
Combinatorics of free probability

theory

Roland Speicher

Queen’s University, Kingston, Ontario



Abstract. The following manuscript was written for my lec-
tures at the special semester ’Free probability theory and operator
spaces’, IHP, Paris, 1999. A complementary series of lectures was
given by A. Nica. It is planned to combine both manuscripts into
a book A. Nica and R. Speicher: Lectures on the Combinatorics of
Free Probability, which will be published by Cambridge University
Press



Contents

Part 1. Basic concepts 5

Chapter 1. Basic concepts of non-commutative probability theory 7
1.1. Non-commutative probability spaces and distributions 7
1.2. Haar unitaries and semicircular elements 10

Chapter 2. Free random variables 17
2.1. Definition and basic properties of freeness 17
2.2. The group algebra of the free product of groups 21
2.3. The full Fock space 23
2.4. Construction of free products 27

Part 2. Cumulants 35

Chapter 3. Free cumulants 37
3.1. Motivation: Free central limit theorem 37
3.2. Non-crossing partitions 46
3.3. Posets and Möbius inversion 50
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Part 1

Basic concepts





CHAPTER 1

Basic concepts of non-commutative probability
theory

1.1. Non-commutative probability spaces and distributions

Definition 1.1.1. 1) A non-commutative probability space
(A, ϕ) consists of a unital algebra A and a linear functional

ϕ : A → C; ϕ(1) = 1.

2) If in addition A is a ∗-algebra and ϕ fulfills ϕ(a∗) = ϕ(a) for all
a ∈ A, then we call (A, ϕ) a ∗-probability space.
3) If A is a unital C∗-algebra and ϕ a state, then we call (A, ϕ) a C∗-
probability space.
4) If A is a von Neumann algebra and ϕ a normal state, then we call
(A, ϕ) a W ∗-probability space.
5) A non-commutative probability space (A, ϕ) is said to be tracial
if ϕ is a trace, i.e. it has the property that ϕ(ab) = ϕ(ba), for every
a, b ∈ A.
6) Elements a ∈ A are called non-commutative random variables
in (A, ϕ).
7) Let a1, . . . , an be random variables in some probability space (A, ϕ).
If we denote by C〈X1, . . . , Xn〉 the algebra generated freely by n non-
commuting indeterminates X1, . . . , Xn, then the joint distribution
µa1,...,an of a1, . . . , an is given by the linear functional

µa1,...,an : C〈X1, . . . , Xn〉 → C(1)

which is determined by

µa1,...,an(Xi(1) . . . Xi(k)) := ϕ(ai(1) . . . ai(k))

for all k ∈ N and all 1 ≤ i(1), . . . , i(k) ≤ n.
8) Let a1, . . . , an be a family of random variables in some ∗-probability
space (A, ϕ). If we denote by C〈X1, X

∗
1 , . . . , Xn, X

∗
n〉 the algebra gener-

ated freely by 2n non-commuting indeterminates X1, X
∗
1 , . . . , Xn, X

∗
n,

then the joint ∗-distribution µa1,a∗1,...,an,a∗n of a1, . . . , an is given by the
linear functional

µa1,a∗1,...,an,a∗n : C〈X1, X
∗
1 , . . . , Xn, X

∗
n〉 → C(2)

7



8 1. BASIC CONCEPTS

which is determined by

µa1,a∗1,...,an,a∗n(X
r(1)
i(1) . . . X

r(k)
i(k) ) := ϕ(a

r(1)
i(1) . . . a

r(k)
i(k) )

for all k ∈ N, all 1 ≤ i(1), . . . , i(k) ≤ n and all choices of
r(1), . . . , r(k) ∈ {1, ∗}.

Examples 1.1.2. 1) Classical (=commutative) probability spaces
fit into this frame as follows: Let (Ω,Q, P ) be a probability space in
the classical sense, i.e., Ω a set, Q a σ-field of measurable subsets
of Ω and P a probability measure, then we take as A some suitable
algebra of complex-valued functions on Ω – like A = L∞(Ω, P ) or
A = L∞−(Ω, P ) :=

⋂
p≤∞ Lp(Ω, P ) – and

ϕ(X) =

∫
X(ω)dP (ω)

for random variables X : Ω → C.
Note that the fact P (Ω) = 1 corresponds to ϕ(1) =

∫
1dP (ω) =

P (Ω) = 1.
2) Typical non-commutative random variables are given as operators
on Hilbert spaces: Let H be a Hilbert space and A = B(H) (or more
generally a C∗- or von Neumann algebra). Then the fundamental states
are of the form ϕ(a) = 〈η, aη〉, where η ∈ H is a vector of norm 1. (Note
that ‖η‖ = 1 corresponds to ϕ(1) = 〈η, 1η〉 = 1.)
All states on a C∗-algebra can be written in this form, namely one has
the following GNS-construction: Let A be a C∗-algebra and ϕ : A → C
a state. Then there exists a representation π : A → B(H) on some
Hilbert space H and a unit vector η ∈ H such that: ϕ(a) = 〈η, π(a)η〉.

Remarks 1.1.3. 1) In general, the distribution of non-commutative
random variables is just the collection of all possible joint moments
of these variables. In the case of one normal variable, however, this
collection of moments can be identified with a probability measure on
C according to the following theorem: Let (A, ϕ) be a C∗-probability
space and a ∈ A a normal random variable, i.e., aa∗ = a∗a. Then there
exists a uniquely determined probability measure µ on the spectrum
σ(a) ⊂ C, such that we have:

ϕ(p(a, a∗)) =

∫
σ(a)

p(z, z̄)dµ(z)

for all polynomials p in two commuting variables, i.e. in particular

ϕ(ana∗m) =

∫
σ(a)

znz̄mdµ(z)
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for all n, m ∈ N.
2) We will usually identify for normal operators a the distribution µa,a∗

with the probability measure µ.
In particular, for a self-adjoint and bounded operator x, x = x∗ ∈
B(H), its distribution µx is a probability measure on R with compact
support.
3) Note that above correspondence between moments and probability
measures relies (via Stone-Weierstrass) on the boundedness of the op-
erator, i.e., the compactness of the spectrum. One can also assign a
probability measure to unbounded operators, but this is not necessarily
uniquely determined by the moments.
4) The distribution of a random variable contains also metric and al-
gebraic information, if the considered state is faithful.

Definition 1.1.4. A state ϕ on a ∗-algebra is called faithful if
ϕ(aa∗) = 0 implies a = 0.

Proposition 1.1.5. Let A be a C∗-algebra and ϕ : A → C a
faithful state. Consider a self-adjoint x = x∗ ∈ A. Then we have

(3) σ(x) = suppµx,

and thus also

(4) ‖x‖ = max{|z| | z ∈ suppµx}

and

(5) ‖x‖ = lim
p→∞

(
ϕ(xp)

)1/p
.

Proposition 1.1.6. Let (A1, ϕ1) and (A2, ϕ2) be ∗-probability
spaces such that ϕ1 are ϕ2 are faithful. Furthermore, let a1, . . . , an in
(A1, ϕ1) and b1, . . . , bn in (A2, ϕ2) be random variables with the same
∗-distribution, i.e., µa1,a∗1,...,an,a∗n = µb1,b∗1,...,bn,b∗n.
1) If A1 is generated as a ∗-algebra by a1, . . . , an and A2 is generated
as a ∗-algebra by b1, . . . , bn, then 1 7→ 1, ai 7→ bi (i = 1, . . . , n) can be
extended to a ∗-algebra isomorphism A1

∼= A2.
2) If (A1, ϕ1) and (A2, ϕ2) are C∗-probability spaces such that A1 is as
C∗-algebra generated by a1, . . . , an and A2 is as C∗-algebra generated
by b1, . . . , bn, then we have A1

∼= A2 via ai 7→ bi.
3) If (A1, ϕ1) and (A2, ϕ2) are W ∗-probability spaces such that A1 is
as von Neumann algebra generated by a1, . . . , an and A2 is as von
Neumann algebra generated by b1, . . . , bn, then we have A1

∼= A2 via
ai 7→ bi.
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1.2. Haar unitaries and semicircular elements

Example 1.2.1. Let H be a Hilbert space with dim(H) = ∞ and
orthonormal basis (ei)

∞
i=−∞. We define the two-sided shift u by (k ∈

Z)

(6) uek = ek+1 and thus u∗ek = ek−1.

We have uu∗ = u∗u = 1, i.e., u is unitary. Consider now the state
ϕ(a) = 〈e0, ae0〉. The distribution µ := µu,u∗ is determined by (n ≥ 0)

ϕ(un) = 〈e0, u
ne0〉 = 〈e0, en〉 = δn0

and

ϕ(u∗n) = 〈e0, u
∗ne0〉 = 〈e0, e−n〉 = δn0.

Since u is normal, we can identify µ with a probability measure on
σ(u) = T := {z ∈ C | |z| = 1}. This measure is the normalized Haar
measure on T, i.e., dµ(z) = 1

2π
dz. It is uniquely determined by

(7)

∫
T
zkdµ(z) = δk0 (k ∈ Z).

Definition 1.2.2. A unitary element u in a ∗-probability space
(A, ϕ) is called Haar unitary, if

(8) ϕ(uk) = δk0 for all k ∈ Z.

Exercise 1.2.3. Let u be a Haar unitary in a ∗-probability space
(A, ϕ). Verify that the distribution of u + u∗ is the arcsine law on the
interval [−2, 2], i.e.

(9) dµu+u∗(t) =

{
1

π
√

4−t2
dt, −2 ≤ t ≤ 2

0 otherwise.

Example 1.2.4. Let H be a Hilbert space with dim(H) = ∞ and
basis (ei)

∞
i=0. The one-sided shift l is defined by

(10) len = en+1 (n ≥ 0).

Its adjoint l∗ is thus given by

l∗en = en−1 (n ≥ 1)(11)

l∗e0 = 0.(12)

We have the relations

l∗l = 1 and ll∗ = 1− |e0〉〈e0|,(13)
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i.e., l is a (non-unitary) isometry.
Again we consider the state ϕ(a) := 〈e0, ae0〉. The distribution µl,l∗ is
now determined by (n, m ≥ 0)

ϕ(lnl∗m) = 〈e0, l
nl∗me0〉 = 〈l∗ne0, l

∗me0〉 = δn0δm0.

Since l is not normal, this cannot be identified with a probability mea-
sure in the plane. However, if we consider s := l + l∗, then s is self-
adjoint and its distribution corresponds to a probability measure on
R. This distribution will be one of the most important distributions in
free probability, so we will determine it in the following.

Theorem 1.2.5. The distribution µs of s := l + l∗ with respect to
ϕ is given by

(14) dµs(t) =
1

2π

√
4− t2dt,

i.e., for all n ≥ 0 we have:

(15) ϕ(sn) =
1

2π

∫ 2

−2

tn
√

4− t2dt.

The proof of Equation (11) will consist in calculating independently
the two sides of that equation and check that they agree. The appearing
moments can be determined explicitly and they are given by well-known
combinatorial numbers, the so-called Catalan numbers.

Definition 1.2.6. The numbers

(16) Ck :=
1

k

(
2k

k − 1

)
(k ∈ N)

are called Catalan numbers

Remarks 1.2.7. 1) The first Catalan numbers are

C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, . . . .

2) The Catalan numbers count the numbers of a lot of different com-
binatorial objects (see, e.g., [?]). One of the most prominent ones are
the so-called Catalan paths.

Definition 1.2.8. A Catalan path (of lenght 2k) is a path in the
lattice Z2 which starts at (0, 0), ends at (2k, 0), makes steps of the form
(1, 1) or (1,−1), and never lies below the x-axis, i.e., all its points are
of the form (i, j) with j ≥ 0.
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Example 1.2.9. An Example of a Catalan path of length 6 is the
following:

���
���@@R���@@R

@@R

Remarks 1.2.10. 1) The best way to identify the Catalan numbers
is by their recurrence formula

(17) Ck =
k∑

i=1

Ci−1Ck−i.

2) It is easy to see that the number Dk of Catalan paths of length 2k is
given by the Catalan number Ck: Let Π be a Catalan path from (0, 0)
to (2k, 0) and let (2i, 0) (1 ≤ i ≤ k) be its first intersection with the
x-axis. Then it decomposes as Π = Π1 ∪Π2, where Π1 is the part of Π
from (0, 0) to (2i, 0) and Π2 is the part of Π from (2i, 0) to (2k, 0). Π2 is
itself a Catalan path of lenght 2(k− i), thus there are Dk−i possibilities
for Π2. Π1 is a Catalan path which lies strictly above the x-axis, thus
Π1 = {(0, 0), (1, 1), ..., (2i − 1, 1), (2i, 0)} = (0, 0) ∪ Π3 ∪ (2i, 0) and
Π3 − (0, 1) is a Catalan path from (1, 0) to (2i − 1, 0), i.e. of length
2(i− 1) – for which we have Di−1 possibilities. Thus we obtain

Dk =
k∑

i=1

Di−1Dk−i.

Since this recurrence relation and the initial value D1 = 1 determine
the series (Dk)k∈N uniquely it has to coincide with the Catalan numbers
(Ck)k∈N.

Proof. We put

l(1) := l and l(−1) := l∗.

Then we have

ϕ
(
(l + l∗)n

)
= ϕ

(
(l(1) + l(−1))n

)
=

∑
i1,...,in∈{−1,1}

ϕ(l(in) . . . l(i1))

=
∑

i1,...,in∈{−1,1}

〈e0, l
(in) . . . l(i1)e0〉
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Now note that

〈e0, l
(in) . . . l(i1)e0〉 = 〈e0, l

(in) . . . l(i2)ei1〉
if i1 = 1

= 〈e0, l
(in) . . . l(i3)ei1+i2〉

if i1 + i2 ≥ 0

= . . .

= 〈e0, l
(in)ei1+i2+···+in−1〉

if i1 + i2 + · · ·+ in−1 ≥ 0

= 〈e0, ei1+i2+···+in〉
if i1 + i2 + · · ·+ in ≥ 0

= δ0,i1+i2+···+in .

In all other cases we have 〈e0, l
(in) . . . l(i1)e0〉 = 0. Thus

ϕ
(
(l + l∗)n

)
= #{(i1, . . . , in) |im = ±1,

i1 + · · ·+ im ≥ 0 for all 1 ≤ m ≤ n,

i1 + · · ·+ in = 0}.

In particular, for n odd we have:

ϕ(sn) = 0 =
1

2π

∫ 2

−2

tn
√

4− t2dt.

Consider now n = 2k even.
A sequence (i1, . . . , i2k) as above corresponds to a Catalan path: im =
+1 corresponds to a step (1, 1) and im = −1 corresponds to a step
(1,−1). Thus we have shown that

ϕ
(
(l + l∗)2k

)
= Ck.

So it remains to show that also

(18)
1

2π

∫ 2

−2

t2k
√

4− t2dt = Ck.

This will be left to the reader �

Examples 1.2.11. Let us write down explicitly the Catalan paths
corresponding to the second, fourth and sixth moment.
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For k = 1 we have

ϕ
(
(l + l∗)2

)
= ϕ(l∗l)

=̂ (+1,−1) ���@@R

which shows that C1 = 1.
For k = 2 we have

ϕ
(
(l + l∗)4

)
=ϕ(l∗l∗ll) + ϕ(l∗ll∗l)

=̂ (+1, +1,−1,−1) ���
���@@R

@@R

(+1,−1, +1,−1) ���@@R���@@R

which shows that C2 = 2.
For k = 3 we have

ϕ
(
(l + l∗)6

)
=ϕ(l∗l∗l∗lll) + ϕ(l∗l∗ll∗ll) + ϕ(l∗ll∗l∗ll)

+ ϕ(l∗l∗ll∗l) + ϕ(l∗ll∗ll∗l)

=̂ (+1, +1, +1,−1,−1,−1) ���
���

���@@R
@@R

@@R

(+1, +1,−1, +1,−1,−1) ���
���@@R���@@R

@@R
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(+1, +1,−1,−1, +1,−1) ���
���@@R

@@R���@@R

(+1,−1, +1, +1,−1,−1) ���@@R���
���@@R

@@R

(+1,−1, +1,−1, +1,−1) ���@@R���@@R���@@R

which shows that C3 = 5.

Definition 1.2.12. A self-adjoint element s = s∗ in a ∗-probability
space (A, ϕ) is called semi-circular with radius r (r > 0), if its
distribution is of the form

(19) dµs(t) =

{
2

πr2

√
r2 − t2dt, −r ≤ t ≤ r

0, otherwise

Remarks 1.2.13. 1) Hence s := l + l∗ is a semi-circular of radius
2.
2) Let s be a semi-circular of radius r. Then we have

(20) ϕ(sn) =

{
0, n odd

(r/2)n · Cn/2, n even.





CHAPTER 2

Free random variables

2.1. Definition and basic properties of freeness

Before we introduce our central notion of freeness let us recall the
corresponding central notion of independence from classical probability
theory – transferred to our algebraic frame.

Definition 2.1.1. Let (A, ϕ) be a probability space.
1) Subalgebras A1, . . . ,Am are called independent, if the subalgebras
Ai commute – i.e., ab = ba for all a ∈ Ai and all b ∈ Aj and all i, j
with i 6= j – and ϕ factorizes in the following way:

(21) ϕ(a1 . . . am) = ϕ(a1) . . . ϕ(am)

for all a1 ∈ A1, . . . , am ∈ Am.
2) Independence of random variables is defined by independence of the
generated algebras; hence ’a and b independent’ means nothing but a
and b commute, ab = ba, and ϕ(anbm) = ϕ(an)ϕ(bm) for all n,m ≥ 0.

From a combinatorial point of view one can consider ’independence’
as a special rule for calculating mixed moments of independent random
variables from the moments of the single variables. ’Freeness’ will just
be another such specific rule.

Definition 2.1.2. Let (A, ϕ) be a probability space.
1) Let A1, . . . ,Am ⊂ A be unital subalgebras. The subalgebras
A1, . . . ,Am are called free, if ϕ(a1 · · · ak) = 0 for all k ∈ N and
ai ∈ Aj(i) (1 ≤ j(i) ≤ m) such that ϕ(ai) = 0 for all i = 1, . . . , k
and such that neighbouring elements are from different subalgebras,
i.e., j(1) 6= j(2) 6= · · · 6= j(k).
2) Let X1, . . . ,Xm ⊂ A be subsets of A. Then X1, . . . ,Xm are called
free, if A1, . . . ,Am are free, where, for i = 1, . . . ,m, Ai := alg(1,Xi) is
the unital algebra generated by Xi.
3) In particular, if the unital algebras Ai := alg(1, ai) (i = 1, . . . ,m)
generated by elements ai ∈ A (i = 1, . . . ,m) are free, then a1, . . . , am

are called free random variables. If the ∗-algebras generated by the
random variables a1, . . . , am are free, then we call a1, . . . , am ∗-free.

