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Random Matrices and Combinatorics

Roland Speicher

1. Introduction

The notion of free independence was introduced by Voiculescu in 1983 in
the context of operator algebras, giving rise to free probability theory. In 1991,
Voiculescu discovered that this notion of freeness also appeared in the context
of random matrices. The latter had already been a subject of investigation
in statistics (Wishart, 1928) and physics (Wigner, 1955) for quite some time.
One of the basic results in random matrix theory was Wigner’s discovery that
the eigenvalue distribution of a Gaussian unitary ensemble is asymptotically
given by the semicircular law. Since the semicircle law is also the limit in the
free version of a central limit theorem, this pointed to a connection between
free probability theory and random matrices. We will first present a short
introduction to random matrices and show Wigner’s semicircle law, and then
switch to the free probability side and show that the semicircle shows also up
as the limit in a free central limit theorem. This motivated Voiculescu to look
for a deeper relation between random matrices and asymptotic freeness. We
will present a few examples of this connection in the final Section 6. However,
before coming to this, we will give a more thorough treatment of the combina-
torial structure of free probability theory, based on the lattice of non-crossing
partitions and the notion of free cumulants.

2. Gaussian Random Matrices and Wigner’s Semicircle Law

Definition 2.1. Let (Ω,P) be a classical probability space. A random matrix
is a matrix A = (aij)

N
i,j=1 where the entries aij : Ω → C, i, j = 1, . . . , N are

classical random variables. The corresponding non-commutative probability
space (A, ϕ) of N ×N - random matrices is given by

A =MN (L∞−(Ω,P)) =MN (C)⊗ L∞−(Ω,P)

and

ϕ = tr⊗E,
where

L∞−(Ω,P) =
⋂

1≤p<∞

Lp(Ω,P)
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denotes the space of random variables for which all moments exist. Moreover,
tr denotes the normalized trace on MN (C) and E denotes the expectation on
(Ω,P). Hence we have A = (aij)

N
i,j=1 ∈ A if and only if aij ∈ L∞−(Ω,P) for

all i, j = 1, . . . , N and

ϕ(A) = tr⊗E(A) = E[tr(A)] =
1

N

N∑
i=1

E[aii].

Remark 2.2. Consider a selfadjoint random matrix A = A∗ ∈ A, i.e. aij = aji
for all i, j = 1, . . . , N . Let λ1, . . . , λN denote the eigenvalues of A. Then

ϕ(Ak) = E[tr(Ak)] =
1

N
E
[ N∑
i=1

λki

]
=

∫
tkdµA(t),

where

µA =
1

N

∫
Ω

N∑
i=1

δλi(ω) dP(ω)

denotes the averaged eigenvalue distribution of A. In other words, the set of
moments of A w.r.t. ϕ corresponds to the analytic object µA.

Definition 2.3. A (selfadjoint) Gaussian random matrix is a random matrix
A = (aij)

N
i,j=1 where

• A = A∗, i.e. aij = aji for all i, j = 1, . . . , N ,
• aij (1 ≤ i ≤ j ≤ N) are independent complex Gaussian random vari-

ables with

E[aij ] = 0,

E[a2
ij ] = 0 (i 6= j),

E[aijaji] = E[aijaij ] =
1

N
.

Remark 2.4. Such random matrices are addressed as Gaussian unitary en-
semble (GUE). “Unitary” refers to the fact that the distribution of the entries
of A is invariant under unitary conjugations.

We want now to calculate ϕ(Am) for a GUE. For this we need expectations
of products of entries, which form a Gaussian family in the following sense:

Definition 2.5. Random variables x1, . . . , xn form a Gaussian family, if for
all m ∈ N and for all 1 ≤ i(1), . . . , i(m) ≤ n:

E[xi(1) . . . xi(m)] =
∑

π∈P2(m)

∏
(r,s)∈π

E[xi(r)xi(s)],

where P2(m) denotes the set of pair-partitions of m elements (i.e., the decom-
position of the set {1, . . . ,m} into disjoint pairs). This combinatorial formula,
which expresses all higher moments of a Gaussian family in terms of second
moments, is usually called the Wick formula.
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It might be interesting to note that, while the work of Wick (in physics) is
from 1950, the same formula was also shown by Isserlis in 1918 in probability
theory - thus the name “Isserlis formula” might also be appropriate.

Example 2.6. Let x1, . . . , xn be a Gaussian family. Then for odd m, it follows
that E[xi(1) . . . xi(m)] = 0 and for m = 2 the Wick-formula yields the trivial
identity E[xi(1)xi(2)] = E[xi(1)xi(2)]. However, for m = 4 the set P2(4) consists
of 3 elements and we have that

E[xi(1)xi(2)xi(3)xi(4)] = E[xi(1)xi(2)]E[xi(3)xi(4)]

+ E[xi(1)xi(3)]E[xi(2)xi(4)]

+ E[xi(1)xi(4)]E[xi(2)xi(3)].

We note that real i.i.d. Gaussian random variables x1, . . . , xn form a Gauss-
ian family with E[xixj ] = δijσ

2: (i) first note that xi Gaussian implies

E[xmi ] =
1√
2πσ

∫
R
tme−

t2

2σ2 dt =

{
0 m odd,

σm(m− 1)(m− 3) · · · · · 1 m even

=

{
0 m odd,

σm #P2(m) m even;

(ii) and since E[xixj ] = δijσ
2, the Wick formula only counts pairings of the

same xi’s, hence it factorizes for different ones, corresponding to the indepen-
dence of different xi’s.

