then we obtain Voiculescu’s basic results about free convolution.

Theorem 2. 1) The relation between the Cauchy-transform G(z) and
the R-transform R(z) of a random variable is given by

G[R(z) +
1

z
] = z.

2) The R-transform is additive for free random variables, i.e.,

Ra+b(z) = Ra(z) +Rb(z) if a and b are free.

Proof. 1) We just have to note that the formal power series M(z) and
C(z) from the previous theorem and G(z), R(z), and K(z) = R(z)+ 1

z
are related by:

G(z) =
1

z
M(

1

z
)

and

C(z) = 1 + zR(z) = zK(z), thus K(z) =
C(z)

z
.

This gives

K[G(z)] =
1

G(z)
C[G(z)] =

1

G(z)
C[

1

z
M(

1

z
)] =

1

G(z)
M(

1

z
) = z,

thus K[G(z)] = z and hence also

G[R(z) +
1

z
] = G[K(z)] = z.

2) This is just the fact that the cumulants as coefficients of the R-
transform are additive for the sum of free variables. �
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2.9. Voiculescu’s approach to the R-transform. Our derivation of
the basic properties of the R-transform was purely based on the com-
binatorics of non-crossing partitions. That was not the way Voiculescu
found those results. His approach was more analytical, and used cre-
ation and annihilation operators on full Fock spaces. The relation
between these two approaches comes from the fact that the calculation
of moments for special polynomials in creation and annihilation oper-
ators leads very naturally to non-crossing partitions and the moment-
cumulant formula.

Namely, with l := l(f) (for a unit vector f ∈ H) the creation oper-
ator on the full Fock space as introduced in the last lecture, consider
operators of the form

b = l +
∞∑
i=0

ki+1l
∗i

(take this as a formal sum, or consider only sums with finitely many
non-vanishing coefficients) Then we have

mn = 〈Ω, (l +
∞∑
i=0

ki+1l
∗i)nΩ〉

=
∑

i(1),...,i(n)∈{−1,0,1,...,n−1}

〈Ω, l∗i(n) . . . l∗i(1)Ω〉ki(1)+1 . . . ki(n)+1,

where l∗−1 is identified with l, and k0 := 1.
The sum is running over tuples (i(1), . . . , i(n)), which can be identi-

fied with paths in the lattice Z2:

i = −1 =̂ diagonal step upwards:

(
1
1

)
i = 0 =̂ horizontal step to the right:

(
1
0

)
i = k (1 ≤ k ≤ n− 1) =̂ diagonal step downwards:

(
1
−k

)
We have now

〈Ω, l∗i(n) . . . l∗i(1)Ω〉 =


1, if i(1) + · · ·+ i(m) ≤ 0 ∀m = 1, . . . , n and

i(1) + · · ·+ i(n) = 0

0, otherwise

and thus

mn =
∑

i(1),...,i(n)∈{−1,0,1,...,n−1}
i(1)+···+i(m)≤0 ∀m=1,...,n

i(1)+···+i(n)=0

ki(1)+1 . . . ki(n)+1.
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Hence only such paths from (0, 0) to (n, 0) contribute which stay
always above the x-axis. Each such path is weighted in a multiplicative
way (using the k’s) with the length of its steps.
Example:

���
1

���
1

-
k1

���
1 A

A
AU

k3

@@R
k2 =̂ 〈Ω, l∗1 l∗2 l l∗0 l lΩ〉k1k3k2

The paths appearing in the above sum can be identified with non-
crossing partitions, e.g., the example above would correspond to

1 2 3 4 5 6

In this way the above summation can be rewritten in terms of a sum-
mation over non-crossing partitions, leading exactly to the moment-
cumulant formula.

2.10. A concrete calculation of a free convolution. TheR-transform
is now the solution to the problem of calculating the free convolution
µ� ν of two probability measures on R. Namely, we calculate for each
of them the Cauchy transform, from this the R-transform, add up the
R-transforms, then go back to the Cauchy transform and get finally,
by Stieltjes inversion, the measure µ � ν. Of course, not all steps can
be done always explicitely (the biggest problem is usually solving for
the inverse under composition of the Cauchy or R-transform). But
let me show a non-trivial example, where everything can be calculated
explicitly. Let

µ = ν =
1

2
(δ−1 + δ+1).

Then we have

Gµ(z) =

∫
1

z − t
dµ(t) =

1

2

( 1

z + 1
+

1

z − 1

)
=

z

z2 − 1
.