17
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Remarks 2.1.3. 1) Note: the condition on the indices is only on
consecutive ones; j(1) = j(3) is allowed
3) Let us state more explicitly the requirement for free random vari-
ables: a1, . . . , am are free if we have ϕ

(
p1(aj(1)) . . . pk(aj(k))

)
= 0 for all

polynomials p1, . . . , pk in one variable and all j(1) 6= j(2) 6= · · · 6= j(k),
such that ϕ(pi(aj(i))) = 0 for all i = 1, . . . , k
4) Freeness of random variables is defined in terms of the generated
algebras, but one should note that it extends also to the generated
C∗- and von Neumann algebras. One has the following statement: Let
(A, ϕ) be a C∗-probability space and let a1, . . . , am be ∗-free. Let, for
each i = 1, . . . ,m, Bi := C∗(1, ai) be the unital C∗-algebra generated
by ai. Then B1, . . . ,Bm are also free. (A similar statement holds for
von Neumann algebras.)
5) Although not as obvious as in the case of ’independence’, freeness is
from a combinatorial point of view nothing but a very special rule for
calculating joint moments of free variables out of the moments of the
single variables. This is made explicit by the following lemma.

Lemma 2.1.4. Let (A, ϕ) be a probability space and let the unital
subalgebras A1, . . . ,Am be free. Denote by B the algebra which is gener-
ated by all Ai, B := alg(A1, . . . ,Am). Then ϕ|B is uniquely determined
by ϕ|Ai

for all i = 1, . . . ,m and by the freeness condition.

Proof. Each element of B can be written as a linear combination
of elements of the form a1 . . . ak where ai ∈ Aj(i) (1 ≤ j(i) ≤ m). We
can assume that j(1) 6= j(2) 6= · · · 6= j(k). Let a1 . . . ak ∈ B be such an
element. We have to show that ϕ(a1 . . . ak) is uniquely determined by
the ϕ|Ai

(i = 1, . . . ,m).
We prove this by induction on k. The case k = 1 is clear because
a1 ∈ Aj(1). In the general case we put

a0
i := ai − ϕ(ai)1 ∈ Ai.

Then we have

ϕ(a1 . . . ak) = ϕ
(
(a0

1 + ϕ(a1)1) . . . (a0
k + ϕ(ak)1)

)
= ϕ(a0

1 . . . a0
k) + rest,

where

rest =
∑

(p(1)<···<p(s))∪̇
∪̇(q(1)<···<q(k−s))=(1,...,k)

s<k

ϕ(a0
p(1) . . . a0

p(s)) · ϕ(aq(1)) . . . ϕ(aq(k−s)).
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Since ϕ(a0
i ) = 0 it follows ϕ(a0

1 . . . a0
k) = 0. On the other hand, all terms

in rest are of length smaller than k, and thus are uniquely determined
by induction hypothesis. �

Examples 2.1.5. Let a and b be free.
1) According to the definition of ’freeness’ we have directly ϕ(ab) = 0
if ϕ(a) = 0 and ϕ(b) = 0. To calculate ϕ(ab) in general we center our
variables as in the proof of the lemma:

0 = ϕ
(
(a− ϕ(a)1)(b− ϕ(b)1)

)
= ϕ(ab)− ϕ(a1)ϕ(b)− ϕ(a)ϕ(1b) + ϕ(a)ϕ(b)ϕ(1)

= ϕ(ab)− ϕ(a)ϕ(b)

which implies

(22) ϕ(ab) = ϕ(a)ϕ(b).

2) In the same way we write

ϕ
(
(an − ϕ(an)1)(bm − ϕ(bm)1)

)
= 0,

implying

(23) ϕ(anbm) = ϕ(an)ϕ(bm)

and
ϕ
(
(an1 − ϕ(an1)1)(bm − ϕ(bm)1)(an2 − ϕ(an2)1)

)
= 0

implying

(24) ϕ(an1bman2) = ϕ(an1+n2)ϕ(bm).

3) All the examples up to now yielded the same result as we would
get for independent random variables. To see the difference between
’freeness’ and ’independence’ we consider now ϕ(abab). Starting from

ϕ
(
(a− ϕ(a)1)(b− ϕ(b)1)(a− ϕ(a)1)(b− ϕ(b)1)

)
= 0

one arrives finally at

(25) ϕ(abab) = ϕ(aa)ϕ(b)ϕ(b)+ϕ(a)ϕ(a)ϕ(bb)−ϕ(a)ϕ(b)ϕ(a)ϕ(b).

3) Note that the above examples imply for free commuting variables,
ab = ba, that at least one of them has vanishing variance, i.e., that
ϕ
(
(a−ϕ(a)1)2

)
= 0 or ϕ

(
(b−ϕ(b)1)2

)
= 0. Indeed, let a and b be free

and ab = ba. Then we have

ϕ(a2)ϕ(b2) = ϕ(a2b2) = ϕ(abab) = ϕ(a2)ϕ(b)2+ϕ(a)2ϕ(b2)−ϕ(a)2ϕ(b)2,

and hence

0 =
(
ϕ(a2)− ϕ(a)2

)(
ϕ(b2)− ϕ(b)2

)
= ϕ

(
(a− ϕ(a)1)2

)
· ϕ

(
(b− ϕ(b)1)2

)
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which implies that at least one of the two factors has to vanish.
4) In particular, if a and b are classical random variables then they
can only be free if at least one of them is almost surely constant. This
shows that ’freeness’ is really a non-commutative concept and cannot
be considered as a special kind of dependence between classical random
variables.
5) A special case of the above is the following: If a is free from itself
then we have ϕ(a2) = ϕ(a)2. If, furthermore, a = a∗ and ϕ faithful
then this implies that a is a constant: a = ϕ(a)1.

In the following lemma we will state the important fact that con-
stant random variables are free from everything.

Lemma 2.1.6. Let (A, ϕ) be a probability space and B ⊂ A a unital
subalgebra. Then the subalgebras C1 and B are free.

Proof. Consider a1 . . . ak as in the definition of freeness and k ≥ 2.
(k = 1 is clear.) Then we have at least one ai ∈ C1 with ϕ(ai) = 0. But
this means ai = 0, hence a1 . . . ak = 0 and thus ϕ(a1 . . . ak) = 0. �

Exercise 2.1.7. Prove the following statements about the be-
haviour of freeness with respect to special constructions.
1) Functions of free random variables are free: if a and b are free and
f and g polynomials, then f(a) and g(b) are free, too. (If a and b
are self-adjoint then the same is true for continuous functions in the
C∗-case and for measurable functions in the W ∗-case.)
2) Freeness behaves well under successive decompositions: Let
A1, . . . ,Am be unital subalgebras of A and, for each i = 1, . . . ,m,
B1

i , . . . ,B
ni
i unital subalgebras of Ai. Then we have:

i) If (Ai)i=1,...,m are free in A and, for each i = 1, . . . ,m, (Bj
i )j=1,...,ni

are free in Ai, then all (Bj
i )i=1,...,m;j=1,...,ni

are free in A.

ii) If all (Bj
i )i=1,...,m;j=1,...,ni

are free in A and if, for each i = 1, . . . ,m,
Ai is as algebra generated by B1

i , . . . ,B
ni
i , then (Ai)i=1,...,m are free in

A.

Exercise 2.1.8. Let (A, ϕ) be a non-commutative probability
space, and let A1, . . . ,Am be a free family of unital subalgebras of
A.
(a) Let 1 ≤ j(1), j(2), . . . , j(k) ≤ m be such that j(1) 6= j(2) 6= · · · 6=
j(k). Show that:

(26) ϕ(a1a2 · · · ak) = ϕ(ak · · · a2a1),

for every a1 ∈ Aj(1), a2 ∈ Aj(2), . . . , ak ∈ Aj(k).
(b) Let 1 ≤ j(1), j(2), . . . , j(k) ≤ m be such that j(1) 6= j(2) 6= · · · 6=
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j(k) 6= j(1). Show that:

(27) ϕ(a1a2 · · · ak) = ϕ(a2 · · · aka1),

for every a1 ∈ Aj(1), a2 ∈ Aj(2), . . . , ak ∈ Aj(k).

Exercise 2.1.9. Let (A, ϕ) be a non-commutative probability
space, let A1, . . . ,Am be a free family of unital subalgebras of A, and
let B be the subalgebra of A generated by A1 ∪ · · · ∪ Am. Prove that
if ϕ|Aj is a trace for every 1 ≤ j ≤ m, then ϕ|B is a trace.

2.2. The group algebra of the free product of groups

Definition 2.2.1. Let G1, . . . , Gm be groups with neutral elements
e1, . . . , em, respectively. The free product G := G1 ∗ . . . ∗ Gm is the
group which is generated by all elements from G1 ∪ · · · ∪ Gm subject
to the following relations:

• the relations within the Gi (i = 1, . . . ,m)
• the neutral element ei of Gi, for each i = 1, . . . ,m, is identified

with the neutral element e of G:

e = e1 = · · · = em.

More explicitly, this means

G = {e}∪{g1 . . . gk | gi ∈ Gj(i), j(1) 6= j(2) 6= · · · 6= j(k), gi 6= ej(i)},

and multiplication in G is given by juxtaposition and reduction onto
the above form by multiplication of neighboring terms from the same
group.

Remark 2.2.2. In particular, we have that gi ∈ Gj(i), gi 6= e and
j(1) 6= · · · 6= j(k) implies g1 . . . gk 6= e.

Example 2.2.3. Let Fn be the free group with n generators,
i.e., Fn is generated by n elements f1, . . . , fn, which fulfill no other
relations apart from the group axioms. Then we have F1 = Z and
Fn ∗ Fm = Fn+m.

Definition 2.2.4. Let G be a group.
1) The group algebra CG is the set

(28) CG := {
∑
g∈G

αgg | αg ∈ C, only finitely many αg 6= 0}.

Equipped with pointwise addition

(29)
(∑

αgg
)

+
(∑

βgg
)

:=
∑

(αg + βg)g,
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canonical multiplication (convolution)(∑
αgg

)
·
(∑

βhh) : =
∑
g,h

αgβh(gh) =
∑
k∈G

( ∑
g,h: gh=k

αgβh

)
k,(30)

and involution

(31)
(∑

αgg
)∗

:=
∑

ᾱgg
−1,

CG becomes a ∗-algebra.
2) Let e be the neutral element of G and denote by

τG : CG → C,
∑

αgg 7→ αe(32)

the canonical state on CG. This gives the ∗-probability space (CG, τG).

Remarks 2.2.5. 1) Positivity of τG is clear, because

τG

(
(
∑

αgg)(
∑

αhh)∗
)

= τG

(
(
∑

αgg)(
∑

ᾱhh
−1)

)
=

∑
g,h: gh−1=e

αgᾱh

=
∑

g

|αg|2

≥ 0.

2) In particular, the calculation in (1) implies also that τG is faithful:

τG

(
(
∑

αgg)(
∑

αgg)∗
)

=
∑

g

|αg|2 = 0

and thus αg = 0 for all g ∈ G.

Proposition 2.2.6. Let G1, . . . , Gm be groups and denote by G :=
G1 ∗ . . . ∗ Gm their free product. Then the ∗-algebras CG1, . . . , CGm

(considered as subalgebras of CG) are free in the ∗-probability space
(CG, τG).

Proof. Consider

ai =
∑

g∈Gj(i)

α(i)
g g ∈ CGj(i) (1 ≤ i ≤ k)

such that j(1) 6= j(2) 6= · · · 6= j(k) and τG(ai) = 0 (i.e. α
(i)
e = 0) for all

1 ≤ i ≤ k. Then we have

τG(a1 . . . ak) = τG

(
(

∑
g1∈Gj(1)

α(1)
g1

g1) . . . (
∑

gk∈Gj(k)

α(k)
gk

gk)
)

=
∑

g1∈Gj(1),...,gk∈Gj(k)

α(1)
g1

. . . α(k)
gk

τG(g1 . . . gk).
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For all g1, . . . , gk with α
(1)
g1 . . . α

(k)
gk 6= 0 we have gi 6= e (i = 1, . . . , k) and

j(1) 6= j(2) 6= · · · 6= j(k), and thus, by Remark ..., that g1 . . . gk 6= e.
This implies τG(a1 . . . ak) = 0, and thus the assertion. �

Remarks 2.2.7. 1) The group algebra can be extended in a canon-
ical way to the reduced C∗-algebra C∗

r (G) of G and to to group von
Neumann algebra L(G). τG extends in that cases to a faithful state on
C∗

r (G) and L(G). The above proposition remains true for that cases.
2) In particular we have that L(Fn) and L(Fm) are free in
(L(Fn+m), τFn+m). This was the starting point of Voiculescu; in partic-
ular he wanted to attack the (still open) problem of the isomorphism of
the free group factors, which asks the following: Is it true that L(Fn)
and L(Fm) are isomorphic as von Neumann algebras for all n,m ≥ 2.
3) Freeness has in the mean time provided a lot of information about
the structure of L(Fn). The general philosophy is that the free group
factors are one of the most interesting class of von Neumann algebras
after the hyperfinite ones and that freeness is the right tool for studying
this class.

2.3. The full Fock space

Definitions 2.3.1. Let H be a Hilbert space.
1) The full Fock space over H is defined as

(33) F(H) :=
∞⊕

n=0

H⊗n,

where H⊗0 is a one-dimensional Hilbert, which we write in the form
CΩ for a distinguished vector of norm one, called vacuum.
2) For each f ∈ H we define the (left) creation operator l(f) and
the (left) annihilation operator l∗(f) by linear extension of

(34) l(f)f1 ⊗ · · · ⊗ fn := f ⊗ f1 ⊗ · · · ⊗ fn.

and

l(f)f1 ⊗ · · · ⊗ fn = 〈f, f1〉f2 ⊗ · · · ⊗ fn (n ≥ 1)(35)

l(f)Ω = 0.(36)

3) For each operator T ∈ B(H) we define the gauge operator Λ(T )
by

Λ(T )Ω := 0(37)

Λ(T )f1 ⊗ · · · ⊗ fn := (Tf1)⊗ f2 ⊗ · · · ⊗ fn.(38)
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5) The vector state on B(F(H)) given by the vacuum,

(39) τH(a) := 〈Ω, aΩ〉 (a ∈ A(H))

is called vacuum expectation state.

Exercise 2.3.2. Check the following properties of the operators
l(f), l∗(f), Λ(T ).
1) For f ∈ H, T ∈ B(H), the operators l(f), l∗(f), Λ(T ) are bounded
with norms ‖l(f)‖ = ‖l∗(f)‖ = ‖f‖H and ‖Λ(T )‖ = ‖T‖.
2) For all f ∈ H, the operators l(f) and l∗(f) are adjoints of each
other.
3) For all T ∈ B(H) we have Λ(T ∗) = Λ(T )∗.
4) For all S, T ∈ B(H) we have Λ(S)Λ(T ) = Λ(ST ).
5) For all f, g ∈ H we have l∗(f)l(g) = 〈f, g〉1.
6) For all f, g ∈ H and all T ∈ B(H) we have l∗(f)Λ(T )l(g) = 〈f, Tg〉1.
7) For each unit vector f ∈ H, l(f) + l∗(f) is (with respect to the
vacuum expectation state) a semi-circular element of radius 2.

Proposition 2.3.3. Let H be a Hilbert space and consider the prob-
ability space (B(F(H)), τH). Let e1, . . . , em ∈ H be an orthonormal
system in H and put

(40) Ai := alg(l(ei), l
∗(ei)) ⊂ B(F(H)) (i = 1, . . . ,m).

Then A1, . . . ,Am are free in (B(F(H)), τH).

Proof. Put

li := l(ei), l∗i := l∗(ei).

Consider

ai =
∑

n,m≥0

α(i)
n,mlnj(i)l

∗m
j(i) ∈ Aj(i) (i = 1, . . . , k)

with j(1) 6= j(2) 6= · · · 6= j(k) and τ(ai) = α
(i)
0,0 = 0 for all i = 1, . . . , k.

Then we have

τH(ak . . . a1) = τH
(
(

∑
nk,mk≥0

α(k)
nk,mk

lnk

j(k)l
∗mk

j(k) ) . . . (
∑

n1,m1≥0

α(1)
n1,m1

ln1

j(1)l
∗m1

j(1) )
)

=
∑

n1,m1,...,nk,mk≥0

α(k)
nk,mk

. . . α(1)
n1,m1

τ(lnk

j(k)l
∗mk

j(k) . . . ln1

j(1)l
∗m1

j(1) ).
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But now we have for all terms with (ni, mi) 6= (0, 0) for all i = 1, . . . , k

τH(lnk

j(k)l
∗mk

j(k) . . . ln1

j(1)l
∗m1

j(1) ) = 〈Ω, lnk

j(k)l
∗mk

j(k) . . . ln1

j(1)l
∗m1

j(1) Ω〉
= δm10〈Ω, lnk

j(k)l
∗mk

j(k) . . . ln2

j(2)l
∗m2

j(2) e
⊗n1

j(1) 〉
= δm10δm20〈Ω, lnk

j(k)l
∗mk

j(k) . . . ln3

j(3)l
∗m3

j(3) e
⊗n2

j(2) ⊗ e⊗n1

j(1) 〉
= . . .

= δm10 . . . δmk0〈Ω, e⊗nk

j(k) ⊗ · · · ⊗ e⊗n1

j(1) 〉
= 0.

This implies τH(ak . . . a1) = 0, and thus the assertion. �

Exercise 2.3.4. For a Hilbert space H, let

(41) A(H) := alg(l(f), l∗(f), Λ(T ) | f ∈ H, T ∈ B(H)) ⊂ B(F(H))

be the the unital ∗-algebra generated by all creation, annihilation and
gauge operators on F(H). Let H decompose as a direct sum H =
H1 ⊕ H2. Then we can consider A(H1) and A(H2) in a canonical
way as subalgebras of A(H). Show that A(H1) and A(H2) are free in
(A(H), τH).

Remark 2.3.5. Note that τ is not faithful on B(F(H)); e.g. with
l := l(f) we have τ(l∗l) = 0 although l 6= 0. Thus, τ contains no
information about the self-adjoint operator l∗l: we have µl∗l = δ0. On
sums of ’creation+annihilation’, however, τ becomes faithful.