Thus, the entries aij (i, j = 1, . . . , N) of a GUE A = (aij)
N
i,j=1 form a

Gaussian family, where the second moments are given by

E[aijakl] =
1

N
δilδjk for i, j, k, l = 1, . . . , N .

Now we can calculate the moments of the GUE A = (aij)
N
i,j=1:

ϕ(Am) =
1

N

N∑
i(1),...,i(m)=1

E[ai(1)i(2)ai(2)i(3) . . . ai(m)i(1)]

=
1

N

N∑
i(1),...,i(m)=1

∑
π∈P2(m)

∏
(r,s)∈π

E[ai(r)i(r+1)ai(s)i(s+1)]

=
1

N

N∑
i(1),...,i(m)=1

∑
π∈P2(m)

∏
(r,s)∈π

1

N
δi(r)i(s+1)δi(r+1)i(s)

=
1

N1+m
2

∑
π∈P2(m)

N∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(π(r)+1)

=
1

N1+m
2

∑
π∈P2(m)

N∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r)),
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where we identify π ∈ P2(m) with the permutation π ∈ Sm that switches the
places of r and s for (r, s) ∈ π and where we denote the long cycle permutation
(1, 2, 3, . . . ,m− 1,m) ∈ Sm by γ. By noting that

N∑
i(1),...,i(m)=1

m∏
r=1

δi(r)i(γπ(r)) = N#(γπ),

where #(γπ) denotes the number of cycles of γπ, we get the following theorem:

Theorem 2.7. For an N ×N - GUE random matrix A = (aij)
N
i,j=1 we have

the genus expansion

ϕ(Am) =
∑

π∈P2(m)

N#(γπ)−1−m2 .

Example 2.8. For m = 2, P2(m) only consists of the element π = (1, 2) and
we have γ = (1, 2). Hence γπ = e and #γπ = 2 which yields the second
moment

ϕ(A2) = N2−1−1 = 1.

In the case m = 4, P2(m) contains the elements

π1 = (1, 2)(3, 4), π2 = (1, 3)(2, 4), π3 = (1, 4)(2, 3)

and we have γ = (1, 2, 3, 4). Hence

#(γπ1)− 3 = 0, #(γπ2)− 3 = −2, #(γπ3)− 3 = 0,

which yields

ϕ(A4) = 2 +
1

N2

N→∞−→ 2.

In the same way we obtain

ϕ(A6) = 5 +
10

N2

N→∞−→ 5

ϕ(A8) = 14 +
70

N2
+

21

N4

N→∞−→ 14.

More general, one has #(γπ) − 1 − m
2 ≤ 0 for all π ∈ P2(m) and equality

holds exactly for the so-called non-crossing π. A pair-partition π ∈ P2(m) is
crossing if we can find two blocks (r1, s1) and (r2, s2) of π which cross, i.e.,
with r1 < r2 < s1 < s2.

Thus, for N →∞, the moments of a GUE A = (aij)
N
i,j=1 are given by

lim
N→∞

ϕ(Am) = #NC2(m),

where NC2(m) denotes the set of non-crossing pair-partitions.

If we put cm = #NC2(2m) for m ∈ N, one can show that

cm =

m−1∑
k=0

ckcm−k−1,
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Figure 1. Comparision between the histogram for the 4000
eigenvalues of one realization of a 4000× 4000 Gaussian ran-
dom matrix and the semicircle distribution; as the agreement
between histogram and semicirle suggests, Wigner’s semicircle
law does not only hold for the averaged eigenvalue distribu-
tions, but also almost surely for generic realizations

which is exactly the recursion for the Catalan numbers. Thus,

cm =
1

m+ 1

(
2m

m

)
.

One can show that these are exactly the moments for the semicircular law, i.e.

cm =
1

2π

∫ 2

−2

tm
√

4− t2dt

and hence we get the theorem:

Theorem 2.9 (Wigner’s semicircle law). The asymptotic eigenvalue distribu-
tion of a GUE A is given by the semicircle law, i.e.

lim
N→∞

µA = µS (weak convergence),

where

dµS(t) =
1

2π

√
4− t2dt on [−2, 2].

3. The Free Central Limit Theorem

We will now switch to the free probability side and see that the semicircle
distribution appears there also as one of the basic distributions. For this we
will look on the free analogue of the central limit theorem. This free central
limit theorem was one of the first theorems of Voiculuescu in free probability
theory. It was also my entry point into the free world. From the work of
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my PhD supervisor, Wilhelm von Waldenfels, I was aware of combinatorial
approaches to classical and bosonic/fermionic central limit theorems, and I
tried to understand in this spirit Voiculescu’s result. In the following I will
present this combinatorial approach.

In order to illuminate the parallels (and also the differences) between clas-
sical and free, we will give a uniform treatment of both the classical and the
free central limit theorem.

Consider a sequence (ai)
∞
i=1 of elements of a non-commutative probability

space (A, ϕ) which are

• identically distributed,
• centered, i.e. ϕ(a1) = 0,
• normalized, i.e. ϕ(a2

1) = 1,
• either classically independent or freely independent.

Note that we require the existence of moments here.
What can we say about

SN =
a1 + · · ·+ aN√

N
,

when N →∞ ?