Put

Kµ(z) =
1

z
+Rµ(z).

Then z = Gµ[Kµ(z)] gives

Kµ(z)2 − Kµ(z)

z
= 1,

which has as solutions

Kµ(z) =
1±

√
1 + 4z2

2z
.
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Thus the R-transform of µ is given by

Rµ(z) = Kµ(z)− 1

z
=

√
1 + 4z2 − 1

2z

(Note: Rµ(0) = k1(µ) = m1(µ) = 0, thus we have to take the +-sign
in the above solution.) Hence we get

Rµ�µ(z) = 2Rµ(z) =

√
1 + 4z2 − 1

z
,

and

K(z) := Kµ�µ(z) = Rµ�µ(z) +
1

z
=

√
1 + 4z2

z
,

which allows to determine G := Gµ�µ via

z = K[G(z)] =

√
1 + 4G(z)2

G(z)
as

G(z) =
1√

z2 − 4

From this we can calculate the density

d(µ� µ)(t)

dt
= − 1

π
lim
ε→0

= 1√
(t+ iε)2 − 4

= − 1

π
= 1√

t2 − 4
,

so that we finally get the arcsine distribution in this case:

d(µ� µ)(t)

dt
=

{
1

π
√

4−t2
, |t| ≤ 2

0, otherwise

2.11. Multiplication of free random variables. Finally, to show
that our description of freeness in terms of cumulants has also a signif-
icance apart from dealing with additive free convolution, we will apply
it to the problem of the product of free random variables: Consider
a1, . . . , an, b1, . . . , bn such that {a1, . . . , an} and {b1, . . . , bn} are free.
We want to express the distribution of the product random variables
a1b1, . . . , anbn in terms of the distribution of the a’s and of the b’s.

Notation 3. 1) Analogously to kπ we define for

π = {V1, . . . , Vr} ∈ NC(n)

the expression

ϕπ[a1, . . . , an] := ϕV1 [a1, . . . , an] . . . ϕVr [a1, . . . , an],

where

ϕV [a1, . . . , an] := ϕ(av1 · · · avl
) for V = (v1, . . . , vl).
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Examples:

ϕ [a1, a2, a3] = ϕ(a1a2a3)

ϕ [a1, a2, a3] = ϕ(a1)ϕ(a2a3)

ϕ [a1, a2, a3] = ϕ(a1a2)ϕ(a3)

ϕ [a1, a2, a3] = ϕ(a1a3)ϕ(a2)

ϕ [a1, a2, a3] = ϕ(a1)ϕ(a2)ϕ(a3)

2) Let σ, π ∈ NC(n). Then we write

σ ≤ π

if each block of σ is contained as a whole in some block of π, i.e. σ can
be obtained out of π by refinement of the block structure.
Example:

{(1), (2, 4), (3), (5, 6)} ≤ {(1, 5, 6), (2, 3, 4)}

It is now straighforwared to generalize our moment-cumulant formula

ϕ(a1 · · · an) =
∑

π∈NC(n)

kπ[a1, . . . , an]

in the following way.

Proposition 4. Consider n ∈ N, σ ∈ NC(n) and a1, . . . , an ∈ A.
Then we have

ϕσ[a1, . . . , an] =
∑

π∈NC(n)
π≤σ

kπ[a1, . . . , an].

Consider now

{a1, . . . , an}, {b1, . . . , bn} free.

We want to express alternating moments in a and b in terms of moments
of a and moments of b. We have

ϕ(a1b1a2b2 · · · anbn) =
∑

π∈NC(2n)

kπ[a1, b1, a2, b2, . . . , an, bn].

Since the a’s are free from the b’s, the vanishing of mixed cumulants
in free variables tells us that only such π contribute to the sum whose
blocks do not connect a’s with b’s. But this means that such a π has
to decompose as

π = π1 ∪ π2 where π1 ∈ NC(1, 3, 5, . . . , 2n− 1)

π2 ∈ NC(2, 4, 6, . . . , 2n).
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Thus we have

ϕ(a1b1a2b2 · · · anbn) =
∑

π1∈NC(odd),π2∈NC(even)
π1∪π2∈NC(2n)

kπ1 [a1, a2, . . . , an] · kπ2 [b1, b2, . . . , bn]

=
∑

π1∈NC(odd)

(
kπ1 [a1, a2, . . . , an] ·

∑
π2∈NC(even)

π1∪π2∈NC(2n)

kπ2 [b1, b2, . . . , bn]
)
.