Proposition 2.3.6. Let (ei)
dim(H)
i=1 be a orthonormal basis of H and

put si := l(ei) + l∗(ei) for i = 1, . . . , dim(H). Let A be the C∗-algebra

(42) A := C∗(si | i = 1, . . . , dim(H)) ⊂ B(F(H)).

Then the restriction of τ to A is faithful.

Remarks 2.3.7. 1) Note that the choice of a basis is important,
the proposition is not true for C∗(l(f)+ l∗(f) | f ∈ H) because we have

(43) (2+2i)l∗(f) =
(
l∗(f + if)+ l(f + if)

)
+ i

(
l∗(f − if)+ l(f − if)

)
.

Only real linear combinations of the basis vectors are allowed for the
arguments f in l(f) + l∗(f) in order to get faithfulness.
2) The proposition remains true for the corresponding von Neumann
algebra

A := vN(si | i = 1, . . . , dim(H)) ⊂ B(F(H)).

The following proof is typical for von Neumann algebras.
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Proof. Consider a ∈ A with

0 = τ(a∗a) = 〈Ω, a∗aΩ〉 = 〈aΩ, aΩ〉 = 0,

i.e. aΩ = 0. We have to show that a = 0, or in other words: The
mapping

A → F(H)(44)

a 7→ aΩ

is injective.
So consider a ∈ A with aΩ = 0. The idea of the proof is as follows: We
have to show that aη = 0 for all η ∈ F(H); it suffices to do this for η
of the form η = ej(1)⊗· · ·⊗ej(k) (k ∈ N, 1 ≤ j(1), . . . , j(k) ≤ dim(H)),
because linear combinations of such elements form a dense subset of
F(H). Now we try to write such an η in the form η = bΩ for some
b ∈ B(F(H)) which has the property that ab = ba; in that case we
have

aη = abΩ = baΩ = 0.

Thus we have to show that the commutant

(45) A′ := {b ∈ B(F(H)) | ab = ba ∀a ∈ A}
is sufficiently large. However, in our case we can construct such b from
the commutant explicitly with the help of right annihilation oper-
ators r∗(g) and right creation operators r(g). These are defined in
the same way as l(f) and l∗(f), only the action from the left is replaced
by an action from the right:

r(g)Ω = g(46)

r(g)h1 ⊗ · · · ⊗ hn = h1 ⊗ · · · ⊗ hn ⊗ g(47)

and

r∗(g)Ω = 0(48)

r∗(g)h1 ⊗ · · · ⊗ hn = 〈g, hn〉h1 ⊗ · · · ⊗ hn−1.(49)

Again, r(g) and r∗(g) are adjoints of each other.
Now we have(
l(f) + l∗(f)

)(
r(g) + r∗(g)

)
= l(f)r(g) + l∗(f)r∗(g) +

(
l(f)r∗(g) + l∗(f)r(g)

)
(∗)
= r(g)l(f) + r∗(g)l∗(f) +

(
r∗(g)l(f) + r(g)l∗(f)

)
if 〈f, g〉 = 〈g, f〉

=
(
r(g) + r∗(g)

)(
l(f) + l∗(f)

)
.

The equality in (∗) comes from the fact that problems might only arise
by acting on the vacuum, but in that case we have:(

l(f)r∗(g) + l∗(f)r(g)
)
Ω = l(f)g + 0 = 〈f, g〉Ω
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and (
r∗(g)l(f) + r(g)l∗(f)

)
Ω = 0 + r(g)f = 〈g, f〉Ω.

Put now
di := r(ei) + r∗(ei) (i = 1 . . . , dim(H)).

Then we have in particular

sidj = djsi for all i, j.

This property extends to polynomials in s and d and, by continuity,
to the generated C∗-algebra (and even to the generated von Neumann
algebra). If we denote

B := C∗(di | i = 1, . . . , dim(H)),

then we have shown that B ⊂ A′. Consider now an η = ej(1)⊗· · ·⊗ej(k).
Then we claim that there exists b ∈ B with the property that bΩ = η.
This can be seen by induction on k.
For k = 0 and k = 1 we have, respectively, 1Ω = Ω and diΩ =
(r(ei) + r∗(ei))Ω = ei.
Now assume we have shown the assertion up to k − 1 and consider k.
We have

dj(k) . . . dj(1)Ω =
(
r(ej(k)) + r∗(ej(k))

)
. . .

(
r(ej(1)) + r∗(ej(1))

)
Ω

= ej(1) ⊗ · · · ⊗ ej(k) + η′,

where

η′ ∈
k−1⊕
j=0

H⊗j

can, according to the induction hypothesis, be written as η′ = b′Ω with
b′ ∈ B. This gives the assertion. �

Remark 2.3.8. On the level of von Neumann algebras the present
example coincides with the one from the last section, namely one has

L(Fn) ∼= vN(si | i = 1, . . . , n).

2.4. Construction of free products

Theorem 2.4.1. Let (A1, ϕ1), . . . , (Am, ϕm) be probability spaces.
Then there exists a probability space (A, ϕ) with Ai ⊂ A, ϕ|Ai

= ϕi

for all i = 1, . . . ,m and A1, . . . ,Am are free in (A, ϕ). If all Ai are
∗-probability spaces and all ϕi are positive, then ϕ is positive, too.

Remark 2.4.2. More formally, the statement has to be under-
stood as follows: there exist probability spaces (Ãi, ϕ̃i) which are ∗-
isomorphic to (Ai, ϕi) (i = 1, . . . ,m) and such that these (Ãi, ϕ̃i) are
free subalgebras in a free product probability space (A, ϕ).
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Proof. We take as A the algebraic free product A := A1∗ . . .∗Am

of the Ai with identification of the units. This can be described more
explicitly as follows: Put

(50) Ao
i := {a ∈ Ai | ϕi(a) = 0},

so that, as vector spaces, Ai = Ao
i ⊕ C1. Then, as linear space A is

given by

(51) A = C1⊕
⊕
j(1)

Ao
j(1) ⊕

⊕
j(1) 6=j(2)

(Ao
j(1) ⊗Ao

j(2))⊕⊕
j(1)6=j(2) 6=j(3)

(Ao
j(1) ⊗Ao

j(2) ⊗Ao
j(3))⊕ . . . .

Multiplication is given by .... and reduction to the above form.
Example: Let ai ∈ Ao

i for i = 1, 2. Then

a1a2 =̂ a1 ⊗ a2, a2a1 =̂ a2 ⊗ a1

and

(a1a2)(a2a1) = a1

(
(a2

2)
o + ϕ2(a

2
2)1)

)
a1

= a1(a
2
2)

oa1 + ϕ2(a
2
2)a1a1

= a1(a
2
2)

oa1 + ϕ2(a
2
2)

(
(a2

1)
o + ϕ1(a

2
1)1

)
=̂ (a1 ⊗ (a2

2)
o ⊗ a1)⊕ ϕ2(a

2
2)(a

2
1)

o ⊕ ϕ2(a
2
2)ϕ1(a

2
1)1

Thus: A is linearly generated by elements of the form a = a1 . . . ak with
k ∈ N, ai ∈ Ao

j(i) and j(1) 6= j(2) 6= · · · 6= j(k). (k = 0 corresponds

to a = 1.) In the ∗-case, A becomes a ∗-algebra with the involution

a∗ = a∗k . . . a∗1 for a as above. Note that ϕj(i)(a
∗
i ) = ϕj(i)(ai) = 0, i.e. a∗

has again the right form.
Now we define a linear functional A → C for a as above by linear
extension of

(52) ϕ(a) :=

{
0, k > 0

1, k = 0.

By definition of ϕ, the subalgebras A1, . . . ,Am are free in (A, ϕ) and
we have for b ∈ Ai that

ϕ(b) = ϕ(bo + ϕi(b)1) = ϕi(b)ϕ(1) = ϕi(b),

i.e., ϕ|Ai
= ϕi.

It remains to prove the statement about the positivity of ϕ. For this
we will need the following lemma.
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Lemma 2.4.3. Let A1, . . . ,Am be free in (A, ϕ) and a and b alter-
nating words of the form

a = a1 . . . ak ai ∈ Ao
j(i), j(1) 6= j(2) 6= · · · 6= j(k)

and

b = b1 . . . bl bi ∈ Ao
r(i), r(1) 6= r(2) 6= · · · 6= r(l).

Then we have
(53)

ϕ(ab∗) =

{
ϕ(a1b

∗
1) . . . ϕ(akb

∗
k), if k = l, j(1) = r(1),. . . ,j(k) = r(k).

0, otherwise

Proof. One has to iterate the following observation: Either we
have j(k) 6= r(l), in which case

ϕ(ab∗) = ϕ(a1 . . . akb
∗
l . . . b∗1) = 0,

or we have j(k) = r(l), which gives

ϕ(ab∗) = ϕ(a1 . . . ak−1((akb
∗
l )

o + ϕ(akb
∗
l )1)b∗l−1 . . . b∗1)

= 0 + ϕ(akb
∗
l )ϕ(a1 . . . ak−1b

∗
l−1 . . . b∗1).

�

Consider now a ∈ A. Then we can write it as

a =
∑
k∈N

j(1)6=j(2)6=···6=j(k)

a(j(1),...,j(k))

where a(j(1),...,j(k)) ∈ Ao
j(1)⊗ · · · ⊗Ao

j(k). According to the above lemma
we have

ϕ(aa∗) =
∑

k,l
j(1)6=···6=j(k)
r(1) 6=···6=r(l)

ϕ(a(j(1),...,j(k))a
∗
(r(1),...,r(l)))

=
∑

k
j(1) 6=···6=j(k)

ϕ(a(j(1),...,j(k))a
∗
(j(1),...,j(k))).

Thus it remains to prove ϕ(bb∗) ≥ 0 for all b = a(j(1),...,j(k)) ∈ Ao
j(1) ⊗

· · · ⊗ Ao
j(k), where k ∈ N and j(1) 6= j(2) 6= · · · 6= j(k). Consider now

such a b. We can write it in the form

b =
∑
p∈I

a
(p)
1 . . . a

(p)
k ,
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where I is a finite index set and a
(p)
i ∈ Ao

j(i) for all p ∈ I.
Thus

ϕ(bb∗) =
∑
p,q

ϕ(a
(p)
1 . . . a

(p)
k a

(q)∗
k . . . a

(q)∗
1 )

=
∑
p,q

ϕ(a
(p)
1 a

(q)∗
1 ) . . . ϕ(a

(p)
k a

(q)∗
k ).

To see the positivity of this, we nee the following lemma.

Lemma 2.4.4. Consider a ∗-algebra A equipped with a linear func-
tional ϕ : A → C. Then the following statements are equivalent:

(1) ϕ is positive.
(2) For all n ∈ N and all a1, . . . , an ∈ A the matrix(

ϕ(aia
∗
j)

)n

i,j=1
∈ Mn

is positive, i.e. all its eigenvalues are ≥ 0.

(3) For all n ∈ N and all a1, . . . , an there exist α
(r)
i ∈ C (i, r =

1, . . . , n), such that for all i, j = 1, . . . , n

(54) ϕ(aia
∗
j) =

n∑
r=1

α
(r)
i ᾱ

(r)
j .

Proof. (1) =⇒ (2): Let ϕ be positive and fix n ∈ N and
a1, . . . , an ∈ A. Then we have for all α1, . . . , αn ∈ C:

0 ≤ ϕ
(
(

n∑
i=1

αiai)(
n∑

j=1

αjaj)
∗) =

n∑
i,j=1

αiᾱjϕ(aia
∗
j);

but this is nothing but the statement that the matrix
(
ϕ(aia

∗
j)

)n

i,j=1
is

positive.
(2) =⇒ (3): Let A =

(
ϕ(aia

∗
j)

)n

i,j=1
be positive. Since it is symmetric,

it can be diagonalized in the form A = UDU∗ with a unitary U = (uij)
and a diagonal matrix D = (λ1, . . . , λn). Hence

ϕ(aia
∗
j) =

n∑
r=1

uirλru
∗
rj =

n∑
r=1

uirλrūjr.

Since A is assumed as positive, all λi ≥ 0. Put now

α
(r)
i := uir

√
λr.

This gives the assertion
(3) =⇒ (1): This is clear, because, for n = 1,

ϕ(a1a
∗
1) = α

(1)
1 ᾱ

(1)
1 ≥ 0.
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�

Thus there exist now for each i = 1, . . . , k and p ∈ I complex

numbers α
(r)
i,p (r ∈ I), such that

ϕ(a
(p)
i a

(q)∗
i ) =

∑
r∈I

α
(r)
i,p ᾱ

(r)
i,q .

But then we have

ϕ(bb∗) =
∑
p,q

∑
r1,...,rk

α
(r1)
1,p ᾱ

(r1)
1,q . . . α

(rk)
k,p ᾱ

(rk)
k,q

=
∑

r1,...,rk

(∑
p

α
(r1)
1,p . . . α

(rk)
k,p

)(∑
q

ᾱ
(r1)
1,q . . . ᾱ

(rk)
k,q

)
=

∑
r1,...,rk

|
∑

p

α
(r1)
1,p . . . α

(rk)
k,p |

2

≥ 0.

�

Remark 2.4.5. The last part of the proof consisted in showing that
the entry-wise product (so-called Schur product) of positive matrices
is positive, too. This corresponds to the fact that the tensor product
of states is again a state.

Notation 2.4.6. We call the probability space (A, ϕ) constructed
in Theorem ... the free product of the probability spaces (Ai, ϕi) and
denote this by

(A, ϕ) = (A1, ϕ1) ∗ . . . ∗ (Am, ϕm).

Example 2.4.7. Let G1, . . . , Gm be groups and G = G1 ∗ . . . ∗Gm

the free product of these groups. Then we have

(CG1, τG1) ∗ . . . ∗ (CGm, τGm) = (CG, τG).

In the context of C∗-probability spaces the free product should
also be a C∗-probability space, i.e. it should be realized by operators
on some Hilbert space. This can indeed be reached, the general case
reduces according to the GNS-construction to the following theorem.

Theorem 2.4.8. Let, for i = 1, . . . ,m, (Ai, ϕi) be a C∗-probability
space of the form Ai ⊂ B(Hi) (for some Hilbert space Hi) and ϕi(a) =
〈ηi, aηi〉 for all a ∈ Ai, where ηi ∈ Hi is a some unit vector. Then
there exists a C∗-probability space (A, ϕ) of the form A ⊂ B(H) and
ϕ(a) = 〈η, aη〉 for all a ∈ A –where H is a Hilbert space and η ∈ H
a unit vector – such that Ai ⊂ A, ϕ|Ai

= ϕi, A1, . . . ,Am are free in
(A, ϕ), and A = C∗(A1, . . . ,Am).
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Proof. Idea: We construct (similarly to the case of groups or
algebras) the Hilbert space H as free product of the Hilbert spaces Hi

and let the Ai operate from the left on this H.
We put

(55) Ho
i := (Cηi)

⊥,

thus we have Hi = Cηi ⊕Ho
i . Now we define

(56) H := Cη ⊕
⊕
j(1)

Ho
j(1) ⊕

⊕
j(1) 6=j(2)

(Ho
j(1) ⊗Ho

j(2))⊕⊕
j(1) 6=j(2) 6=j(3)

(Ho
j(1) ⊗Ho

j(2) ⊗Ho
j(3))⊕ . . . .

η corresponds to the identification of all ηi and is a unit vector in H.
We represent Ai now as follows by a representation πi : Ai → B(H):
πi(a) (for a ∈ Ai) acts from the left; in case that the first component
is in Ho

i , πi(a) acts on that first component like a; otherwise we put an
η at the beginning and let πi(a) act like a on ηi. More formally, let

aηi = ληi + ξo with ξo ∈ Ho
i .

Then

πi(a)η = λη + ξo ⊂ H
and for ξi ∈ Ho

j(i) with i 6= j(1) 6= j(2) 6= . . .

πi(a)ξ1 ⊗ ξ2 . . . =̂ πi(a)η ⊗ ξ1 ⊗ ξ2 ⊗ . . .

= (aηi)⊗ ξ1 ⊗ ξ2 ⊗ . . .

= λη ⊗ ξ1 ⊗ ξ2 ⊗ · · ·+ ξo ⊗ ξ1 ⊗ ξ2 ⊗ . . .

= λξ1 ⊗ ξ2 ⊗ · · ·+ ξo ⊗ ξ1 ⊗ ξ2 ⊗ . . .

⊂ H.

(To formalize this definition of πi one has to decompose the elements
from H by a unitary operator into a first component from Hi and the
rest; we will not go into the details here, but refer for this just to the
literature, e.g. ...)
The representation πi of Ai is faithful, thus we have

(57) Ai
∼= πi(Ai) ⊂ B(H).

We put now

(58) A := C∗(π1(A1), . . . , πm(Am))

and

(59) ϕ(a) := 〈η, aη〉 (a ∈ A).
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Consider now a ∈ Ai, then we have:

ϕ(πi(a)) = 〈η, πi(a)η〉 = 〈η, (λη + ξo)〉 = λ = 〈ηi, aηi〉 = ϕi(a),

i.e., ϕ|πi(Ai) = ϕi. It only remains to show that π1(A1), . . . , πm(Am)
are free in (A, ϕ). For this consider π(a1) . . . π(ak) with ai ∈ Ao

j(i)

and j(1) 6= j(2) 6= · · · 6= j(k). Note that ϕj(i)(ai) = 0 implies that
aiηj(i) =: ξi ∈ Ho

j(i). Thus we have

ϕ(π(a1) . . . π(ak)) = 〈η, π(a1) . . . π(ak)η〉
= 〈η, π(a1) . . . π(ak−1)ξk〉
= 〈η, ξ1 ⊗ · · · ⊗ ξk〉
= 0.

This gives the assertion. �

Remark 2.4.9. Again, we call (A, ϕ) the free product (A, ϕ) =
(A1, ϕ1) ∗ . . . ∗ (Am, ϕm). Note that, contrary to the algebraic case, A
depends now not only on theAi, but also on the states ϕi. In particular,
the C∗-algebra A is in general not identical to the so-called universal
free product of the C∗-algebras A1, . . . ,Am. In order to distinguish
these concepts, one calls the A which we have constructed here also
the reduced free product - because it is the quotient of the universal
free product by the kernel of the free product state ϕ.

Remarks 2.4.10. 1) Let us denote, for a Hilbert space H, by
(A(H), τH) the C∗-probability space which is given by left creation
operators on the corresponding full Fock space, i.e.