Definition 3.1. We say that SN ∈ (AN , ϕN ) (N ∈ N) converges in distribu-

tion to x ∈ (A, ϕ), and denote this by SN
dist.→ x, if

lim
N→∞

ϕN (SmN ) = ϕ(xm)

for all m ∈ N.

Let us see whether we can control the moments of SN when N goes to ∞.
We have

ϕ(SmN ) =
1

N
m
2
ϕ((a1 + · · ·+ aN )m) =

1

N
m
2

N∑
i(1),...,i(m)=1

ϕ(ai(1) . . . ai(m)).

For i = (i(1), . . . , i(m)) we denote by ker(i) the maximal partition of {1, . . . ,m}
such that i is constant on blocks. For example, i = (1, 3, 1, 5, 3) and j =
(3, 4, 3, 6, 4) have the same kernel. Now we note that by the fact that all our
variables are identically distributed and by basic properties of either indepen-
dence or freeness we have

ϕ(ai(1) . . . ai(m)) = ϕ(aj(1) . . . aj(m)),
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whenever ker i = ker j and hence (by denoting by P(m) the set of all partitions
of {1, . . . ,m}; for a formal definition see Def. 4.1)

ϕ(SmN ) =
1

N
m
2

∑
π∈P(m)

κπ #
{
i : {1, . . . ,m} → {1, . . . , N} : ker i = π

}
=

1

N
m
2

∑
π∈P(m)

κπ N(N − 1) · · · · · (N − (#π − 1))

∼
∑

π∈P(m)

κπ N
#π−m2

for large N , where κπ = ϕ(ai(1) . . . ai(m)) if ker i = π.
Let π have a singleton, i.e., a block consisting of just one element (meaning

that one of the appearing indices is different from all the others.) Then

κπ = ϕ(ai(1) . . . ai(k) . . . ai(m)) = ϕ(ai(1) . . . ai(k−1)ai(k+1) . . . ai(m))ϕ(ai(k)) = 0,

where i(k) is the index that differs from all the others. Here we used the
free/classical independence of the sets {ai(1), . . . , ai(k−1), ai(k+1), . . . ai(m)} and
{ai(k)} and the fact that all our variables are centered. Hence κπ 6= 0 implies
that π = {V1, . . . , Vr} with |Vj | ≥ 2 for all j = 1, . . . , r and thus r = #π ≤ m

2 .
Altogether we get

lim
N→∞

ϕ(SmN ) =
∑

π∈P(m)
π has no singleton

#π=m
2

κπ =
∑

π∈P2(m)

κπ,

where P2(m) denotes, as in the previous section, the set of pair-partitions. In
particular it follows that

lim
N→∞

ϕ(SmN ) = 0

for odd m.
Now we want to distinguish the classical and the free case:

1) If we consider the ai’s to be classical (commutative) independent random
variables, then we have for even m

κπ = ϕ(ai(1) . . . ai(m)) = 1

for all π ∈ P2(m). Thus we have

lim
N→∞

ϕ(SmN ) = #P2(m) =

{
0, m odd

(m− 1)(m− 3) · · · · · 1, m even
,

which are exactly the moments of the Gaussian distribution. This proves the
classical central limit theorem, in the case where all moments exist.

2) If the ai’s are free, we get

κπ =

{
0, π is crossing

1, π ∈ NC2(m).

For instance, if Note
to
self:
Par-
titio-
nen
einf-
gen

Münster Journal of Mathematics Vol. 1 (2008), 99999–99999



100006 Roland Speicher

π = {(1, 6), (2, 5), (3, 4)} =

we obtain

κπ = ϕ(a1a2a3a3a2a1) = ϕ(a3a3)ϕ(a1a2a2a1) = ϕ(a3a3)ϕ(a2a2)ϕ(a1a1) = 1,

and if

π = {(1, 5), (2, 3), (4, 6)} =

we have

κπ = ϕ(a1a2a2a3a1a3) = ϕ(a2a2)ϕ(a1a3a1a3) = 0,

by definition of freeness and the fact that all ϕ(ai) = 0.
So we get in the limit of the free central limit theorem that the moments
are counted by the number of non-crossing pair-partitions; hence the same
moments as in the limit of Gaussian random matrices.

Theorem 3.2. Assume a1, a2, · · · ∈ (A, ϕ) are free and identically distributed
with ϕ(a1) = 0 and ϕ(a2

1) = 1. Then

a1 + · · ·+ aN√
N

dist.→ s,

where s is a semicircular element, i.e.

ϕ(sm) =
1

2π

∫ 2

−2

tm
√

4− t2 dt = #NC2(m).

The free central limit theorem can be easily generalized to a multivariate
version:

Theorem 3.3. Let {a(i)
1 | i ∈ I}, {a(i)

2 | i ∈ I}, . . . ⊂ (A, ϕ) be a sequence of

freely independent with identical distribution with ϕ(a
(i)
r ) = 0 for all r ∈ N,

i ∈ I. We denote the covariance by

cij = ϕ(a(i)
r a(j)

r ) (i, j ∈ I).

Then (
a

(i)
1 + · · ·+ a

(i)
N√

N

)
i∈I

dist.→ (si)i∈I ,

where (si)i∈I is a semicircular family of covariance (cij)i,j∈I , i.e.