Note now that for a fixed π1 there exists a maximal element σ with
the property π1∪σ ∈ NC(2n) and that the second sum is running over
all π2 ≤ σ.

Definition 4. Let π ∈ NC(n) be a non-crossing partition of the num-
bers 1, . . . , n. Introduce additional numbers 1̄, . . . , n̄, with alternating
order between the old and the new ones, i.e. we order them in the way

11̄22̄ . . . nn̄.

We define the complement K(π) of π as the maximal σ ∈ NC(1̄, . . . , n̄)
with the property

π ∪ σ ∈ NC(1, 1̄, . . . , n, n̄).

If we present the partition π graphically by connecting the blocks in
1, . . . , n, then σ is given by connecting as much as possible the numbers
1̄, . . . , n̄ without getting crossings among themselves and with π. Of
course, we identify NC(1̄, . . . , n̄) in the end with NC(n), so that we
can consider the complement as a mapping on NC(n),

K : NC(n) → NC(n).

Here is an example for a complement: Consider the partition

π := {(1, 2, 7), (3), (4, 6), (5), (8)} ∈ NC(8).

Then

K(π) = {(1̄), (2̄, 3̄, 6̄), (4̄, 5̄), (7̄, 8̄)},
as can be seen from the graphical representation:

1 1̄ 2 2̄ 3 3̄ 4 4̄ 5 5̄ 6 6̄ 7 7̄ 8 8̄

.

This natural notation of the complement of a non-crossing partition
is also due to Kreweras. Note that there is no analogue of this for the
case of all partitions.
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With this definition we can continue our above calculation as follows:

ϕ(a1b1a2b2 · · · anbn) =
∑

π1∈NC(n)

(
kπ1 [a1, a2, . . . , an] ·

∑
π2∈NC(n)
π2≤K(π1)

kπ2 [b1, b2, . . . , bn]
)

=
∑

π1∈NC(n)

kπ1 [a1, a2, . . . , an] · ϕK(π1)[b1, b2, . . . , bn].

This looks a bit unsymmetric in the role of cumulants and moments.
By invoking the moment-cumulant formula one can bring this into a
much more symmetric form on the level of cumulants.

Theorem 3. Consider

{a1, . . . , an}, {b1, . . . , bn} free.

Then we have

ϕ(a1b1a2b2 · · · anbn) =
∑

π∈NC(n)

kπ[a1, a2, . . . , an] · ϕK(π)[b1, b2, . . . , bn],

ϕ(a1b1a2b2 · · · anbn) =
∑

π∈NC(n)

ϕK−1(π)[a1, a2, . . . , an] · kπ[b1, b2, . . . , bn],

and

kn(a1b1, a2b2, . . . , anbn) =
∑

π∈NC(n)

kπ[a1, a2, . . . , an] · kK(π)[b1, b2, . . . , bn]

Examples: For n = 1 we get

ϕ(ab) = k1(a)ϕ(b) = ϕ(a)ϕ(b);

n = 2 yields

ϕ(a1b1a2b2) = k1(a1)k1(a2)ϕ(b1b2) + k2(a1, a2)ϕ(b1)ϕ(b2)

= ϕ(a1)ϕ(a2)ϕ(b1b2) +
(
ϕ(a1a2)− ϕ(a1)ϕ(a2)

)
ϕ(b1)ϕ(b2)

= ϕ(a1)ϕ(a2)ϕ(b1b2) + ϕ(a1a2)ϕ(b1)ϕ(b2)− ϕ(a1)ϕ(a2)ϕ(b1)ϕ(b2).

Example 5. Let us specialize the second formula of our theorem to
the case where b1, . . . , bn are elements choosen from free semi-circular
elements si. The only non-trivial cumulants are then

k2(si, sj) = δij,

and we have

ϕ(a1sp(1) · · · ansp(n)) =
∑

π∈NCp
2 (n)

ϕK−1(π)[a1, . . . , an],
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where NCp
2 (n) denotes those non-crossing pairings of n elements whose

blocks connect only the same p-indices, i.e., only the same semi-circulars.
An example is

ϕ(a1s1a2s1a3s2a4s2) = ϕ(a2)ϕ(a4)ϕ(a1a3).