A(H) := C∗(l(f) | f ∈ H) ⊂ B(F(H))

and τH(a) := 〈Ω, aΩ〉 for a ∈ A(H). Consider now Hilbert spaces
H1, . . . ,Hm. Then we have the following relation:
(60)
(A(H1), τH1) ∗ . . . ∗ (A(Hm), τHm) = (A(H1 ⊕ · · · ⊕ Hm), τH1⊕···⊕Hm).

2) Let e1 and e2 be orthonormal vectors in H and put l1 := l(e1) and
l2 := l(e2). Then we have (C∗(l1, l2), τ) = (C∗(l1), τ) ∗ (C∗(l2), τ). In
C∗(l1) and C∗(l2) we have as relations l∗1l1 = 1, l1l

∗
1 < 1 (i.e. l1 is a

non unitary isometry) and l∗2l2 = 1, l2l
∗
2 < 1 (i.e. l2 is a non unitary

isometry). In C∗(l1, l2), however, we have the additional relation l∗1l2 =
0; this relations comes from the special form of the state τ .
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Cumulants





CHAPTER 3

Free cumulants

3.1. Motivation: Free central limit theorem

In this section, we want to motivate the appearance of special com-
binatorial objects in free probability theory.

Definition 3.1.1. Let (AN , ϕN) (N ∈ N) and (A, ϕ) be probability
spaces and consider

aN ∈ AN (N ∈ N), a ∈ A.

We say that aN converges in distribution towards a for N → ∞
and denote this by

aN
distr−→ a,

if we have

lim
N→∞

ϕN(an
N) = ϕ(an) for all n ∈ N.

Remark 3.1.2. In classical probability theory, the usual form of
convergence appearing, e.g., in central limit theorems is ’weak conver-
gence’. If we can identify µaN

and µa with probability measures on R
or C, then weak convergence of µaN

towards µa means

lim
N→∞

∫
f(t)dµaN

(t) =

∫
f(t)dµa(t) for all continuous f .

If µa has compact support – as it is the case for a normal and bounded –
then, by Stone-Weierstrass, this is equivalent the the above convergence
in distribution.

Remark 3.1.3. Let us recall the simplest version of the clas-
sical central limit theorem: Let (A, ϕ) be a probability space and
a1, a2, · · · ∈ A a sequence of independent and identically distributed
random variables (i.e., µar = µap for all r, p). Furthermore, assume
that all variables are centered, ϕ(ar) = 0 (r ∈ N), and denote by
σ2 := ϕ(a2

r) the common variance of the variables.
Then we have

a1 + · · ·+ aN√
N

distr−→ γ,

37
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where γ is a normally distributed random variable of variance σ2.
Explicitly, this means

(61) lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
=

1√
2πσ2

∫
tne−t2/2σ2

dt ∀n ∈ N.

Theorem 3.1.4. (free CLT: one-dimensional case) Let (A, ϕ)
be a probability space and a1, a2, · · · ∈ A a sequence of free and iden-
tically distributed random variables. Assume furthermore ϕ(ar) = 0
(r ∈ N) and denote by σ2 := ϕ(a2

r) the common variance of the vari-
ables.
Then we have

a1 + · · ·+ aN√
N

distr−→ s,

where s is a semi-circular element of variance σ2.
Explicitly, this means

lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
=

{
0, k odd

Ckσ
n, n = 2k even.

Proof. We have

ϕ
(
(a1 + · · ·+ aN)n

)
=

∑
1≤r(1),...,r(n)≤N

ϕ(ar(1) . . . ar(n)).

Since all ar have the same distribution we have

ϕ(ar(1) . . . ar(n)) = ϕ(ap(1) . . . ap(n))

whenever

r(i) = r(j) ⇐⇒ p(i) = p(j) ∀ 1 ≤ i, j ≤ n.

Thus the value of ϕ(ar(1) . . . ar(n)) depends on the tuple (r(1), . . . , r(n))
only through the information which of the indices are the same and
which are different. We will encode this information by a partition
π = {V1, . . . , Vq} of {1, . . . , n} – i.e.,

{1, . . . , n} = ∪̇q
i=1Vq,

– which is determined by: r(p) = r(q) if and only if p and q belong
to the same block of π. We will write (r(1), . . . , r(n)) =̂ π in this case.
Furthermore we denote the common value of ϕ(ar(1) . . . ar(n)) for all
tuples (r(1), . . . , r(n)) with (r(1), . . . , r(n)) =̂ π by kπ.
For illustration, consider the following example:

k{(1,3,4),(2,5),(6)} = ϕ(a1a2a1a1a2a3) = ϕ(a7a5a7a7a5a3).
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Then we can continue the above calculation with

ϕ
(
(a1 + · · ·+ aN)n

)
=

∑
π partition of {1, . . . , n}

kπ ·#{(r(1), . . . , r(n)) =̂ π}

Note that there are only finitely many partitions of {1, . . . , n} so that
the above is a finite sum. The only dependence on N is now via the
numbers #{(r(1), . . . , r(n)) =̂ π}. It remains to examine the contribu-
tion of the different partitions. We will see that most of them will give
no contribution in the normalized limit, only very special ones survive.
Firstly, we will argue that partitions with singletons do not contribute:
Consider a partition π = {V1, . . . , Vq} with a singleton, i.e., we have
Vm = {r} for some m and some r.Then we have

kπ = ϕ(ar(1) . . . ar . . . ar(n)) = ϕ(ar) · ϕ(ar(1) . . . ǎr . . . ar(n)) = 0,

because {ar(1), . . . , ǎr, . . . , ar(n)} is free from ar. Thus only such parti-
tions π contribute which have no singletons, i.e. π = {V1, . . . , Vq} with
#Vm ≥ 2 for all m = 1, . . . , q.

On the other side,

#{(r(1), . . . , r(n)) =̂ π} = N(N − 1) . . . (N − q + 1) ≈ N q

for π = {V1, . . . , Vq}. Thus

lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
= lim

N→∞

∑
π

#{(r(1), . . . , r(n)) =̂ π}
Nn/2

kπ

= lim
N→∞

∑
π

N q−(n/2)kπ

=
∑

π={V1,...,Vn/2}
#Vm=2 ∀m=1,...,n/2

kπ

This means, that in the limit only pair partitions – i.e., partitions
where each block Vm consists of exactly two elements – contribute. In
particular, since there are no pair partitions for n odd, we see that the
odd moments vanish in the limit:

lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
= 0 for n odd.

Let now n = 2k be even and consider a pair partition π =
{V1, . . . , Vk}. Let (r(1), . . . , r(n)) be an index-tuple corresponding to
this π, (r(1), . . . , r(n)) =̂ π. Then there exist the following two possi-
bilities:
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(1) all consecutive indices are different:

r(1) 6= r(2) 6= · · · 6= r(n).

Since ϕ(ar(m)) = 0 for all m = 1, . . . , n, we have by the defini-
tion of freeness

kπ = ϕ(ar(1) . . . ar(n)) = 0.

(2) two consecutive indices coincide, i.e., r(m) = r(m + 1) = r for
some m = 1, . . . , n− 1. Then we have

kπ = ϕ(ar(1) . . . arar . . . ar(n))

= ϕ(ar(1) . . . ar(m−1)ar(m+2) . . . ar(n))ϕ(arar)

= ϕ(ar(1) . . . ar(m−1)ar(m+2) . . . ar(n))σ
2

Iterating of these two possibilities leads finally to the following two
possibilities:

(1) π has the property that successively we can find consecutive
indices which coincide. In this case we have kπ = σk.

(2) π does not have this property, i.e., there exist p1 < q1 < p2 < q2

such that p1 is paired with p2 and q1 is paired with q2. We will
call such a π crossing. In that case we have kπ = 0.

Thus we have shown

(62) lim
N→∞

ϕ
(
(
a1 + · · ·+ aN√

N
)n

)
= Dnσ

n,

where

Dn := #{π | π non-crossing pair partition of {1, . . . , n}}

and it remains to show that Dn = Cn/2. We present two different proofs
for this fact:

(1) One possibility is to check that the Dn fulfill the recurrence
relation of the Catalan numbers: Let π = {V1, . . . , Vk} be a
non-crossing pair partition. We denote by V1 that block of
π which contains the element 1, i.e., it has to be of the form
V1 = (1, m). Then the property ’non-crossing’ enforces that for
each Vj (j 6= 1) we have either 1 < Vj < m or 1 < m < Vj (in
particular, m has to be even), i.e., π restricted to {2, . . . ,m−1}
is a non-crossing pair partition of {2, . . . ,m − 1} and π re-
stricted to {m + 1, . . . , n} is a non-crossing pair partition of
{m + 1, . . . , n}. There exist Dm−2 many non-crossing pair
partitions of {2, . . . ,m−1} and Dn−m many non-crossing pair
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partitions of {m + 1, . . . , n}. Both these possibilities can ap-
pear independently from each other and m can run through
all even numbers from 2 to n. Hence we get

Dn =
∑

m=2,4,...,n−2,n

Dm−2Dn−m.

This is the recurrence relation for the Catalan numbers. Since
also D2 = 1 = C1, we obtain

Dn = Ck (for n = 2k even).

(2) Another possibility for proving Dn = Ck is to present a bijec-
tion between non-crossing pair partitions and Catalan paths:
We map a non-crossing pair partition π to a Catalan path
(i1, . . . , in) by

im = +1 ⇐⇒ m is the first element in some Vj ∈ π

im = −1 ⇐⇒ m is the second element in some Vj ∈ π

Consider the following example:

π = {(1, 4), (2, 3), (5, 6)} 7→ (+1, +1,−1,−1, +1,−1).

The proof that this mapping gives really a bijection between
Catalan paths and non-crossing pair partitions is left to the
reader.

�

Example 3.1.5. Consider the following examples for the bijection
between Catalan paths and non-crossing pair partitions.

• n = 2

���@@R =̂

• n = 4

���@@R���@@R =̂

���
���@@R

@@R =̂
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• n = 6

���@@R���@@R���@@R =̂

���@@R���
���@@R

@@R =̂

���
���@@R

@@R���@@R =̂

���
���@@R���@@R

@@R =̂

���
���

���@@R
@@R

@@R =̂

Remarks 3.1.6. 1) According to the free central limit theorem the
semi-circular distribution has to be considered as the free analogue of
the normal distribution and is thus one of the basic distributions in
free probability theory.
2) As in the classical case the assumptions in the free central limit the-
orem can be weakened considerably. E.g., the assumption ’identically
distributed’ is essentially chosen to simplify the writing up; the same
proof works also if one replaces this by

sup
i∈N

|ϕ(an
i )| < ∞ ∀ n ∈ N

and

σ2 := lim
N→∞

1

N

N∑
i=1

ϕ(a2
i ).

3) The same argumentation works also for a proof of the classical cen-
tral limit theorem. The only difference appears when one determines
the contribution of pair partitions. In contrast to the free case, all parti-
tions give now the same factor. We will see in the forthcoming sections
that this is a special case of the following general fact: the transition
from classical to free probability theory consists on a combinatorial
level in the transition from all partitions to non-crossing partitions.
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Remark 3.1.7. One of the main advantages of our combinatorial
approach to free probability theory is the fact that a lot of arguments
can be extended from the one-dimensional to the more-dimensional
case without great efforts. Let us demonstrate this for the free central
limit theorem.
We replace now each ar by a family of random variables (a

(i)
r )i∈I and

assume that all these families are free and each of them has the same
joint distribution and that all appearing random variables are centered.
We ask for the convergence of the joint distribution of the random

variables
(
(a

(i)
1 + · · · + a

(i)
N )/

√
N

)
i∈I

when N tends to infinity. The
calculation of this joint distribution goes in the same way as in the
one-dimensional case. Namely, we now have to consider for all n ∈ N
and all i(1), . . . , i(n) ∈ I

(63) ϕ
(
(a

(i(1))
1 + · · ·+ a

(i(1))
N ) · · · (a(i(n))

1 + · · ·+ a
(i(n))
N

)
=

∑
1≤r(1),...,r(n)≤N

ϕ(a
(i(1))
r(1) . . . a

(i(n))
r(n) ).

Again, we have that the value of ϕ(a
(i(1))
r(1) . . . a

(i(n))
r(n) ) depends on the tuple

(r(1), . . . , r(n)) only through the information which of the indices are
the same and which are different, which we will encode as before by

a partition π of {1, . . . , n}. The common value of ϕ(a
(i(1))
r(1) . . . a

(i(n))
r(n) )

for all tuples (r(1), . . . , r(n)) =̂ π will now also depend on the tuple
(i(1), . . . , i(n)) and will be denoted by kπ[i(1), . . . , i(n)]. The next steps
are the same as before. Singletons do not contribute because of the
centeredness assumption and only pair partitions survive in the limit.
Thus we arrive at

(64) lim
N→∞

ϕ
(a

(i(1))
1 + · · ·+ a

(i(1))
N√

N
· · · a

(i(n))
1 + · · ·+ a

(i(n))
N√

N

)
=

∑
π pair partition
of {1, . . . , n}

kπ[i(1), . . . , i(n)].

It only remains to identify the contribution kπ[i(1), . . . , i(n)] for a
pair partition π. As before, the freeness assumption ensures that
kπ[i(1), . . . , i(n)] = 0 for crossing π. So consider finally non-crossing
π. Remember that in the case of a non-crossing π we can find two
consecutive indices which coincide, i.e., r(m) = r(m + 1) = r for some
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m. Then we have

kπ[i(1), . . . , i(n)] = ϕ(a
(i(1))
r(1) . . . a(i(m))

r a(i(m+1))
r . . . a

(i(n))
r(n) )

= ϕ(a
(i(1))
r(1) . . . a(i(m−1))

r a(i(m+2))
r . . . a

(i(n))
r(n) )ϕ(a(i(m))

r a(i(m+1))
r )

= ϕ(a
(i(1))
r(1) . . . a

(i(m−1))
r(m−1) a

(i(m+2))
r(m+2) . . . a

(i(n))
r(n) )ci(m)i(m+1),

where cij := ϕ(a
(i)
r a

(j)
r ) is the covariance of (a

(i)
r )i∈I .

Iterating of this will lead to the final result that kπ[i(1), . . . , i(n)] is
given by the product of covariances

∏
(p,q)∈π ci(p)i(q) (one factor for each

block (p, q) of π).

Definition 3.1.8. Let (AN , ϕN) (N ∈ N) and (A, ϕ) be probability
spaces. Let I be an index set and consider for each i ∈ I random

variables a
(i)
N ∈ AN and ai ∈ A. We say that (a

(i)
N )i∈I converges in

distribution towards (ai)i∈I and denote this by

(a
(i)
N )i∈I

distr−→ (ai)i∈I ,

if we have that each joint moment of (a
(i)
N )i∈I converges towards the

corresponding joint moment of (ai)i∈I , i.e., if we have for all n ∈ N and
all i(1), . . . , i(n) ∈ I

(65) lim
N→∞

ϕN(a
(i(1))
N . . . a

(i(n))
N ) = ϕ(ai(1) . . . ai(n)).

Theorem 3.1.9. (free CLT: multi-dimensional case) Let

(A, ϕ) be a probability space and (a
(i)
1 )i∈I , (a

(i)
2 )i∈I , · · · ⊂ A a sequence

of free families with the same joint distribution of (a
(i)
r )i∈I for all r ∈ N.

Assume furthermore that all variables are centered

ϕ(a(i)
r ) = 0 (r ∈ N, i ∈ I)

and denote the covariance of the variables – which is independent of r
– by

cij := ϕ(a(i)
r a(j)

r ) (i, j ∈ I).

Then we have

(66)
(a

(i)
1 + · · ·+ a

(i)
N√

N

)
i∈I

distr−→ (si)i∈I ,

where the joint distribution of the family (si)i∈I is, for all n ∈ N and
all i(1), . . . , i(n) ∈ I, given by

(67) ϕ(si(1) . . . si(n)) =
∑

π non-crossing pair partition
of {1, . . . , n}

kπ[si(1), . . . , si(n)],
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where

(68) kπ[si(1), . . . , si(n)] =
∏

(p,q)∈π

ci(p)i(q).

Notation 3.1.10. Since (si)i∈I gives the more-dimensional gener-
alization of a semi-circular variable, we will call (si)i∈I a semi-circular
family of covariance (cij)i,j∈I . It is usual terminology in free proba-
bility theory to denote by ’semi-circular family’ the more special situ-
ation where the covariance is diagonal in i, j, i.e. where all si are free
(see the following proposition).

Proposition 3.1.11. Let (si)i∈I be a semi-circular family of co-

variance (cij)i,j∈I and consider a disjoint decomposition I = ∪̇d
p=1Ip.

Then the following two statements are equivalent:

(1) The families {si}i∈Ip (p = 1, . . . , d) are free
(2) We have cij = 0 whenever i ∈ Ip and j ∈ Iq with p 6= q

Proof. Assume first that the families {si}i∈Ip (p = 1, . . . , d) are
free and consider i ∈ Ip and j ∈ Iq with p 6= q. Then the freeness of si

and sj implies in particular

cij = ϕ(sisj) = ϕ(si)ϕ(sj) = 0.

If on the other side we have cij = 0 whenever i ∈ Ip and j ∈ Iq with
p 6= q then we can use our free central limit theorem in the following

way: Choose a
(i)
r such that they have the same distribution as the s

(i)
r

up to second order (i.e. first moments vanish and covariance is given

by (cij)i,j∈I) and such that the sets {a(i)
r }i∈Ip (p = 1, . . . , d) are free.

Note that these requirements are compatible because of our assumption
on the covariances cij. Of course, we can also assume that the joint

distribution of (a
(i)
r )i∈I is independent of r. But then our free central

limit theorem tells us that

(69)
(a

(i)
1 + · · ·+ a

(i)
N√

N

)
i∈I

distr−→ (si)i∈I ,

where the limit is given exactly by the semi-circular family with which
we started (because this has the right covariance). But we also have

that the sets {(a(i)
1 + · · · + a

(i)
N )/

√
N}i∈Ip (p = 1, . . . , d) are free; since

freeness passes over to the limit we get the wanted result that the sets
{si}i∈Ip (p = 1, . . . , d) are free. �

Remark 3.1.12. The conclusion we draw from the above consid-
erations is that non-crossing pair partitions appear quite naturally in
free probability. If we would consider more general limit theorems (e.g.,
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free Poisson) then all kind of non-crossing partitions would survive in
the limit. The main feature of freeness in this combinatorial approach
(in particular, in comparision with independence) is reflected by the
property ’non-crossing’. In the next sections we will generalize to arbi-
trary distributions what we have learned from the case of semi-circular
families, namely:

• it seems to be canonical to write moments as sums over non-
crossing partitions

• the summands kπ reflect freeness quite clearly, since
kπ[si(1), . . . , si(n)] vanishes if the blocks of π couple elements
which are free.