ϕ(si(1) . . . si(m)) =
∑

π∈NC2(m)

∏
(r,p)∈π

ci(r)i(p)

for all m ∈ N.
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4. Non-crossing Partitions and Free Cumulants

After having realized that the transition from the classical to the free central
limit theorem consists, on a combinatorial level, in replacing all pair-partitions
by non-crossing pair-partitions it was tempting to try to develop a general
approach to free probability theory based on this observation. For this the
combinatorial description of classical probability theory in terms of cumulants
and the lattice of all partitions, as presented in the work of Gian-Carlo Rota
and his coworkers, was instrumental. Motivated by this I developed the follow-
ing general combinatorial approach to free probability theory, resting on the
notion of free cumulants.

Definition 4.1. A partition of {1, . . . , n} is a collection π = {V1, . . . , Vr} of
subsets of {1, . . . , n} with

• Vi 6= ∅ for all i = 1, . . . r,
• Vi ∩ Vj = ∅ for i 6= j and
•
⋃r
i=1 Vi = {1, . . . , n}.

The Vi’s are called the blocks of π.
The partition π is non-crossing if we do not have p1, p2, q1, q2 ∈ {1, . . . , n}
such that p1 < q1 < p2 < q2 and p1, p2 belong to the same block, q1, q2 belong
to the same block, but those two blocks are different. We denote the set of all
partitions of {1, . . . , n} by P(n) and the subset of all non-crossing partitions
by NC(n).

We can define a partial order on NC(n) by: π1 ≤ π2 iff each block of π1 is
contained in a block of π2. For instance, we have

1 2 3 4
≤

1 2 3 4

This partial order induces a lattice structure on NC(n), i.e. for all π, σ ∈
NC(n) there is a minimal partition π ∨σ that is larger than π and larger than
σ (called the join of π and σ) and a maximal partition π ∧ σ that is smaller
than π and smaller than σ (called the meet of π and σ).

Example 4.2. We have

∧ =

and

∨ = .

The lattice NC(n) has the maximal element 1n consisting of one block of size
n and the minimal element 0n consisting of n blocks of size one.

Münster Journal of Mathematics Vol. 1 (2008), 99999–99999
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Definition 4.3. Let (A, ϕ) be a non-commutative probability space. The free
cumulants κn : An → C (n ≥ 1) are inductively defined by the moment-
cumulant formulas

ϕ(a1 . . . an) =
∑

π∈NC(n)

κπ(a1, . . . , an),

where, for π = {V1, . . . , Vr},

κπ(a1, . . . , an) =

r∏
i=1

κ|Vi|((aj)j∈Vi).

Example 4.4. For n = 1, we get

κ1(a1) = ϕ(a1)

and for n = 2, the moment-cumulant formula yields

ϕ(a1a2) = κ2(a1, a2) + κ1(a1)κ2(a2).

Hence

κ2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2).

For n = 3, we have five non-crossing partitions and hence κ3 is determined by

ϕ(a1a2a3) = κ3(a1, a2, a3) + κ1(a1)κ2(a2, a3)

+ κ1(a2)κ2(a1, a3) + κ1(a3)κ2(a1, a2)

+ κ1(a1)κ1(a2)κ1(a3).

One can use an inductive argument to show that κn is a n-linear functional.
Now we want to have a look at the behaviour of κn with respect to products
of elements of A. We consider the following example:

κ2(a1a2, a3) = ϕ((a1a2)a3)− ϕ(a1a2)ϕ(a3)

= ϕ(a1a2a3)− ϕ(a1a2)ϕ(a3)

= κ3(a1, a2, a3) + κ1(a1)κ2(a2, a3) + κ1(a2)κ2(a1, a3).

We note, that the cumulants appearing in the last equation are exactly the
ones that correspond to partitions in NC(3) that connect the blocks {1, 2} and
{3}. This can be generalized to the following result.

Theorem 4.5. Consider a1, . . . , an ∈ A and multiply some of them together
to A1, . . . , Am (m ≤ n) such that A1 · · ·Am = a1 · · · an. Then

κm(A1, . . . , Am) =
∑

π∈NC(n)
π∨σ=1n

κπ(a1, . . . , an),

where i, j belong to the same block of σ if and only if ai and aj are factors in
the same Ak.

Remark 4.6. We note that the condition π ∨σ = 1n appearing in the sum in
the last theorem means that one has to consider all partitions π that couple
all blocks of σ.

Münster Journal of Mathematics Vol. 1 (2008), 99999–99999



Random Matrices and Combinatorics 100009

Now we present the main result on free cumulants, which connects them to
freeness.

Theorem 4.7. Let (A, ϕ) be a non-commutative probability space. Unital
subalgebras A1, . . . ,As ⊂ A are free if and only if all mixed cumulants vanish,
i.e.

κn(a1, . . . , an) = 0

whenever aj ∈ Ai(j) for all j = 1, . . . , n and there are k, l ∈ {1, . . . , n} such
that i(k) 6= i(l).