This type of formula will show up again in the context of random
matrices in the next lecture.

2.12. Multiplicative free convolution and S-transform. Restricted
to the case

a1 = · · · = an = a, b1 = · · · = bn = b,

the above theorem tells us, on a combinatorial level, how to get, if
a and b are free, the moments of ab out of the moments of a and the
moments of b. As for the additive problem, we might want to introduce
a multiplicative free convolution � on real probability measures by the
prescription

µab = µa � µb if a and b are free.

However, there is a problem with this. Namely, if a and b do not
commute, then ab is not selfadjoint, even if a and b are so. So, it is not
clear why ab should have a corresponding real probability measure as
distribution.

However, in the case that a is a positive operator, then a1/2 makes
sense and ab has the same moments as a1/2ba1/2. (ϕ restricted to the
algebra generated by a and b is necessarily a trace.) The latter, how-
ever, is a selfadjoint operator, and has a corresponding distribution.
Then the above definition of � has to be understood as

µa � µb = µa1/2ba1/2 .

This allows to define � if at least one of the involved real probability
measures has support on the positive real axis R+. If we want to
consider � as a binary operation, then it acts on probability measures
on R+.

In order to deal with this free product of random variables in a
more analytic way Voiculescu introduced the so-called S-transform. I
will here just state the main results about this. The original proof of
Voiculescu was not easy and relied on studying the exponential map of
�. Apart from the original approach there exists also a combinatorial
proof (due to Nica and myself) relying on the considerations from the
last section and a proof of Haagerup using creation and annihilation
operators.
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Theorem 4. 1) The S-transform of a random variable a is determined
as follows. Let χ denote the inverse under composition of the series

ψ(z) :=
∞∑

n=1

ϕ(an)zn,

then

Sa(z) = χ(z)z−1(1 + z).

2) If a and b are free, then we have

Sab(z) = Sa(z) · Sb(z).

According to our remarks above this should allow to calculate the
multiplicative free convolution between a probability measure µa on R
and a probability measure µb on R+. However, one might notice that
in the case that ϕ(a) = 0, the series ψ has no inverse χ as power series
in z, and thus the S-transform seems to be not defined in that case.
Thus, in the usual formulation one has to restrict to situations where
the first moment does not vanish. However, since in the case ϕ(a) = 0
the second moment of a must, apart from the trivial case a = 0, be
different from zero, χ makes sense as a power series in

√
z, and in this

way one can remove the restriction ϕ(a) 6= 0.

2.13. Compression by free projection. Finally, I want to indicate
that even without using the S-transform one can get interesting prop-
erties about free multiplicative convolution from our combinatorial de-
scription.

Definition 5. Let (A, ϕ) be a non-commutative probability space and
p ∈ A a projection with ϕ(p) 6= 0. Then we define the compression
(pAp, ϕ̃) by

pAp := {pap | a ∈ A}
(which is a unital algebra with p as unit) and

ϕ̃(pap) :=
1

ϕ(p)
ϕ(pap).

If p is free from a ∈ A then we can calculate the distribution of pap in
the compressed space in the following way by using our combinatorial
formula from Theorem 3.

Using pk = p for all k ≥ 1 and ϕ(p) =: α gives

ϕK(π)[p, p, . . . , p] = ϕ(p . . . p)ϕ(p . . . p) · · · = α|K(π)|,
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where |K(π)| denotes the number of blocks of K(π). We can express
this number of blocks also in terms of π, since we always have the
relation

|π|+ |K(π)| = n+ 1.

Thus we can continue our calculation of Theorem 3 in this case as
1

α
ϕ[(ap)n] =

1

α

∑
π∈NC(n)

kπ[a, . . . , a]αn+1−|π|

=
∑

π∈NC(n)

1

α|π|
kπ[αa, . . . , αa],

which shows that

kpAp
n (pap, . . . , pap) =

1

α
kn(αa, . . . , αa)

for all n. By our results on the additive free convolution, this gives the
surprising result that the renormalized distribution of pap is given by

µpAp
pap = µ�1/α

αa .

For example, for α = 1/2, we have

µpAp
pap = µ�2

a/2 = µa/2 � µa/2.

Let us state this compression result also in the original probability
space (A, ϕ).

Theorem 5. We have for all real probability measures and all t with
0 < t < 1 that

µ�
(
(1− t)δ0 + tδ1/t

)
= (1− t)δ0 + tµ�1/t.
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