3.2. Non-crossing partitions

Definitions 3.2.1. Fix n ∈ N. We call π = {V1, . . . , Vr} a parti-
tion of S = (1, . . . , n) if and only if the Vi (1 ≤ i ≤ r) are pairwisely
disjoint, non-void tuples such that V1∪· · ·∪Vr = S. We call the tuples
V1, . . . , Vr the blocks of π. The number of components of a block V
is denoted by |V |. Given two elements p and q with 1 ≤ p, q ≤ n, we
write p ∼π q, if p and q belong to the same block of π.
2) A partition π is called non-crossing, if the following situation
does not occur: There exist 1 ≤ p1 < q1 < p2 < q2 ≤ n such that
p1 ∼π p2 6∼π q1 ∼π q2:

1 · · · p1 · · · q1 · · · p2 · · · q2 · · · n

The set of all non-crossing partitions of (1, . . . , n) is denoted by NC(n).

Remarks 3.2.2. 1) We get a linear graphical representation of
a partition π by writing all elements 1, . . . , n in a line, supplying
each with a vertical line under it and joining the vertical lines of the
elements in the same block with a horizontal line.
Example: A partition of the tuple S = (1, 2, 3, 4, 5, 6, 7) is

π1 = {(1, 4, 5, 7), (2, 3), (6)} =̂

1 2 3 4 5 6 7

.

The name ’non-crossing’ becomes evident in such a representation; e.g.,
let S = {1, 2, 3, 4, 5}. Then the partition

π = {(1, 3, 5), (2), (4)} =̂

1 2 3 4 5
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is non-crossing, whereas

π = {(1, 3, 5), (2, 4)} =̂

1 2 3 4 5

is crossing.
2) By writing a partition π in the form π = {V1, . . . , Vr} we will always
assume that the elements within each block Vi are ordered in increasing
order.
3) In most cases the following recursive description of non-crossing
partitions is of great use: a partition π ist non-crossing if and only if
at least one block V ∈ π is an interval and π\V is non-crossing; i.e.
V ∈ π has the form

V = (k, k + 1, . . . , k + p) for some 1 ≤ k ≤ n and p ≥ 0, k + p ≤ n

and we have

π\V ∈ NC(1, . . . , k − 1, k + p + 1, . . . , n) ∼= NC(n− (p + 1)).

Example: The partition

{(1, 10), (2, 5, 9), (3, 4), (6), (7, 8)} =̂

1 2 3 4 5 6 7 8 9 10

can, by successive removal of intervals, be reduced to

{(1, 10), (2, 5, 9)} =̂

1 2 5 9 10

and finally to

{(1, 10)} =̂

1 10

4) In the same way as for (1, . . . , n) one can introduce non-crossing
partitions NC(S) for each finite linearly ordered set S. Of course,
NC(S) depends only on the number of elements in S. In our investi-
gations, non-crossing partitions will appear as partitions of the index
set of products of random variables a1 · · · an. In such a case, we will
also sometimes use the notation NC(a1, . . . , an). (If some of the ai are
equal, this might make no rigorous sense, but there should arise no
problems by this.)

Example 3.2.3. The following picture shows NC(4).
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Notations 3.2.4. 1) If S is the union of two disjoint sets S1 and
S2 then, for π1 ∈ NC(S1) and π2 ∈ NC(S2), we let π1 ∪ π2 be that
partition of S which has as blocks the blocks of π1 and the blocks of
π2. Note that π1 ∪ π2 is not automatically non-crossing.
2) Let W be a union of some of the blocks of π. Then we denote by
π|W the restriction of π to W , i.e.

(70) π|W := {V ∈ π | V ⊂ W} ∈ NC(W ).

3) Let π, σ ∈ NC(n) be two non-crossing partitions. We write σ ≤ π,
if each block of σ is completely contained in one block of π. Hence,
we obtain σ out of π by refining the block structure. For example, we
have

{(1, 3), (2), (4, 5), (6, 8), (7)} ≤ {(1, 3, 7), (2), (4, 5, 6, 8)}.
The partial order≤ induces a lattice structure on NC(n). In particular,
given two non-crossing partitions π, σ ∈ NC(n), we have their join
π ∨ σ – which is the unique smallest τ ∈ NC(n) such that τ ≥ π and
τ ≥ σ – and their meet π∧σ – which is the unique biggest τ ∈ NC(n)
such that τ ≤ π and τ ≤ σ.
4) The maximum of NC(n) – the partition which consists of one block
with n components – is denoted by 1n. The partition consisting of n
blocks, each of which has one component, is the minimum of NC(n)
and denoted by 0n.
5) The lattice NC(n) is self-dual and there exists an important anti-
isomorphism K : NC(n) → NC(n) implementing this self-duality.
This complementation map K is defined as follows: Let π be a non-
crossing partition of the numbers 1, . . . , n. Furthermore, we consider
numbers 1̄, . . . , n̄ with all numbers ordered in an alternating way

1 1̄ 2 2̄ . . . n n̄ .



3.2. NON-CROSSING PARTITIONS 49

The complement K(π) of π ∈ NC(n) is defined to be the biggest
σ ∈ NC(1̄, . . . , n̄) =̂ NC(n) with

π ∪ σ ∈ NC(1, 1̄, . . . , n, n̄) .

Example: Consider the partition π := {(1, 2, 7), (3), (4, 6), (5), (8)} ∈
NC(8). For the complement K(π) we get

K(π) = {(1), (2, 3, 6), (4, 5), (7, 8)} ,

as can be seen from the graphical representation:

1 1̄ 2 2̄ 3 3̄ 4 4̄ 5 5̄ 6 6̄ 7 7̄ 8 8̄

.

Non-crossing partitions and the complementation map were intro-
duced by Kreweras [?], ...

Notation 3.2.5. 1) Denote by Sn the group of all permutations of
(1, 2, . . . , n). Let α be a permutation in Sn, and let π = {V1, . . . , Vr} be
a partition of (1, 2, . . . , n). Then α(V1), . . . , α(Vr) form a new partition
of (1, 2, . . . , n), which will be denoted by α · π.
2) An ordered k-tuple V = (m1, . . . ,mk) with 1 ≤ m1 < · · · < mk ≤ n
is called parity-alternating if mi and mi+1 are of different parities, for
every 1 ≤ i ≤ k− 1. (In the case when k = 1, we make the convention
that every 1-tuple V = (m) is parity-alternating.)
3) We denote by NCE(2p) the set of all partitions σ = {V1, . . . , Vr} ∈
NC(2p) with the property that all the blocks V1, . . . , Vr of σ have even
cardinality.

Exercise 3.2.6. Let n be a positive integer.
(a) Consider the cyclic permutation γ of (1, 2, . . . , n) which has γ(i) =
i+1 for 1 ≤ i ≤ n−1, and has γ(n) = 1. Show that the map π 7→ γ ·π
is an automorphism of the lattice NC(n).
(b) Consider the ‘order-reversing’ permutation β of (1, 2, . . . , n), which
has β(i) = n + 1− i for 1 ≤ i ≤ n. Show that the map π 7→ β · π is an
automorphism of the lattice NC(n).
(c) Let α be a permutation of (1, 2, . . . , n) which has the property that
α · π ∈ NC(n) for every π ∈ NC(n). Prove that α belongs to the
subgroup of Sn generated by γ and β from the parts (a) and (b) of the
exercise.
(d) Conclude that the group of automorphisms of the lattice NC(n) is
isomorphic with the dihedral group of order 2n.
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Exercise 3.2.7. Let n be a positive integer, and let π be a partition
in NC(n).
(a) Suppose that every block V of π has even cardinality. Prove that
every block V of π is parity-alternating.
(b) Suppose that not all the blocks of π have even cardinality. Prove
that π has a parity-alternating block V of odd cardinality.

Exercise 3.2.8. (a) Show that the Kreweras complementation map
on NC(2p) sends NCE(2p) onto the set of partitions τ ∈ NC(2p) with
the property that every block of τ either is contained in {1, 3, . . . 2p−1}
or is contained in {2, 4, . . . , 2p}.
(b) Determine the image under the Kreweras complementation map of
the set of non-crossing pairings of (1, 2, . . . , 2p), where the name “non-
crossing pairing” stands for a non-crossing partition which has only
blocks of two elements. [ Note that the non-crossing pairings are the
minimal elements of NCE(2p), therefore their Kreweras complements
have to be the maximal elements of K(NCE(2p)). ]

Exercise 3.2.9. (a) Show that the set NCE(2p) has (3p)!/(p!(2p+
1)!) elements.
(b) We call “2-chain in NC(p)” a pair (π, ρ) such that π, ρ ∈ NC(p) and
π ≤ ρ. Show that the set of 2-chains in NC(p) also has (3p)!/(p!(2p +
1)!) elements.
(c) Prove that there exists a bijection:

(71) Φ : NCE(2p) −→ {(π, ρ) | π, ρ ∈ NC(p), π ≤ ρ},
with the following property: if σ ∈ NCE(2p) and if Φ(σ) = (π.ρ), then
π has the same number of blocks of σ, and moreover one can index the
blocks of σ and π:

σ = {V1, . . . , Vr}, π = {W1, . . . ,Wr},
in such a way that |V1| = 2|W1|, . . . , |Vr| = 2|Wr|.

3.3. Posets and Möbius inversion

Remark 3.3.1. Motivated by our combinatorial description of
the free central limit theorem we will in the following use the
non-crossing partitions to write moments ϕ(a1 · · · an) in the form∑

π∈NC(n) kπ[a1, . . . , an], where k denotes the so-called free cumulants.
Of course, we should invert this equation in order to define the free cu-
mulants in terms of the moments. This is a special case of the general
theory of Möbius inversion and Möbius function – a unifying concept
in modern combinatorics which provides a common frame for quite a
lot of situations.
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The general frame is a poset, i.e. a partially ordered set. We will
restrict to the finite case, so we consider a finite set P with a partial
order ≤. Furthermore let two functions f, g : P → C be given which
are connected as follows:

f(π) =
∑
σ∈P
σ≤π

g(σ).

This is a quite common situation and one would like to invert this
relation. This is indeed possible in a universal way, in the sense that
one gets for the inversion a formula of a similar kind which involves also
another function, the so-called Möbius function µ. This µ, however,
does not depend on f and g, but only on the poset P .

Proposition 3.3.2. Let P be a finite poset. Then there exists a
function µ : P × P → C such that for all functions f, g : P → C the
following two statements are equivalent:

(72) f(π) =
∑
σ∈P
σ≤π

g(σ) ∀π ∈ P

(73) g(π) =
∑
σ∈P
σ≤π

f(σ)µ(σ, π) ∀π ∈ P

If we also require µ(σ, π) = 0 if σ 6≤ π, then µ is uniquely determined.

Proof. We try to define µ inductively by writing our relation
f(π) =

∑
σ≤π g(σ) in the form

f(π) = g(π) +
∑
τ<π

g(τ),

which gives

g(π) = f(π)−
∑
τ<π

g(τ).

If we now assume that we have the inversion formula for τ < π then
we can continue with

g(π) = f(π)−
∑
τ<π

∑
σ≤τ

f(σ)µ(σ, τ)

= f(π)−
∑
σ<π

f(σ)
( ∑

σ≤τ<π

µ(σ, τ)
)
.
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This shows that µ has to fulfill

µ(π, π) = 1(74)

µ(σ, π) = −
∑

σ≤τ<π

µ(σ, τ) (σ < π).(75)

On the other hand this can be used to define µ(·, π) recursively by
induction on the length of the interval [σ, π] := {τ | σ ≤ τ ≤ π}. This
defines µ(σ, π) uniquely for all σ ≤ π. If we also require µ to vanish in
all other cases, then it is uniquely determined. �

Examples 3.3.3. 1) The classical example which gave the name to
the Möbius inversion is due to Möbius (1832) and comes from number
theory: Möbius showed that a relation f(n) =

∑
m|n g(n) – where n

and m are integer numbers and m | n means that m is a divisor of n –
can be inverted in the form g(n) =

∑
m|n f(m)µ(m/n) where µ is now

the classical Möbius function given by

(76) µ(n) =

{
(−1)k, if n is the product of k distinct primes

0, otherwise.

2) We will be interested in the case where P = NC(n). Although
a direct calculation of the corresponding Möbius function would be
possible, we will defer this to later (see ...), when we have more adequate
tools at our disposition.

3.4. Free cumulants

Notation 3.4.1. Let A be a unital algebra and ϕ : A → C a
unital linear functional. This gives raise to a sequence of multilinear
functionals (ϕn)n∈N on A via

(77) ϕn(a1, . . . , an) := ϕ(a1 · · · an).

We extend these to a corresponding function on non-crossing partitions
in a multiplicative way by (a1, . . . , an ∈ A)

(78) ϕπ[a1, . . . , an] :=
∏
V ∈π

ϕ(π|V ),

where we used the notation

(79) ϕ(π|V ) := ϕs(ai1 , . . . , ais) for V = (i1, . . . , is) ∈ π.

Definition 3.4.2. Let (A, ϕ) be a probability space, i.e. A is a
unital algebra and ϕ : A → C a unital linear functional. Then we
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define corresponding (free) cumulants (kπ) (n ∈ N, π ∈ NC(n))

kπ : An → C,

(a1, . . . , an) 7→ kn(a1, . . . , an)

as follows:

(80) kπ[a1, . . . , an] :=
∑
σ≤π

ϕσ[a1, . . . , an]µ(σ, π) (π ∈ NC(N)),

where µ is the Möbius function on NC(n).

Remarks 3.4.3. 1) By the general theory of Möbius inversion our
definition of the free cumulants is equivalent to the relations

(81) ϕ(a1 · · · an) = ϕn(a1, . . . , an) =
∑

σ∈NC(n)

kπ[a1, . . . , an].

2) The basic information about the free cumulants is contained in the
sequence of cumulants kn := k1n for n ∈ N. For these the above
definition gives:

(82) kn[a1, . . . , an] :=
∑

σ∈NC(n)

ϕσ[a1, . . . , an]µ(σ, 1n).

In the same way as ϕπ is related to the ϕn, all other kπ reduce to the
kn in a multiplicative way according to the block structure of π. This
will be shown in the next proposition. For the proof of that proposition
we need the fact that also the Möbius function is multiplicative in an
adequate sense, so we will first present this statement as a lemma.

Lemma 3.4.4. The Möbius function µ on non-crossing partitions is
multiplicative, i.e. for σ ≤ π ≤ ω we have

(83) µ(σ, π) =
∏
V ∈ω

µ(σ|V , π|V ).

Proof. We do this by induction on the length of the interval [σ, π];
namely

µ(π, π) = 1 =
∏
V ∈ω

1 =
∏
V ∈ω

µ(π|V , π|V )
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and for σ < π

µ(σ, π) = −
∑

σ≤τ<π

µ(σ, τ)

= −
∑

σ≤τ<π

∏
V ∈ω

µ(σ|V , τ |V )

= −
∑

σ≤τ≤π

∏
V ∈ω

µ(σ|V , τ |V ) +
∏
V ∈ω

µ(σ|V , π|V )

= −
∏
V ∈ω

( ∑
σ|V ≤τV ≤π|V

µ(σ|V , τV )
)

+
∏
V ∈ω

µ(σ|V , π|V )

= 0 +
∏
V ∈ω

µ(σ|V , π|V ),

where we used in the last step again the recurrence relation (15) for
the Möbius function. Note that at least for one V ∈ ω we have σ|V <
π|V . �

Proposition 3.4.5. The free cumulants are multiplicative, i.e. we
have

(84) kπ[a1, . . . , an] :=
∏
V ∈π

k(π|V ),

where we used the notation

(85) k(π|V ) := ks(ai1 , . . . , ais) for V = (i1, . . . , is) ∈ π.

Proof. We have

k(π) =
∑
σ≤π

ϕ(σ)µ(σ, π)

=
∑

(
⋃

V ∈π σ|V )≤π

∏
V ∈π

ϕ(σ|V )µ(σ|V , π|V )

=
∑

σ|V ≤π|V (V ∈π)

∏
V ∈π

ϕ(σ|V )µ(σ|V , π|V )

=
∏
V ∈π

( ∑
σV ≤π|V

ϕ(σV )µ(σV , π|V )
)

=
∏
V ∈π

k(π|V )

�

Examples 3.4.6. Let us determine the concrete form of
kn(a1, . . . , an) for small values of n. Since at the moment we do not
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have a general formula for the Möbius function on non-crossing par-
titions at hand, we will determine these kn by resolving the equation
ϕn =

∑
π∈NC(n) kπ by hand (and thereby also determining some values

of the Möbius function).
1) n = 1:

(86) k1(a1) = ϕ(a1) .

2) n = 2: The only partition π ∈ NC(2), π 6= 12 is . So we get

k2(a1, a2) = ϕ(a1a2)− k [a1, a2]

= ϕ(a1a2)− k1(a1)k1(a2)

= ϕ(a1a2)− ϕ(a1)ϕ(a2).

or

(87) k2(a1, a2) = ϕ [a1, a2]− ϕ [a1, a2].

This shows that

µ( , ) = −1(88)

3) n = 3: We have to subtract from ϕ(a1a2a3) the terms kπ for all par-
titions in NC(3) except 13, i.e., for the following partitions:

, , , .

With this we obtain:

k3(a1, a2, a3) = ϕ(a1a2a3)− k [a1, a2, a3]− k [a1, a2, a3]

−k [a1, a2, a3]− k [a1, a2, a3]

= ϕ(a1a2a3)− k1(a1)k2(a2, a3)− k2(a1, a2)k1(a3)

−k2(a1, a3)k1(a2)− k1(a1)k1(a2)k1(a3)

= ϕ(a1a2a3)− ϕ(a1)ϕ(a2a3)− ϕ(a1a2)ϕ(a3)

−ϕ(a1a3)ϕ(a2) + 2ϕ(a1)ϕ(a2)ϕ(a3).

Let us write this again in the form

k3(a1, a2, a3) = ϕ [a1, a2, a3]− ϕ [a1, a2, a3]

− ϕ [a1, a2, a3]− ϕ [a1, a2, a3](89)

+ 2ϕ [a1, a2, a3],
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from which we can read off

µ( , ) = −1(90)

µ( , ) = −1(91)

µ( , ) = −1(92)

µ( , ) = 2(93)

4) For n = 4 we consider the special case where all ϕ(ai) = 0. Then
we have
(94)

k4(a1, a2, a3, a4) = ϕ(a1a2a3a4)− ϕ(a1a2)ϕ(a3a4)− ϕ(a1a4)ϕ(a2a3).