Proof. It is easy to show by induction that A1, . . . ,As are free whenever mixed
cumulants vanish. On the other hand, if A1, . . . ,As are free, we note that
another easy inductive argument shows that κn(a1, . . . , an) = 0 whenever
ϕ(ai) = 0 for all i = 1, . . . , n and i(j) 6= i(j + 1) for all j = 1, . . . , n − 1. The
difficult part of the proof is to weaken this condition to the one needed in the
theorem. To do so, one shows first that κn(a1, . . . , an) = 0 if 1 ∈ {a1, . . . , an}
and n ≥ 2. But then we get that

κn(a1, . . . , an) = κn(a1 − ϕ(a1)1, . . . , an − ϕ(an)1)

and hence we can get rid of the condition ϕ(ai) = 0 for all i = 1, . . . , n.
Therefore κn(a1, . . . , an) = 0 whenever i(j) 6= i(j + 1) for all j = 1, . . . , n− 1.
Let there be k, l ∈ {1, . . . , n} such that i(k) 6= i(l). We multiply neighbors from
the same algebra together to get elements A1, . . . , Am such that A1 · · ·Am =
a1 · · · an and Aj , Aj+1 are from different algebras for all j = 1, . . . ,m − 1.
Hence

κm(A1, . . . , Am) = 0

but we also have

κm(A1, . . . , Am) =
∑

π∈NC(n)
π∨σ=1n

κπ(a1, . . . , an)

= κn(a1, . . . , an) +
∑
π 6=1n
π∨σ=1n

κπ(a1, . . . , an).

Now we assume that we know the statement for κl, l < n. Then we have that
κπ(a1, . . . , an) 6= 0 only for partitions π that couple elements ai from the same
algebra. But as σ also does so and π ∨ σ = 1n, all ai must be from the same
algebra. But this contradicts the condition that there are k, l ∈ {1, . . . , n} such
that i(k) 6= i(l). �

Applying the product formula once more, one can also show:

Theorem 4.8. Let (A, ϕ) be a non-commutative probability space. Elements
b1, . . . , bs ∈ A are free if and only if for all n

κn(bi(1), . . . , bi(n)) = 0

whenever there are k, l ∈ {1, . . . , n} such that i(k) 6= i(l).
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5. Sums and Products of Free Variables

5.1. Sums. Let (A, ϕ) be a non-commutative probability space and let a, b ∈
A be free. How can we describe the distribution of a + b in terms of the
distributions of a and b? Of course, one can calculate the moments of a+ b in
terms of moments of a and b, but moments turn out not to be the adequate
tool to deal with sums of free variables, as calculating the moments of a + b
gets increasingly complicated for higher powers of a + b. Using cumulants is
more promising.
Let us denote κan = κn(a, a, . . . , a). Then we have

κa+b
n = κn(a+ b, a+ b, . . . , a+ b)

= κn(a, a, . . . , a) + κn(b, b, . . . , b) + κn(mixed terms)

= κan + κbn,

as mixed cumulants vanish by the results of last chapter. Hence cumulants are
additive w.r.t. what we want to call free convolution. However, at the moment
the relation between moments and cumulants is just given on a combinatorial
level by summations over large sets of non-crossing partitions. In order to be
really useful, we need analytic tools for a better understanding of this relation
between moments and cumulants.

Theorem 5.1. We denote the n-th moment ϕ(an) of a ∈ A by mn and we
consider the formal power series

M(z) = 1 +

∞∑
n=1

mnz
n (moment series)

and

C(z) = 1 +

∞∑
n=1

κanz
n (cumulant series).

Then the moment-cumulant relation

mn =
∑

π∈NC(n)

κaπ

is equivalent to

M(z) = C(zM(z)).

Proof. To simplify notation, we will write κπ instead of κaπ. The crucial
observation is now that we can encode a non-crossing partition by its first
block V = (j1 = 1, j2, . . . , js) and non-crossing partitions π1, . . . , πs of the
points between consecutive points of V ; i.e., πr is a non-crossing partition of
ir := jr+1− jr−1 points (where we put js+1 := n). This leads to the following
rewriting of our moment-cumulant formula.
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mn =
∑

π∈NC(n)

κπ =

n∑
s=1

∑
i1,...,is≥0

i1+···+is+s=n

∑
π1∈NC(i1)

· · ·
∑

πs∈NC(is)

κsκπ1 · · ·κπs

=

n∑
s=1

∑
i1,...,is≥0

i1+···+is+s=n

κsmi1 · · ·mis .

Hence we have that

M(z) = 1 +

∞∑
n=1

mnz
n = 1 +

∞∑
n=1

n∑
s=1

∑
i1,...,is≥0

i1+···+is+s=n

κsz
smi1z

i1 · · ·misz
is

= 1 +

∞∑
s=1

∑
i1,...,is≥0

κsz
smi1z

i1 · · ·misz
is

= 1 +

∞∑
s=1

κsz
sM(z)s

= C(zM(z)).

�

Remark 5.2. Classical cumulants (cn) are defined by the moment-cumulant
formula

mn =
∑

π∈P(n)

cπ.

In terms of

A(z) = 1 +

∞∑
n=1

mn

n!
zn and B(z) = 1 +

∞∑
n=1

cn
n!
zn,

this is equivalent to

B(z) = logA(z).

Thus classical cumulants are essentially the coefficients of the logarithm of
the Fourier transform (or characteristic function) of the considered random
variable.

To be able to use analytic methods, it is useful to rewrite M(z) and C(z)
in terms of the Cauchy transform

G(z) = ϕ

(
1

z − a

)
=

∞∑
n=0

ϕ(an)

zn+1
=
M( 1

z )

z

and Voiculescu’s R-transform

R(z) =

∞∑
n=0

κn+1z
n =

C(z)− 1

z
.
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Then, as

M(z) =
G( 1

z )

z
and C(z) = zR(z) + 1,

the relation M(z) = C(zM(z)) can be rewritten as

G( 1
z )

z
= zM(z)R(zM(z)) + 1 = G(1/z)R(G(1/z)) + 1.

Replacing z by 1/z leads to

zG(z) = G(z)R(G(z)) + 1

and hence

R(G(z)) +
1

G(z)
= z,

i.e. R(z) + 1/z and G(z) are inverses under composition. Thus,

G(R(z) + 1/z) = z

also holds.
The advantage of G(z) over M(z) is that

G(z) = ϕ

(
1

z − a

)
=

∫
1

z − t
dµa(t)

defines an analytic function G : C+ → C− and we can recover µ = µa from G
by the Stieltjes inversion formula

dµ(t) = − 1

π
lim
ε→0

ImG(t+ iε).

Example 5.3. We consider the semicircular distribution µs which is charac-
terized by the moments being given by the Catalan numbers (counting non-
crossing pair-partitions) or equivalently

κn =

{
0 if n 6= 2

1 if n = 2.

Thus, R(z) = κ2z = z and

z = R(G(z)) +
1

G(z)
= G(z) +

1

G(z)
.

This implies G(z)2 + 1 = zG(z) and this is solved by

G(z) =
z ±
√
z2 − 4

2
.

As G(z) ∼ 1/z for z →∞, we have

G(z) =
z −
√
z2 − 4

2
.

The Stieltjes inversion formula finally shows that

dµs(t) = − 1

π
lim
ε→0

Im

(
t−
√
t2 − 4

2

)
=

{
1

2π

√
4− t2, if t ∈ [−2, 2]

0, otherwise,
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which indeed describes the semicircle on the interval [−2, 2].

Altogether, we have found an analytic way to calculate the free convolution
µ = µ1 � µ2 of two distributions µ1 and µ2 by calculating their Cauchy and
R-transforms G1, G2 and R1, R2 and adding R1 and R2 to get the R-transform
R = R1 + R2 of µ. Hence we can recover the Cauchy transform G of µ from
R and use the Stieltjes inversion formula to get µ.

Exercise 5.4. (1) Calculate ( 1
2δ−1 + 1

2δ1)�n for n = 2, 3, . . . .
(2) Prove: If a, b are free, then

Ga+b(z) = Ga[z −Rb(Ga+b(z))].

5.2. Products. Let (A, ϕ) be a non-commutative probability space and let
a, b ∈ A be free. As in the sum case, we want to find a way of recovering
µab = µa � µb from µa and µb. We note that this is not an operation on real
probability measures as ab is in general not be selfadjoint, even if a and b are.
However, if b ≥ 0, then b1/2ab1/2 is selfadjoint and has the the same moments
as ab and thus, we also have

µa � µb = µb1/2ab1/2 .

Calculating the moments directly, again, turns out to be rather complicated,
so we need other methods to determine µa � µb.

Let σ denote the pair partition {{1, 2}, {3, 4}, . . . , {2n − 1, 2n}} for n ∈ N.
Then, for {a1, . . . , an}, {b1, . . . , bn} free, we have, by Theorem 4.5

κn(a1b1, a2b2, . . . , anbn) =
∑

π∈NC(2n)
π∨σ=12n

κπ(a1, b1, a2, b2, . . . , an, bn)

and we can decompose π into π = π1 ∪ π2, where

π1 ∈ NC(odd) := NC(1, 3, 5, . . . , 2n− 1)

and

π2 ∈ NC(even) := NC(2, 4, 6, . . . , 2n).

Hence we can write the expression above as∑
π1∈NC(odd)

κπ1
(a1, a2, . . . , an)

∑
π2∈NC(even)
π1∪π2∈NC(2n)
(π1∪π2)∨σ=12n

κπ2
(b1, b2, . . . , bn).

Given π1 ∈ NC(odd), there exists a unique π2 ∈ NC(even) that fulfills the
summing conditions above. This π2 is called the Kreweras complement of π1

and we write π2 = K(π1).
The induced map K : NC(n) → NC(n) is an anti-isomorphism in the sense
that if σ ≤ π, then K(σ) ≥ K(π). Moreover, K(π) is the maximal σ such that
π ∈ NC(odd), σ ∈ NC(even) and π ∪ σ ∈ NC(2n).
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Theorem 5.5. Let (A, ϕ) be a non-commutative probability space and let
{a1, . . . , an}, {b1, . . . , bn} be free. Then we have

κn(a1b1, a2b2, . . . , anbn) =
∑

π∈NC(n)

κπ(a1, . . . , an) · κK(π)(b1, . . . , bn)

and

ϕ(a1b1a2b2 · · · anbn) =
∑

π∈NC(n)

κπ(a1, . . . , an) · ϕK(π)(b1, . . . , bn).

Translating this into power series gives Voiculescu’s description via the S-
transform.

Theorem 5.6. Let (A, ϕ) be a non-commutative probability space and let a ∈
A. We denote the moment series of a by Ma(z) and define the S-transform of
a by

Sa(z) =
1 + z

z
M<−1>
a (z).

Then, if b, c ∈ A are free, we have

Sbc(z) = Sb(z)Sc(z).

6. Asymptotic Freedom of Random Matrices

Finally, we want to come back to random matrices and find freeness itself
(at least asymptotically) making its appearance there.