Example 3.4.7. Our results from the last section show that the
cumulants of a semi-circular variable of variance σ2 are given by

(95) kn(s, . . . , s) = δn2σ
2.

More generally, for a semi-circular family (si)i∈I of covariance (cij)i∈I

we have

(96) kn(si(1), . . . , si(n)) = δn2ci(1)i(2).

Another way to look at the cumulants kn for n ≥ 2 is that they
organize in a special way the information about how much ϕ ceases to
be a homomorhpism.

Proposition 3.4.8. Let (kn)n≥1 be the cumulants corresponding to
ϕ. Then ϕ is a homomorphism if and only if kn vanishes for all n ≥ 2.

Proof. Let ϕ be a homomorphism. Note that this means ϕσ = ϕ0n

for all σ ∈ NC(n). Thus we get

kn =
∑
σ≤1n

ϕσµ(σ, 1n) = ϕ(0n)
∑

0n≤σ≤1n

µ(σ, 1n),

which is, by the recurrence relation (15) for the Möbius function, equal
to zero if 0n 6= 1n, i.e. for n ≥ 2.
The other way around, if k2 vanishes, then we have for all a1, a2 ∈ A

0 = k2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2).

�

Remark 3.4.9. In particular, this means that on constants only
the first order cumulants are different from zero:

(97) kn(1, . . . , 1) = δn1.

Exercise 3.4.10. Let (A, ϕ) be a probability space and X1,X2 ⊂ A
two subsets of A. Show that the following two statements are equiva-
lent:
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i) We have for all n ∈ N, 1 ≤ k < n and all a1, . . . , ak ∈ X1 and
ak+1, . . . , an ∈ X2 that ϕ(a1 . . . akak+1 . . . an) = ϕ(a1 . . . ak) ·
ϕ(ak+1 . . . an).

ii) We have for all n ∈ N, 1 ≤ k < n and all a1, . . . , ak ∈ X1 and
ak+1, . . . , an ∈ X2 that kn(a1, . . . , ak, ak+1, . . . , an) = 0.

Exercise 3.4.11. We will use the following notations: A partition
π ∈ P(n) is called decomposable, if there exists an interval I =
{k, k + 1, . . . , k + r} 6= {1, . . . , n} (for some k ≥ 1, 0 ≤ r ≤ n − r),
such that π can be written in the form π = π1 ∪ π2, where π1 ∈
P({k, k + 1, . . . , k + r}) is a partition of I and π2 ∈ P(1, . . . , k −
1, k + r + 1, . . . , n}) is a partition of {1, . . . , n}\I. If there does not
exist such a decomposition of π, then we call π indecomposable. A
function t :

⋃
n∈NP(N) → C is called multiplicative, if we have for

each decomposition π = π1 ∪ π2 as above that t(π1 ∪ π2) = t(π1) · t(π2)
(where we identify of course P({k, k + 1, . . . , k + r}) with P(r + 1)).
Consider now a random variable a whose moments are given by the
formula

(98) ϕ(an) =
∑

π∈P(n)

t(π),

where t is a multiplicative function on the set of all partitions. Show
that the free cumulants of a are then given by

(99) kn(a, . . . , a) =
∑

π∈P(n)
π indecomposable

t(π).





CHAPTER 4

Fundamental properties of free cumulants

4.1. Cumulants with products as entries

We have defined cumulants as some special polynomials in the mo-
ments. Up to now it is neither clear that such objects have any nice
properties per se nor that they are of any use for the description of free-
ness. The latter point will be addressed in the next section, whereas
here we focus on properties of our cumulants with respect to the alge-
braic structure of our underlying algebra A. Of course, the linear struc-
ture is clear, because our cumulants are multi-linear functionals. Thus
it remains to see whether there is anything to say about the relation of
the cumulants with the multiplicative structure of the algebra. The cru-
cial property in a multiplicative context is associativity. On the level of
moments this just means that we can put brackets arbitrarily; for exam-
ple we have ϕ2(a1a2, a3) = ϕ((a1a2)a3) = ϕ(a1(a2a3)) = ϕ2(a1, a2a3).
But the corresponding statement on the level of cumulants is, of course,
not true, i.e. k2(a1a2, a3) 6= k2(a1, a2a3) in general. However, there is
still a treatable and nice formula which allows to deal with free cumu-
lants whose entries are products of random variables. This formula will
be presented in this section and will be fundamental for our forthcom-
ing investigations.

Notation 4.1.1. The general frame for our theorem is the follow-
ing: Let an increasing sequence of integers be given, 1 ≤ i1 < i2 <
· · · < im := n and let a1, . . . , an be random variables. Then we de-
fine new random variables Aj as products of the given ai according
to Aj := aij−1+1 · · · aij (where i0 := 0). We want to express a cumu-
lant kτ [A1, . . . , Am] in terms of cumulants kπ[a1, . . . , an]. So let τ be
a non-crossing partition of the m-tuple (A1, . . . , Am). Then we define
τ̂ ∈ NC(a1, . . . , an) to be that partition which we get from τ by re-
placing each Aj by aij−1+1, . . . , aij , i.e., for ai being a factor in Ak and
aj being a factor in Al we have ai ∼τ̂ aj if and only if Ak ∼τ Al.
For example, for n = 6 and A1 := a1a2, A2 := a3a4a5, A3 := a6 and

τ = {(A1, A2), (A3)} =̂

A1A2A3

59
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we get

τ̂ = {(a1, a2, a3, a4, a5), (a6)} =̂

a1 a2 a3 a4 a5 a6

.

Note also in particular, that τ̂ = 1n if and only if τ = 1m.

Theorem 4.1.2. Let m ∈ N and 1 ≤ i1 < i2 < · · · < im :=
n be given. Consider random variables a1, . . . , an and put Aj :=
aij−1+1 · · · aij for j = 1, . . . ,m (where i0 := 0). Let τ be a partition
in NC(A1, . . . , Am).
Then the following equation holds:

(100) kτ [a1 · · · ai1 , . . . , aim−1+1 · · · aim ] =
∑

π∈NC(n)
π∨σ=τ̂

kπ[a1, . . . , an] ,

where σ ∈ NC(n) is the partition σ =
{(a1, . . . , ai1), . . . , (aim−1+1, . . . , aim)}.

Remarks 4.1.3. 1) In all our applications we will only use the
special case of Theorem 2.2 where τ = 1m. Then the statement of
the theorem is the following: Consider m ∈ N, an increasing sequence
1 ≤ i1 < i2 < · · · < im := n and random variables a1, . . . , an. Put
σ := {(a1, . . . , ai1), . . . , (aim−1+1, . . . , aim)}. Then we have:

(101) km[a1 · · · ai1 , . . . , aim−1+1 · · · aim ] =
∑

π∈NC(n)
π∨σ=1n

kπ[a1, . . . , an] .

2) Of special importance will be the case where only one of the ar-
guments is a product of two elements, i.e. kn−1(a1, . . . , am−1, am ·
am+1, am+2, . . . , an). In that case σ = {(1), (2), . . . , (m, m+1), . . . , (n)}
and it is easily seen that the partitions π ∈ NC(n) with the property
π ∨ σ = 1n are either 1n or those non-crossing partitions which con-
sist of two blocks such that one of them contains m and the other one
contains m + 1. This leads to the formula

kn−1(a1, . . . , am · am+1, . . . , an) =

= kn(a1, . . . , am, am+1, . . . , an) +
∑

π∈NC(n)
|π|=2,m6∼πm+1

kπ[a1, . . . , an].

Note also that the π appearing in the sum are either of the form

1 . . . m m+1 . . . m+p m+p+1 . . . n
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or of the form

1 . . . m−p m−p+1 . . . m m+1 . . . n

Example 4.1.4. Let us make clear the structure of the assertion
with the help of an example: For A1 := a1a2 and A2 := a3 we have σ =
{(a1, a2), (a3)} =̂ . Consider now τ = 12 = {(A1, A2)}, implying
that τ̂ = 13 = {(a1, a2, a3)}. Then the application of our theorem
yields

k2(a1a2, a3) =
∑

π∈NC(3)
π∨σ=13

kπ[a1, a2, a3]

= k [a1, a2, a3] + k [a1, a2, a3] + k [a1, a2, a3]

= k3(a1, a2, a3) + k1(a1)k2(a2, a3) + k2(a1, a3)k1(a2) ,

which is easily seen to be indeed equal to k2(a1a2, a3) = ϕ(a1a2a3) −
ϕ(a1a2)ϕ(a3).

We will give two proofs of that result in the following. The first
one is the original one (due to my student Krawczyk and myself) and
quite explicit. The second proof (due to myself) is more conceptual by
connecting the theorem with some more general structures. (Similar
ideas as in the second proof appeared also in a proof by Cabanal-
Duvillard.)

First proof of Theorem 5.2. We show the assertion by induc-
tion over the number m of arguments of the cumulant kτ .
To begin with, let us study the case when m = 1. Then we have
σ = {(a1, . . . , an)} = 1n = τ̂ and by the defining relation (1) for the
free cumulants our assertion reduces to

k1(a1 · · · an) =
∑

π∈NC(n)
π∨1n=1n

kπ[a1, . . . , an]

=
∑

π∈NC(n)

kπ[a1, . . . , an]

= ϕ(a1 · · · an),

which is true since k1 = ϕ.
Let us now make the induction hypothesis that for an integer m ≥ 1
the theorem is true for all m′ ≤ m.
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We want to show that it also holds for m + 1. This means that for
τ ∈ NC(m + 1), a sequence 1 ≤ i1 < i2 < · · · < im+1 =: n, and ran-
dom variables a1, . . . , an we have to prove the validity of the following
equation:

kτ [A1, . . . , Am+1] = kτ [a1 · · · ai1 , . . . , aim+1 · · · aim+1 ]

=
∑

π∈NC(n)
π∨σ=τ̂

kπ[a1, . . . , an],(102)

where σ = {(a1, . . . , ai1), . . . , (aim+1, . . . , aim+1)}.
The proof is divided into two steps. The first one discusses the case
where τ ∈ NC(m + 1), τ 6= 1m+1 and the second one treats the case
where τ = 1m+1.
Step 1◦: The validity of relation (3) for all τ ∈ NC(m + 1) except the
partition 1m+1 is shown as follows: Each such τ has at least two blocks,
so it can be written as τ = τ1∪τ2 with τ1 being a non-crossing partition
of an s-tuple (B1, . . . , Bs) and τ2 being a non-crossing partition of a
t-tuple (C1, . . . , Ct) where (B1, . . . , Bs)∪(C1, . . . , Ct) = (A1, . . . , Am+1)
and s + t = m + 1. With these definitions, we have

kτ [A1, . . . , Am+1] = kτ1 [B1, . . . , Bs] kτ2 [C1, . . . , Ct] .

We will apply now the induction hypothesis on kτ1 [B1, . . . , Bs] and on
kτ2 [C1, . . . , Ct]. According to the definition of Aj, both Bk(k = 1, . . . , s)
and Cl (l = 1, . . . , t) are products with factors from (a1, . . . , an).
Put (b1, . . . , bp) the tuple containing all factors of (B1, . . . , Bs) and
(c1, . . . , cq) the tuple consisting of all factors of (C1, . . . , Ct); this means
(b1, . . . , bp) ∪ (c1, . . . , cq) = (a1, . . . , an) (and p + q = n). We put
σ1 := σ|(b1,...,bp) and σ2 := σ|(c1,...,cq), i.e., we have σ = σ1 ∪ σ2. Note
that τ̂ factorizes in the same way as τ̂ = τ̂1 ∪ τ̂2. Then we get with the
help of our induction hypothesis:

kτ [A1, . . . , Am+1] = kτ1 [B1, . . . , Bs] · kτ2 [C1, . . . , Ct]

=
∑

π1∈NC(p)
π1∨σ1=τ̂1

kπ1 [b1, . . . , bp] ·
∑

π2∈NC(q)
π2∨σ2=τ̂2

kπ2 [c1, . . . , cq]

=
∑

π1∈NC(p)
π1∨σ1=τ̂1

∑
π2∈NC(q)
π2∨σ2=τ̂2

kπ1∪π2 [a1, . . . , an]

=
∑

π∈NC(n)
π∨σ=τ̂

kπ[a1, . . . , an] .



4.1. CUMULANTS WITH PRODUCTS AS ENTRIES 63

Step 2◦: It remains to prove that the equation (3) is also valid for
τ = 1m+1. By the definition of the free cumulants we obtain

k1m+1 [A1, . . . , Am+1] = km+1(A1, . . . , Am+1)

= ϕ(A1 · · ·Am+1)−
∑

τ∈NC(m+1)
τ 6=1m+1

kτ [A1, . . . , Am+1] .(103)

First we transform the sum in (4) with the result of step 1◦:∑
τ∈NC(m+1)

τ 6=1m+1

kτ [A1, . . . , Am+1] =
∑

τ∈NC(m+1)
τ 6=1m+1

∑
π∈NC(n)

π∨σ=τ̂

kπ[a1, . . . , an]

=
∑

π∈NC(n)
π∨σ 6=1n

kπ[a1, . . . , an] ,

where we used the fact that τ = 1m+1 is equivalent to τ̂ = 1n.
The moment in (4) can be written as

ϕ(A1 · · ·Am+1) = ϕ(a1 · · · an) =
∑

π∈NC(n)

kπ[a1, . . . , an] .

Altogether, we get:

km+1[A1, . . . , Am+1] =
∑

π∈NC(n)

kπ[a1, . . . , an]−
∑

π∈NC(n)
π∨σ 6=1n

kπ[a1, . . . , an]

=
∑

π∈NC(n)
π∨σ=1n

kπ[a1, . . . , an] .

�

The second proof reduces the statement essentially to some general
structure theorem on lattices. This is the well-known Möbius algebra
which we present here in a form which looks analogous to the descrip-
tion of convolution via Fourier transform.

Notations 4.1.5. Let P be a finite lattice.
1) For two functions f, g : P → C on P we denote by f ∗ g : P → C
the function defined by

(104) f ∗ g(π) :=
∑

σ1,σ2∈P
σ1∨σ2=π

f(σ1)g(σ2) (π ∈ P ).
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2) For a function f : P → C we denote by F (f) : P → C the function
defined by

(105) F (f)(π) :=
∑
σ∈P
σ≤π

f(σ) (π ∈ P ).

Remarks 4.1.6. 1) Note that the operation (f, g) 7→ f ∗ g is com-
mutative and associative.
2) According to the theory of Möbius inversion F is a bijective mapping
whose inverse is given by

(106) F−1(f)(π) =
∑
σ∈P
σ≤π

f(σ)µ(σ, π).

3) Denote by 1σ and 1≥σ the functions given by

(107) 1σ(π) =

{
1, if π = σ

0, otherwise

and

(108) 1≥σ(π) =

{
1, if π ≥ σ

0, otherwise.

Then we have
F (1σ)(π) =

∑
τ≤π

1σ(τ) = 1≥σ(π),

and hence F (1σ) = 1≥σ.

Proposition 4.1.7. Let P be a finite lattice. Then we have for
arbitrary functions f, g : P → C that

(109) F (f ∗ g) = F (f) · F (g),

where on the right hand side we have the pointwise product of functions.

Proof. We have

F (f ∗ g)(π) =
∑
σ≤π

(f ∗ g)(σ)

=
∑
σ≤π

∑
σ1∨σ2=σ

f(σ1)g(σ2)

=
(∑

σ1≤π

f(σ1)
)(∑

σ2≤π

g(σ2)
)

= F (f)(π) · F (g)(π),

where we used the fact that σ1 ∨ σ2 ≤ π is equivalent to σ1 ≤ π and
σ2 ≤ π. �
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Before starting with the second proof of our Theorem 5.2 we have
to show that the embedding of NC(m) into NC(n) by τ 7→ τ̂ preserves
the Möbius function.

Lemma 4.1.8. Consider τ, π ∈ NC(m) with π ≤ τ and let π̂ ≤ τ̂ be
the corresponding partitions in NC(n) according to 5.1. Then we have

(110) µ(π̂, τ̂) = µ(π, τ).

Proof. By the reccurence relation (4.15) for the Möbius function
we have µ(π̂, τ̂) = −

∑
π̂≤κ<τ̂ µ(π̂, κ). But the condition π̂ ≤ κ < τ̂

enforces that κ ∈ NC(n) is of the form κ = ω̂ for a uniquely determined
ω ∈ NC(m) with π ≤ ω < τ . (Note that κ being of the form ω̂
is equivalent to κ ≥ σ, where σ is the partition from Theorem 5.2.)
Hence we get by induction on the length of [π̂, τ̂ ].

µ(π̂, τ̂) = −
∑

π̂≤ω̂<τ̂

µ(π̂, ω̂) = −
∑

π≤ω≤τ

µ(π, ω) = µ(π, τ).

�

Second proof of Theorem 5.2. We have

kτ [A1, . . . , Am] =
∑

π∈NC(m)
π≤τ

ϕπ[A1, . . . , Am]µ(π, τ)

=
∑

π∈NC(m)
π≤τ

ϕπ̂[a1, . . . , an]µ(π̂, τ̂)

=
∑

π′∈NC(n)

σ≤π′≤τ̂

ϕπ′ [a1, . . . , an]µ(π′, τ̂)

=
∑

π′∈NC(n)

π′≤τ̂

ϕπ′ [a1, . . . , an]µ(π′, τ̂)1≥σ(π′)

= F−1(ϕ[a1, . . . , an] · 1≥σ)(τ̂)

= (F−1(ϕ[a1, . . . , an]) ∗ F−1(1≥σ))(τ̂)

= (k[a1, . . . , an] ∗ 1σ)(τ̂)

=
∑

σ1∨σ2=τ̂

kσ1 [a1, . . . , an]1σ(σ2)

=
∑

σ1∨σ=τ̂

kσ1 [a1, . . . , an].

�
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Example 4.1.9. Let s be a semi-circular variable of variance 1 and
put P := s2. Then we get the cumulants of P as

kn(P, . . . , P ) = kn(s2, . . . , s2) =
∑

π∈NC(2n)
π∨σ=12n

kπ[s, s, . . . , s, s],

where σ = {(1, 2), (3, 4), . . . , (2n−1, 2n)}. Since s is semi-circular, only
pair partitions contribute to the sum. It is easy to see that there is
only one pair partition with the property that π ∨ σ = 12n, namely the
partition π = {(1, 2n), (2, 3), (4, 5), . . . , (2n− 2, 2n− 1)}. Thus we get

(111) kn(P, . . . , P ) = 1 for all n ≥ 1

and by analogy with the classical case we call P a free Poisson of
parameter λ = 1. We will later generalize this to more general kind of
free Poisson distribution.