Definition 6.1. Two sequences of random matrices (AN )N∈N and (BN )N∈N
are called asymptotically free if:

• AN , BN
dist.→ a, b, for some a, b ∈ A, where (A, ϕ) is some non-commutative

probability space. Recall that convergence in distribution means

lim
N→∞

ϕN (p(AN , BN )) = ϕ(p(a, b))

for any polynomial p ∈ C〈X1, X2〉 in two non-commuting variables and
that ϕN = E⊗tr denotes here the averaged trace on our N×N -random
matrices.

• a, b are free in (A, ϕ).

As an appetizer let us first consider Voiculescu’s generalization of Wigner’s
theorem to the case of several independent GUE random matrices A(1) =

(a
(1)
ij )Ni,j=1, . . . , A(n) = (a

(n)
ij )Ni,j=1. Then

{a(p)
ij | i, j = 1, . . . , N ; p = 1, . . . , n}

is a Gaussian family with

E[a
(p)
ij a

(r)
kl ] =

1

N
δilδjkδpr.
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The same calculations as in Section 2 yield the mixed moments

ϕ(A(p(1)) . . . A(p(m))) =
∑

π∈P(p)
2 (m)

N#(γπ)−1−m2 ,

where P(p)
2 (m) denotes the set of pair partititions π that respect the “coloring”

of the matrices, i.e. those π ∈ P2(m) for which (r, s) ∈ π implies p(r) = p(s).
Thus

lim
N→∞

ϕ(A(p(1)) . . . A(p(m))) = #NC(p)
2 (m).

These limiting mixed moments of A(1), . . . , A(n) are exactly those of a semi-
circular family s1, . . . , sn with diagonal covariance, i.e.

ϕ(si(1) . . . si(m)) =
∑

π∈NC2(m)

∏
(r,p)∈π

ϕ(si(r)si(p))

and ϕ(sisj) = δij for i, j = 1, . . . , n. Note that we can also rewrite this in
terms of cumulants as κn(si(1), . . . , si(n)) = 0 for n 6= 2 and

κ2(si, sj) =

{
1, i = j

0, i 6= j
.

However, this shows that mixed cumulants in s1, . . . , sn vanish and thus we
have the following theorem.

Theorem 6.2. Elements of a semicircular family with diagonal covariance are
free. Therefore, independent GUE random matrices are asymptotically free.

Now we want to go further and find asymptotic freeness not just for semi-
circular distributions. For this we consider a GUE of N × N -random matri-
ces (AN )N∈N and a sequence of deterministic matrices (DN )N∈N such that

limN→∞ tr(Dm
N ) exists for all m ∈ N, i.e DN

dist.→ d, where

ϕ(dm) = lim
N→∞

tr(Dm
N ).

We know that AN
dist.→ s where s is semicircular and DN

dist.→ d, but

what about AN , DN
dist.→ ? In other words, can we calculate mixed moments in

AN , DN?

We recall that for AN = (aij)
N
i,j=1, we have the Wick formula

E[ai(1)j(1) · · · ai(m)j(m)] =
∑

π∈P2(m)

∏
(r,s)∈π

E[ai(r)j(r)ai(s)j(s)],

where

E[aijakl] =
1

N
δilδjk.
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Now, we consider a deterministic N × N -matrix D = (dij)
N
i,j=1 and write

Dq(k) = (d
(k)
ij )Ni,j=1 for q(k) ∈ N, k = 1, . . . ,m. Then, we have for a general

mixed moment

ϕ(ADq(1) . . . ADq(m)) =
1

N

N∑
i(1),...,i(m)=1
j(1),...,j(m)=1

E[ai(1)j(1)d
(1)
j(1)i(2)ai(2)j(2) · · · d

(m)
j(m)i(1)]

=
1

N

N∑
i(1),...,i(m)=1
j(1),...,j(m)=1

E[ai(1)j(1) · · · ai(m)j(m)]d
(1)
j(1)i(2) · · · d

(m)
j(m)i(1)

=
1

N1+m
2

∑
π∈P2(m)

N∑
i(1),...,i(m)=1
j(1),...,j(m)=1

m∏
r=1

δi(r)j(π(r))d
(1)
j(1)i(2) · · · d

(m)
j(m)i(1)

=
1

N1+m
2

∑
π∈P2(m)

N∑
j(1),...,j(m)=1

d
(1)
j(1)j(πγ(1)) · · · d

(m)
j(m)j(πγ(m)),

where we denote as before the permutation (1, 2, 3, . . . ,m − 1,m) ∈ Sm by γ.
If we denote also

trσ(Dq(1), . . . , Dq(m)) =
∏

c=(d1,...,dl)∈σ

tr(Dq(d1) · · ·Dq(dl))

(product of traces along the cycles of σ) for a permutation σ ∈ Sm, the above
can be written as

ϕ(ADq(1) . . . ADq(m)) =
∑

π∈P2(m)

trπγ(Dq(1), . . . , Dq(m)) ·N#(πγ)−1−m2 ,

which converges for N →∞ to∑
π∈NC2(m)

trπγ(dq(1), . . . , dq(m)).

We recall that, if s, d are free, it holds that

ϕ(sdq(1) . . . sdq(m)) =
∑

π∈NC(m)

κπ(s, . . . , s)ϕK(π)(d
q(1), . . . , dq(m))

=
∑

π∈NC2(m)

ϕK(π)(d
q(1), . . . , dq(m)),

as

κπ(s, . . . , s) =

{
1, if π ∈ NC2(m)

0, otherwise.