4.2. Freeness and vanishing of mixed cumulants

The meaning of the concept ‘cumulants’ for freeness is shown by
the following theorem.

Theorem 4.2.1. Let (A, ϕ) be a probability space and consider uni-
tal subalgebras A1, . . . ,Am ⊂ A. Then the following two statements are
equivalent:

i) A1, . . . ,Am are free.
ii) We have for all n ≥ 2 and for all ai ∈ Aj(i) with 1 ≤

j(1), . . . , j(n) ≤ m that kn(a1, . . . , an) = 0 whenever there ex-
ist 1 ≤ l, k ≤ n with j(l) 6= j(k).

Remarks 4.2.2. 1) This characterization of freeness in terms of
cumulants is the translation of the definition of freeness in terms of
moments – by using the relation between moments and cumulants from
Definition 4.5. One should note that in contrast to the characterization
in terms of moments we do not require that j(1) 6= j(2) 6= · · · 6= j(n)
nor that ϕ(ai) = 0. Hence the characterization of freeness in terms of
cumulants is much easier to use in concrete calculations.
2) Since the unit 1 is free from everything, the above theorem contains
as a special case the statement: kn(a1, . . . , an) = 0 if n ≥ 2 and ai = 1
for at least one i. This special case will also present an important
step in the proof of Theorem 6.1 and it will be proved separately as a
lemma.
3) Note also: for n = 1 we have k1(1) = ϕ(1) = 1.

Before we start the proof of our theorem we will consider, as indi-
cated in the above remark, a special case.
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Lemma 4.2.3. Let n ≥ 2 und a1, . . . , an ∈ A. Then we have
kn(a1, . . . , an) = 0 if there exists a 1 ≤ i ≤ n with ai = 1.

Second proof of Theorem 5.2. To simplify notation we con-
sider the case an = 1, i.e. we want to show that kn(a1, . . . , an−1, 1) = 0.
We will prove this by induction on n.
n = 2 : the assertion is true, since

k2(a, 1) = ϕ(a1)− ϕ(a)ϕ(1) = 0.

n− 1 → n: Assume we have proved the assertion for all k < n. Then
we have

ϕ(a1 · · · an−11) =
∑

π∈NC(n)

kπ[a1, . . . , an−1, 1]

= kn(a1, . . . , an−1, 1) +
∑

π∈NC(n)
π 6=1n

kπ[a1, . . . , an−1, 1].

According to our induction hypothesis only such π 6= 1n contribute to
the above sum which have the property that (n) is a one-element block
of π, i.e. which have the form π = σ ∪ (n) with σ ∈ NC(n− 1). Then
we have

kπ[a1, . . . , an−1, 1] = kσ[a1, . . . , an−1]k1(1) = kσ[a1, . . . , an−1],

hence

ϕ(a1 · · · an−11) = kn(a1, . . . , an−1, 1) +
∑

σ∈NC(n−1)

kσ[a1, . . . , an−1]

= kn(a1, . . . , an−1, 1) + ϕ(a1 · · · an−1).

Since ϕ(a1 · · · an−11) = ϕ(a1 · · · an−1), we obtain kn(a1, . . . , an−1, 1) =
0. �

Now we can prove the general version of our theorem.

Proof of Theorem 6.1. (i) =⇒ (ii): If all ai are centered, i.e.
ϕ(ai) = 0, and alternating, i.e. j(1) 6= j(2) 6= · · · 6= j(n), then the
assertion follows directly by the relation

kn(a1, . . . , an) =
∑

π∈NC(n)

ϕπ[a1, . . . , an]µ(π, 1n),

because at least one factor of ϕπ is of the form ϕ(alal+1 · · · al+p), which
vanishes by the definition of freeness.
The essential part of the proof consists in showing that on the level
of cumulants the assumption ‘centered’ is not needed and ‘alternating’
can be weakened to ‘mixed’.
Let us start with getting rid of the assumption ‘centered’. Let n ≥
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2. Then the above Lemma 6.3 implies that we have for arbitrary
a1, . . . , an ∈ A the relation

(112) kn(a1, . . . , an) = kn

(
a1 − ϕ(a1)1, . . . , an − ϕ(an)1

)
,

i.e. we can center the arguments of our cumulants kn (n ≥ 2) without
changing the value of the cumulants.
Thus we have proved the following statement: Consider n ≥ 2 and
ai ∈ Aj(i) (i = 1, . . . , n) with j(1) 6= j(2) 6= · · · 6= j(n). Then we have
kn(a1, . . . , an) = 0.
To prove our theorem in full generality we will now use Theorem 5.2 on
the behaviour of free cumulants with products as entries – indeed, we
will only need the special form of that theorem as spelled out in Remark
5.3. Consider n ≥ 2 and ai ∈ Aj(i) (i = 1, . . . , n). Assume that there
exist k, l with j(k) 6= j(l). We have to show that kn(a1, . . . , an) = 0.
This follows so: If j(1) 6= j(2) 6= · · · 6= j(n), then the assertion is
already proved. If the elements are not alternating then we multiply
neigbouring elements from the same algebra together, i.e. we write
a1 . . . an = A1 . . . Am such that neighbouring A’s come from different
subalgebras. Note that m ≥ 2 because of our assumption j(k) 6= j(l).
Then, by Theorem 5.2, we have

kn(a1, . . . , an) = km(A1, . . . , Am)−
∑

π∈NC(n),π 6=1n
π∨σ=1n

kπ[a1, . . . , an],

where σ = {(A1), . . . , (Am)} ∈ NC(a1, . . . , an) is that partition
whose blocks encode the information about which elements ai to
multiply in order to get the Aj. Since the A’s are alternating we
have km(A1, . . . , Am) = 0. Furthermore, by induction, the term
kπ[a1, . . . , an] can only be different from zero, if each block of π couples
only elements from the same subalgebra. So all blocks of σ which are
coupled by π must correspond to the same subalgebra. However, we
also have that π∨σ = 1n, which means that π has to couple all blocks of
σ. Hence all appearing elements should be from the same subalgebra,
which is in contradiction with m ≥ 2. Thus there is no non-vanishing
contribution in the above sum and we obtain kn(a1, . . . , an) = 0.
(ii) =⇒ (i): Consider ai ∈ Aj(i) (i = 1, . . . , n) with j(1) 6= j(2) 6=
· · · 6= j(n) and ϕ(ai) = 0 for all i = 1, . . . , n. Then we have to show
that ϕ(a1 · · · an) = 0. But this is clear because we have ϕ(a1 · · · an) =∑

π∈NC(n) kπ[a1, . . . , an] and each product kπ[a1, . . . , an] =
∏

V ∈π k(π|V )

contains at least one factor of the form kp+1(al, al+1, . . . , al+p) which
vanishes in any case (for p = 0 because our variables are centered
and for p ≥ 1 because of our assumption on the vanishing of mixed
cumulants). �
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Let us also state the freeness criterion in terms of cumulants for the
case of random variables.

Theorem 4.2.4. Let (A, ϕ) be a probability space and consider ran-
dom variables a1, . . . , am ∈ A. Then the following two statements are
equivalent:

i) a1, . . . , am are free.
ii) We have for all n ≥ 2 and for all 1 ≤ i(1), . . . , i(n) ≤ m that

kn(ai(1), . . . , ai(n)) = 0 whenever there exist 1 ≤ l, k ≤ n with
i(l) 6= i(k).

Proof. The implication i) =⇒ ii) follows of course directly from
the foregoing theorem. Only the other way round is not immediately
clear, since we have to show that our present assumption ii) implies
also the apparently stronger assumption ii) for the case of algebras.
Thus let Ai be the unital algebra generated by the element ai and
consider now elements bi ∈ Aj(i) with 1 ≤ j(1), . . . , j(n) ≤ m such that
j(l) 6= j(k) for some l, k. Then we have to show that kn(b1, . . . , bn)
vanishes. As each bi is a polynomial in aj(i) and since cumulants with a
1 as entry vanish in any case for n ≥ 2, it suffices to consider the case
where each bi is some power of aj(i). If we write b1 · · · bn as ai(1) · · · ai(m)

then we have

kn(b1, . . . , bn) =
∑

π∈NC(m)
π∨σ=1m

kπ[ai(1), . . . , ai(m)],

where the blocks of σ denote the neighbouring elements which have to
be multiplied to give the bi. In order that kπ[ai(1), . . . , ai(m)] is different
from zero π is only allowed, by our assumption (ii), to couple between
the same ai. So all blocks of σ which are coupled by π must correspond
to the same ai. However, we also have π∨σ = 1m, which means that all
blocks of σ have to be coupled by π. Thus all ai should be the same, in
contradiction with the fact that we consider a mixed cumulant. Hence
there is no non-vanishing contribution in the above sum and we finally
get that kn(b1, . . . , bn) = 0. �

Definition 4.2.5. An element c of the form c = 1√
2
(s1 + is2) –

where s1 and s2 are two free semi-circular elements of variance 1 – is
called a circular elment.

Examples 4.2.6. 1) The vanishing of mixed cumulants in free vari-
ables gives directly the cumulants of a circular element: Since only sec-
ond order cumulants of semi-circular elements are different from zero,
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the only non-vanishing cumulants of a circular element are also of sec-
ond order and for these we have

k2(c, c) = k2(c
∗, c∗) =

1

2
− 1

2
= 0

k2(c, c
∗) = k2(c

∗, c) =
1

2
+

1

2
= 1.

2) Let s be a semi-circular of variance 1 and a a random variable which
is free from s. Put P := sas. Then, by Theorem 5.2, we get

kn(P, . . . , P ) = kn(sas, . . . , sas) =
∑

π∈NC(3n)
π∨σ=13n

kπ[s, a, s, s, a, s, . . . , s, a, s],

where σ ∈ NC(3n) is the partition σ = {(1, 2, 3), (4, 5, 6), . . . , (3n −
2, 3n − 1, 3n)}. Now Theorem 6.1 tells us that kπ only gives a non-
vanishing contribution if all blocks of π do not couple s with a. Fur-
thermore, since s is semi-circular, those blocks which couple within
the s have to consist of exactly two elements. But, together with
the requirement π ∨ σ = 13n, this means that π must be of the form
πs ∪πa where πs = {(1, 3n), (3, 4), (6, 7), (9, 10), . . . , (3n− 3, 3n− 2)} ∈
NC(1, 3, 4, 6, 7, 9, . . . , 3n − 3, 3n − 2, 3n) is that special partition of
the positions of the s which glues the blocks of σ together and where
πa ∈ NC(2, 5, 8, . . . , 3n− 1) is just an arbitrary partition for the posi-
tions of the a.

s a s , s a s , s a s , . . . , s a s

Note that kπ[s, a, s, s, a, s, . . . , s, a, s] factorizes then into
kπs [s, s, . . . , s] · kπa [a, a, . . . , a] = kπa [a, a, . . . , a] and we get

kn(P, . . . , P ) =
∑

πa∈NC(n)

kπa [a, a, . . . , a] = ϕ(an).

Thus we have the result that the cumulants of P are given by the
moments of a:

(113) kn(P, . . . , P ) = ϕ(an) for all n ≥ 1.

In analogy with the classical case we will call a random variable of such
a form a compound Poisson with parameter λ = 1. Note that we
recover the usual Poisson element from Example 5.9 by putting a = 1.
3) As a generalization of the last example, consider now the following
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situation: Let s be a semi-circular of variance 1 and a1, . . . , am random
variables such that s and {a1, . . . , am} are free. Put Pi := sais. As
above we can calculate the joint distribution of these elements as

kn(Pi(1), . . . , Pi(n)) = kn(sai(1)s, . . . , sai(n)s)

=
∑

π∈NC(3n)
π∨σ=13n

kπ[s, ai(1), s, s, ai(2), s, . . . , s, ai(n), s]

=
∑

πa∈NC(n)

kπa [ai(1), ai(2), . . . , ai(n)]

= ϕ(ai(1)ai(2) · · · ai(n)),

where σ ∈ NC(3n) is as before the partition σ =
{(1, 2, 3), (4, 5, 6), . . . , (3n − 2, 3n − 1, 3n)}. Thus we have again
the result that the cumulants of P1, . . . , Pm are given by the moments
of a1, . . . , am. This contains of course the statement that each of the
Pi is a compound Poisson, but we also get that orthogonaliy between
the ai is translated into freeness between the Pi. Namely, assume that
all ai are orthogonal in the sense aiaj = 0 for all i 6= j. Consider now
a mixed cumulant in the Pi, i.e. kn(Pi(1), . . . , Pi(n)), with i(l) 6= i(k)
for some l, k. Of course, then there are also two neighbouring indices
which are different, i.e. we can assume that k = l + 1. But then we
have

kn(Pi(1), . . . , Pi(l), Pi(l+1), . . . , Pi(n)) = ϕ(ai(1) . . . ai(l)ai(l+1) . . . ai(n)) = 0.

Thus mixed cumulants in the Pi vanish and, by our criterion 6.4,
P1, . . . , Pm have to be free.
4) Let us also calculate the cumulants for a Haar unitary element u.
Whereas for a semi-circular element the cumulants are simpler than
the moments, for a Haar unitary it is the other way around. The
∗-moments of u are described quite easily, whereas the situation for
cumulants in u and u∗ is more complicated. But nevertheless, there is
a structure there, which will be useful and important later. In partic-
ular, the formula for the cumulants of a Haar unitary was one of the
motivations for the introduction of so-called R-diagonal elements.
So let u be a Haar unitary. We want to calculate kn(u1, . . . , un), where
u1, . . . , un ∈ {u, u∗}. First we note that such a cumulant can only be
different from zero if the number of u among u1, . . . , un is the same as
the number of u∗ among u1, . . . , un. This follows directly by the for-
mula kn(u1, . . . , un) =

∑
π∈NC(n) ϕπ[u1, . . . , un]µ(π, 1n), since, for arbi-

trary π ∈ NC(n), at least one of the blocks V of π couples different
numbers of u and u∗; but then ϕ(π|V ), and thus also ϕπ[u1, . . . , un],
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vanishes. This means in particular, that only cumulants of even length
are different from zero.
Consider now a cumulant where the number of u and the number of
u∗ are the same. We claim that only such cumulants are different
from zero where the entries are alternating in u and u∗. We will prove
this by induction on the length of the cumulant. Consider a non-
alternating cumulant. Since with u also u∗ is a Haar unitary it suffices
to consider the cases k(. . . , u∗, u, u, . . . ) and k(. . . , u, u, u∗, . . . ). Let
us treat the first one. Say that the positions of . . . , u∗, u, u, . . . are
. . . , m, m+1, m+2, . . . . Since 1 is free from everything (or by Lemma
6.3) and by Remark 5.3 we know that

0 = k(. . . , 1, u, . . . )

= k(. . . , u∗ · u, u, . . . )

= k(. . . , u∗, u, u, . . . ) +
∑
|π|=2

m6∼πm+1

kπ[. . . , u∗, u, u, . . . ].

Let us now consider the terms in the sum. Since each kπ is a product
of two lower order cumulants we know, by induction, that each of the
two blocks of π must connect the arguments alternatingly in u and u∗.
This implies that π cannot connect m+1 with m+2, and hence it must
connect m with m+2. But this forces m+1 to give rise to a singleton of
π, hence one factor of kπ is just k1(u) = 0. This implies that all terms
kπ in the above sum vanish and we obtain k(. . . , u∗ · u, u, . . . ) = 0.
The other case is analogous, hence we get the statement that only
alternating cumulants in u and u∗ are different from zero.
Finally, it remains to determine the value of the alternating cumulants.
Let us denote by αn the value of such a cumulant of length 2n,i.e.

αn := k2n(u, u∗, . . . , u, u∗) = k2n(u∗, u, . . . , u∗, u).

The last equality comes from the fact that u∗ is also a Haar unitary.
We use now again Theorem 5.2 (in the special form presented in part
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2) of Remark 5.3) and the fact that 1 is free from everything:

0 = k2n−1(1, u, u∗, . . . , u, u∗)

= k2n−1(u · u∗, u, u∗, . . . , u, u∗)

= k2n(u, u∗, u, u∗, . . . , u, u∗) +
∑

π∈NC(2n)
|π|=2,1 6∼π2

kπ[u, u∗, u, u∗, . . . , u, u∗]

= k2n(u, u∗, u, u∗, . . . , u, u∗) +
n−1∑
p=1

k2n−2p(u, u∗, . . . , u, u∗) · k2p(u
∗, u, . . . , u∗, u)

= αn +
n−1∑
p=1

αn−pαp.

Thus we have the recursion

(114) αn = −
n−1∑
p=1

αn−pαp,

which is up to the minus-sign and a shift in the indices by 1 the recur-
sion relation for the Catalan numbers. Since also α1 = k2(u, u∗) = 1
this gives finally

(115) k2n(u, u∗, . . . , u, u∗) = (−1)n−1Cn−1.

3) Let b be a Bernoulli variable, i.e. a selfadjoint random variable
whose distribution is the measure 1

2
(δ−1 + δ1). This means nothing but

that the moments of b are as follows:

(116) ϕ(bn) =

{
1, if n even

0, if n odd

By the same kind of reasoning as for the Haar unitary one finds the
cumulants of b as

(117) kn(b, . . . , b) =

{
(−1)k−1Ck−1, if n = 2k even

0, if n odd.





CHAPTER 5

Sums and products of free variables

5.1. Additive free convolution

Our main concern in this section will be the understanding and
effective description of the sum of free random variables. On the level
of distributions we are addressing the problem of the (additive) free
convolution.

Definition 5.1.1. Let µ and ν be probability measures on R with
compact support. Let x and y be self-adjoint random variables in some
C∗-probability space which have the given measures as distribution, i.e.
µx = µ and µy = ν, and which are free. Then the distribution µx+y of
the sum x + y is called the free convolution of µ and ν and denoted
by µ� ν.

Remarks 5.1.2. 1) Note that, for given µ and ν as above, one
can always find x and y as required. Furthermore, by Lemma 2.4, the
distribution of the sum does only depend on the distributions µx and
µy and not on the concrete realisations of x and y. Thus µ � ν is
uniquely determined.
2) We defined the free convolution only for measures with compact
support. By adequate truncations one can extend the definition (and
the main results) also to arbitrary probability measures on R.
3) To be more precise (and in order to distinguish it from the analogous
convolution for the product of free variables) one calls µ � ν also the
additive free convolution.