Hence the asymptotic value of ϕ(ADq(1) . . . ADq(m)) is given by the moment
ϕ(sdq(1) . . . sdq(m)), provided that K(π) and πγ coincide. This is indeed the
case for general π ∈ NC2(m). We will check this at the following example.
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Example 6.3. Consider the non-crossing pairing

π = {(1, 2), (3, 6), (4, 5), (7, 8)}.
Then we have

πγ = (1)(2, 6, 8)(3, 5)(7).

That this agrees with K(π) can be seen from the graphical representation

1 1̄ 2 2̄ 3 3̄ 4 4̄ 5 5̄ 6 6̄ 7 7̄ 8 8̄

.

Since s and d are free we get the asymptotic freeness of AN and DN . The
above calculuations can be generalized to several independent GUE and deter-
ministic matrices, resulting in the following theorem.

Theorem 6.4. If A
(1)
N , . . . , A

(p)
N are p independent N ×N -random GUE ma-

trices and D
(1)
N , . . . , D

(q)
N are q deterministic N ×N -matrices such that

D
(1)
N , . . . , D

(q)
N

dist.→ d1, . . . , dq

for some d1, . . . , dq ∈ (A, ϕ), it holds that

A
(1)
N , . . . , A

(p)
N , D

(1)
N , . . . , D

(q)
N

dist.→ s1, . . . , sp, d1, . . . , dq,

where s1, . . . , sp are semicircular and s1, . . . , sp, {d1, . . . , dq} are free.

Finally we want also mention a version of these asymptotic freeness results
for Haar unitary random matrices: Let U(N) denote the set of unitary N ×
N -matrices. As this is a compact group, we can equip U(N) with its Haar
probability measure leading to the notion of Haar unitary random matrices.

Definition 6.5. (1) We equip the compact group U(N) with its Haar prob-
ability measure. Random matrices distributed according to this measure will
be called Haar unitary random matrices.

(2) Let (A, ϕ) be a non-commutative probability space. An element u ∈ A
is called a Haar unitary if

• u is unitary,
• ϕ(uk) = δ0k for all k ∈ Z.

Theorem 6.6. Let U
(1)
N , . . . , U

(p)
N be p independent Haar unitary N × N -

random matrices and let D
(1)
N , . . . , D

(q)
N be q deterministic N × N -matrices

such that

D
(1)
N , . . . , D

(q)
N

dist.→ d1, . . . , dq

for some d1, . . . , dq ∈ (A, ϕ). Then

U
(1)
N , (U

(1)
N )∗, . . . , U

(p)
N , (U

(p)
N )∗, D

(1)
N , . . . , D

(q)
N

dist.→ u1, u
∗
1, . . . , up, u

∗
p, d1, . . . , dq,
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where u1, . . . , up are Haar unitaries and {u1, u
∗
1}, . . . , {up, u∗p}, {d1, . . . , dq} are

free.

Remark 6.7. Note that, if u is a Haar unitary and {u, u∗} is free from {a, b},
then a and ubu∗ are free. Thus, if (AN )N∈N and (BN )N∈N are two sequences of
deterministic matrices with limit distributions and (UN )N∈N is a sequence of
Haar unitary random matrices, then (AN )N∈N and (UNBNU

∗
N )N∈N are asymp-

totically free.

7. Notes and Remarks

Random matrices have been studied in statistics and in physics since the in-
fluential papers of Wishart and Wigner, respectively. Random matrices appear
nowadays in different fields of mathematics and physics (such as combinatorics,
probability theory, statistics, operator theory, number theory, quantum chaos,
quantum field theory etc.) or applied fields (such as electrical engineering).
Some idea of the diversity of random matrix appearances can be gotten by
looking on the collection of surveys in [1].

The genus expansion for Gaussian random matrices is a folklore result in
physics; for a mathematical exposition see, for example, [11].

The notion of “asymptotic freeness” was introduced by Voiculescu in [9].
Our presentation of the asymptotic freeness results for Gaussian random ma-
trices follows essentially the ideas of Voiculescu’s original proofs in [9, 10];
however, our presentation is more streamlined by using the Wick formula and
the genus expansion to make contact with the combinatorial description of
freeness.

The combinatorial approach to free probability theory originated in my work
[5] on free limit theorems. (At this time I was not aware of the work of Krew-
eras on non-crossing partitions and addressed the latter, not very imagina-
tively, as “admissible” partitions.) Inspired by the work of Rota [4] around the
combinatorial structure of classical probability theory, featuring in particular
multiplicative functions on the lattice of all partitions, I developped a few years
later in [6] the full combinatorial description of freeness, resting on the notion
of multiplicative functions on the lattice of non-crossing partitions and “free
cumulants”. Andu Nica showed a bit later in [2] how this combinatorial ap-
proach connects in general to Voiculescu’s operator-theoretic approach in terms
of creation and annihilation operators on the full Fock space. I teamed then up
with Nica, pushing the combinatorial approach much further. Whereas in the
beginning we were mainly driven by the desire to understand Voiculescu’s work
by giving new and “simpler” (at least for the combinatorially inclined) proofs
of existing results of Voiculescu (like his R- and S-transform descriptions in
[7, 8] for the free additive and multiplicative convolutions, respectively), later
we could also initiate new directions in free probability. Prominent examples
here are the determination of the distribution of the free commutator, the
introduction of R-diagonal elements or the proof of the existence of the free
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convolution power semigroup (µ�t)t≥1. A good source for these developments
and the combinatorial approach in general is our monograph [3].
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