In order to recover the results of Voiculescu on the free convolu-
tion we only have to specify our combinatorial description to the one-
dimensional case

Notation 5.1.3. For a random variable a ∈ A we put

ka
n := kn(a, . . . , a)

and call (ka
n)n≥1 the (free) cumulants of a.

Our main theorem on the vanishing of mixed cumulants in free
variables specifies in this one-dimensional case to the linearity of the
cumulants.

75
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Proposition 5.1.4. Let a and b be free. Then we have

(118) ka+b
n = ka

n + kb
n for all n ≥ 1.

Proof. We have

ka+b
n = kn(a + b, . . . , a + b)

= kn(a, . . . , a) + kn(b, . . . , b)

= ka
n + kb

n,

because cumulants which have both a and b as arguments vanish by
Theorem 6.4. �

Thus, free convolution is easy to describe on the level of cumu-
lants; the cumulants are additive under free convolution. It remains
to make the connection between moments and cumulants as explicit
as possible. On a combinatorial level, our definition specializes in the
one-dimensional case to the following relation.

Proposition 5.1.5. Let (mn)n≥1 and (kn)n≥1 be the moments and
free cumulants, respectively, of some random variable. The connection
between these two sequences of numbers is given by

(119) mn =
∑

π∈NC(n)

kπ,

where
kπ := k#V1 · · · k#Vr for π = {V1, . . . , Vr}.

Example 5.1.6. For n = 3 we have

m3 = k + k + k + k + k

= k3 + 3k1k2 + k3
1.

For concrete calculations, however, one would prefer to have a more
analytical description of the relation between moments and cumulants.
This can be achieved by translating the above relation to corresponding
formal power series.

Theorem 5.1.7. Let (mn)n≥1 and (kn)n≥1 be two sequences of com-
plex numbers and consider the corresponding formal power series

M(z) := 1 +
∞∑

n=1

mnz
n,(120)

C(z) := 1 +
∞∑

n=1

knz
n.(121)

Then the following three statements are equivalent:
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(i) We have for all n ∈ N

(122) mn =
∑

π∈NC(n)

kπ =
∑

π={V1,...,Vr}∈NC(n)

k#V1 . . . k#Vr .

(ii) We have for all n ∈ N (where we put m0 := 1)

(123) mn =
n∑

s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is=n−s

ksmi1 . . . mis .

(iii) We have

(124) C[zM(z)] = M(z).

Proof. We rewrite the sum mn =
∑

π∈NC(n) kπ in the way that we

fix the first block V1 of π (i.e. that block which contains the element 1)
and sum over all possibilities for the other blocks; in the end we sum
over V1:

mn =
n∑

s=1

∑
V1 with #V1 = s

∑
π∈NC(n)

where π = {V1, . . . }

kπ.

If V1 = (v1 = 1, v2, . . . , vs), then π = {V1, . . . } ∈ NC(n) can only con-
nect elements lying between some vk and vk+1, i.e. π = {V1, V2, . . . , Vr}
such that we have for all j = 2, . . . , r: there exists a k with vk < Vj <
vk+1. There we put vs+1 := n + 1. Hence such a π decomposes as

π = V1 ∪ π̃1 ∪ · · · ∪ π̃s,

where

π̃j is a non-crossing partition of {vj + 1, vj + 2, . . . , vj+1 − 1}.

For such π we have

kπ = k#V1kπ̃1 . . . kπ̃s = kskπ̃1 . . . kπ̃s ,
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and thus we obtain

mn =
n∑

s=1

∑
1=v1<v2<···<vs≤n

∑
π=V1∪π̃1∪···∪π̃s

π̃j∈NC(vj+1,...,vj+1−1)

kskπ̃1 . . . kπ̃s

=
n∑

s=1

ks

∑
1=v1<v2<···<vs≤n

( ∑
π̃1∈NC(v1+1,...,v2−1)

kπ̃1

)
. . .

( ∑
π̃s∈NC(vs+1,...,n)

kπ̃s

)
=

n∑
s=1

ks

∑
1=v1<v2<···<vs≤n

mv2−v1−1 . . . mn−vs

=
n∑

s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is+s=n

ksmi1 . . . mis (ik := vk+1 − vk − 1).

This yields the implication (i) =⇒ (ii).
We can now rewrite (ii) in terms of the corresponding formal power
series in the following way (where we put m0 := k0 := 1):

M(z) = 1 +
∞∑

n=1

znmn

= 1 +
∞∑

n=1

n∑
s=1

∑
i1,...,is∈{0,1,...,n−s}

i1+···+is=n−s

ksz
smi1z

i1 . . . misz
is

= 1 +
∞∑

s=1

ksz
s
( ∞∑

i=0

miz
i
)s

= C[zM(z)].

This yields (iii).
Since (iii) describes uniquely a fixed relation between the numbers
(kn)n≥1 and the numbers (mn)n≥1, this has to be the relation (i). �

If we rewrite the above relation between the formal power series in
terms of the Cauchy-transform

(125) G(z) :=
∞∑

n=0

mn

zn+1

and the R-transform

(126) R(z) :=
∞∑

n=0

kn+1z
n,

then we obtain Voiculescu’s formula.
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Corollary 5.1.8. The relation between the Cauchy-transform
G(z) and the R-transform R(z) of a random variable is given by

(127) G[R(z) +
1

z
] = z.

Proof. We just have to note that the formal power series M(z)
and C(z) from Theorem 7.7 and G(z), R(z), and K(z) = R(z) + 1

z
are

related by:

G(z) =
1

z
M(

1

z
)

and

C(z) = 1 + zR(z) = zK(z), thus K(z) =
C(z)

z
.

This gives

K[G(z)] =
1

G(z)
C[G(z)] =

1

G(z)
C[

1

z
M(

1

z
)] =

1

G(z)
M(

1

z
) = z,

thus K[G(z)] = z and hence also

G[R(z) +
1

z
] = G[K(z)] = z.

�

Remarks 5.1.9. 1) It is quite easy to check that the cumulants ka
n

of a random variable a are indeed the coefficients of the R-transform
of a as introduced by Voiculescu.
2) For a probability measure µ on R the Cauchy transform

Gµ(z) =

∫
1

z − t
dµ(t) = ϕ

( 1

z − x

)
is not only a formal power series but an analytic function on the upper
half plane

Gµ : C+ → C−

z 7→
∫

1

z − t
dµ(t).

Furthermore it contains the essential information about the distribu-
tion µ in an accesible form, namely if µ has a continuous density h with
respect to Lebesgue measure, i.e. dµ(t) = h(t)dt, then we can recover
this density from Gµ via the formula

(128) h(t) = − 1

π
lim
ε→0

=Gµ(t + iε).
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This can be seen as follows:

Gµ(t + iε) =

∫
1

t + iε− s
dµ(s) =

∫
t− s− iε

(t− s)2 + ε2
dµ(s).

and thus for dµ(s) = h(s)ds

− 1

π
=Gµ(t + iε) =

1

π

∫
ε

(t− s)2 + ε2
dµ(s)

=
1

π

∫
ε

(t− s)2 + ε2
h(s)ds.

The sequence of functions

fε(s) =
1

π

ε

(t− s)2 + ε2

converges (in the sense of distributions) for ε → 0 towards the ’delta
function’ δt (or to put it more probabilistically: the sequence of Cauchy
distributions

1

π

ε

(t− s)2 + ε2
ds

converges for ε → 0 weakly towards the delta distribution δt). So for
h continuous we get

lim
ε→0

(− 1

π
=Gµ(t + iε)) =

∫
h(s)dδt(s) = h(t).

Example 5.1.10. Let us use the Cauchy transform to calculate
the density of a semi-circular s with variance 1 out of the knowledge
about the moments. We have seen in the proof of Theorem 1.8 that
the moments m2n = Cn of a semi circular obey the recursion formula

m2k =
k∑

i=1

m2(i−1)m2(k−i).

In terms of the formal power series

(129) A(z) :=
∞∑

k=0

m2kz
2k = 1 +

∞∑
k=1

m2kz
2k
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this reads as

A(z) = 1 +
∞∑

k=1

m2kz
2k

= 1 +
∞∑

k=1

k∑
i=1

(
z2(m2(i−1)z

2(i−1))(m2(k−i)z
2(k−i))

)
= 1 + z2(1 +

∞∑
p=1

m2pz
2p)(1 +

∞∑
q=1

m2qz
2q)

= 1 + z2A(z)A(z).

This implies

(130) A(z) =
1−

√
1− 4z2

2z2
.

(Note: the other solution (1 +
√

1− 4z2)/(2z2) is ruled out because of
the requirement A(0) = 1.) This gives for the Cauchy tranform

G(z) =
A(1/z)

z

=
1−

√
1− 4/z2

2/z

=
z −

√
z2 − 4

2
,

and thus for the density

h(t) = − 1

π
lim
ε→0

=
t + iε−

√
(t + iε)2 − 4

2
=

1

2π
=
√

t2 − 4

or

(131) h(t) =

{
1
2π

√
4− t2, |t| ≤ 2

0, otherwise.

Remark 5.1.11. Combining all the above, we have a quite effective
machinery for calculating the free convolution. Let µ, ν be probability
measures on R with compact support, then we can calculate µ � ν as
follows:

µ Gµ  Rµ

ν  Gν  Rν

and

Rµ, Rν  Rµ + Rν = Rµ�ν  Gµ�ν  µ� ν.
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Example 5.1.12. Let

µ = ν =
1

2
(δ−1 + δ+1).

Then we have

Gµ(z) =

∫
1

z − t
dµ(t) =

1

2

( 1

z + 1
+

1

z − 1

)
=

z

z2 − 1
.

Put

Kµ(z) =
1

z
+ Rµ(z).

Then z = Gµ[Kµ(z)] gives

Kµ(z)2 − Kµ(z)

z
= 1,

which has as solutions

Kµ(z) =
1±

√
1 + 4z2

2z
.

Thus the R-transform of µ is given by

Rµ(z) = Kµ(z)− 1

z
=

√
1 + 4z2 − 1

2z

(note: Rµ(0) = k1(µ) = m1(µ) = 0). Hence we get

Rµ�µ(z) = 2Rµ(z) =

√
1 + 4z2 − 1

z
,

and

K(z) := Kµ�µ(z) = Rµ�µ(z) +
1

z
=

√
1 + 4z2

z
,

which allows to determine G := Gµ�µ via

z = K[G(z)] =

√
1 + 4G(z)2

G(z)
as

G(z) =
1√

z2 − 4

¿From this we can calculate the density

d(µ� µ)(t)

dt
= − 1

π
lim
ε→0

= 1√
(t + iε)2 − 4

= − 1

π
= 1√

t2 − 4
,

and finally

(132)
d(µ� µ)(t)

dt
=

{
1

π
√

4−t2
, |t| ≤ 2

0, otherwise
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Remarks 5.1.13. 1) The free convolution has the quite surprising
(from the probabilistic point of view) property that the convolution
of discrete distributions can be an absolutely continuous distribution.
(From a functional analytic point of view this is of course not so surpris-
ing because it is a well known phenomena that in general the spectrum
of the sum of two operators has almost no relation to the spectra of
the single operators.
2) In particular, we see that � is not distributive, as

1

2
(δ−1 + δ+1)� µ 6= 1

2
(δ−1 � µ) +

1

2
(δ+1 � µ) =

1

2
µ(−1) +

1

2
µ(+1),

where µ(a) = µ� δa is the shift of the measure µ by the amount a.

Example 5.1.14. With the help of the R-transform machinery we
can now give a more analytic and condensed proof of the central limit
theorem: Since free cumulants are polynomials in moments and vice
versa the convergence of moments is equivalent to the convergence of
cumulants. This means what we have to show for a1, a2, . . . being free,
identically distributed, centered and with variance σ2 is

R(a1+···+an)/
√

n(z) → Rs(z) = σ2z

in the sense of convergence of the coefficients of the formal power series.
It is easy to see that

Rλa(z) = λRa(λz).

Thus we get

R(a1+···+an)/
√

n(z) =
1√
n

Ra1+···+an(
z√
n

)

= n
1√
n

Rai
(

z√
n

)

=
√

nRai
(

z√
n

)

=
√

n(k1 + k2
z√
n

+ k3
z2

n
+ . . . )

=
√

n(σ2 z√
n

+ k3
z2

n
+ . . . )

→ σ2z,

since k1 = 0 and k2 = σ2.

Exercise 5.1.15. Let (A, ϕ) be a probability space and consider
a family of random variables (’stochastic process’) (at)t≥0 with at ∈ A
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for all t ≥ 0. Consider, for 0 ≤ s < t, the following formal power series

(133) G(t, s) =
∞∑

n=0

∫
· · ·

∫
t≥t1≥···≥tn≥s

ϕ(at1 . . . atn)dt1 . . . dtn,

which can be considered as a replacement for the Cauchy transform.
We will now consider a generalization to this case of Voiculescu’s for-
mula for the connection between Cauchy transform and R-transform.

(a) Denote by kn(t1, . . . , tn) := kn(at1 , . . . , atn) the free cumulants
of (at)t≥0. Show that G(t, s) fulfills the following differential equation

d

dt
G(t, s)

(134)

=
∞∑

n=0

∫
· · ·

∫
t≥t1≥···≥tn≥s

kn+1(t, t1, . . . , tn) ·G(t, t1)·

·G(t1, t2) · · ·G(tn−1, tn) ·G(tn, s)dt1 . . . dtn

= k1(t)G(t, s) +

∫ t

s

k2(t, t1) ·G(t, t1) ·G(t1, s)dt1

+

∫∫
t≥t1≥t2≥s

k3(t, t1, t2) ·G(t, t1) ·G(t1, t2) ·G(t2, s)dt1dt2 + . . .

(b) Show that in the special case of a constant process, i.e., at = a
for all t ≥ 0, the above differential equation goes over, after Laplace
transformation, into Voiculescu’s formula for the connection between
Cauchy transform and R-transform.

5.2. Description of the product of free variables

Remarks 5.2.1. 1) In the last section we treated the sum of free
variables, in particular we showed how one can understand and solve
from a combinatorial point of view the problem of describing the dis-
tribution of a + b in terms of the distributions of a and of b if these
variables are free. Now we want to turn to the corresponding problem
for the product. Thus we want to understand how we get the distri-
bution of ab out of the distributions of a and of b for a and b free.
Note that in the classical case no new considerations are required since
this problem can be reduced to the additive problem. Namely we have
ab = exp(log a + log b) and thus we only need to apply the additive
theory to log a and log b. In the non-commutative situation, however,
the functional equation for the exponential function is not true any
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more, so there is no clear way to reduce the multiplicative problem to
the additive one. Indeed, one needs new considerations. Fortunately,
our combinatorial approach allows also such a treatment. It will turn
out that the description of the multiplication of free variables is in-
timately connected with the complementation map K in the lattice
of non-crossing partitions. Note that there is no counterpart of this
for all partitions. Thus statements around the multiplication of free
variables might be quite different from what one expects classically.
With respect to additive problems classical and free probability the-
ory go quite parallel (combinatorially this means that one just replaces
arguments for all partitions by the corresponding arguments for non-
crossing partitions), with respect to multiplicative problems the world
of free probability is, however, much richer.
2) As usual, the combinatorial nature for the problem is the same in
the one-dimensional and in the multi-dimensional case. Thus we will
consider from the beginning the latter case.

Theorem 5.2.2. Let (A, ϕ) be a probability space and consider
random variables a1, . . . , an, b1, . . . , bn ∈ A such that {a1, . . . , an} and
{b1, . . . , bn} are free. Then we have
(135)

ϕ(a1b1a2b2 . . . anbn) =
∑

π∈NC(n)

kπ[a1, a2, . . . , an] · ϕK(π)[b1, b2, . . . , bn]

and
(136)

kn(a1b1, a2b2, . . . , anbn) =
∑

π∈NC(n)

kπ[a1, a2, . . . , an] · kK(π)[b1, b2, . . . , bn].

Proof. Although both equations are equivalent and can be trans-
formed into each other we will provide an independent proof for each
of them.
i) By using the vanishing of mixed cumulants in free variables we obtain

ϕ(a1b1a2b2 . . . anbn) =
∑

π∈NC(2n)

kπ[a1, b1, a2, b2, . . . , an, bn]

=
∑

πa∈NC(1,3,...,2n−1),πb∈NC(2,4,...,2n)

πa∪πb∈NC(2n)

kπa [a1, a2, . . . , an] · kπb
[b1, b2, . . . , bn]

=
∑

πa∈NC(1,3,...,2n−1)

kπa [a1, a2, . . . , an] ·
( ∑

πb∈NC(2,4,...,2n)

πa∪πb∈NC(2n)

kπb
[b1, b2, . . . , bn]

)
.

Now note that, for fixed πa ∈ NC(1, 3, . . . , 2n− 1) =̂ NC(n), the con-
dition πa ∪ πb ∈ NC(2n) for πb ∈ NC(2, 4, . . . , 2n) =̂ NC(n) means
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nothing but πb ≤ K(πa) (since K(πa) is by definition the biggest ele-
ment with this property). Thus we can continue

ϕ(a1b1a2b2 . . . anbn)

=
∑

πa∈NC(n)

kπa [a1, a2, . . . , an] ·
( ∑

πb≤K(πa)

kπb
[b1, b2, . . . , bn]

)
=

∑
πa∈NC(n)

kπa [a1, a2, . . . , an] · ϕK(πa)[b1, b2, . . . , bn].

ii) By using Theorem 5.2 for cumulants with products as entries we get

kn(a1b1, . . . , anbn) =
∑

π∈NC(2n)
π∨σ=12n

kπ[a1, b1, . . . , an, bn],

where σ = {(1, 2), (3, 4), . . . , (2n − 1, 2n)}. By the vanishing of
mixed cumulants only such π contribute in the sum which do not
couple a’s with b’s, thus they are of the form π = πa ∪ πb with
πa ∈ NC(a1, a2, . . . , an) and πb ∈ NC(b1, b2, . . . , bn). Fix now an ar-
bitrary πa. Then we claim that there exists exactly one πb such that
πa ∪ πb is non-crossing and that (πa ∪ πb) ∨ σ = 12n. This can be
seen as follows. πa must contain a block (al, al+1, . . . , al+p) consisting
of consecutive elements, i.e. we have the following situation:

. . . al−1 bl−1 , al bl , al+1 bl+1 , . . . , al+p−1 bl+p−1 , al+p bl+p , . . .

But then bl−1 must be connected with bl+p via πb because other-
wise albl . . . al+pbl+p cannot become connected with al−1bl−1. But if
bl+p is connected with bl−1 then we can just take away the interval
albl . . . al+pbl+p and continue to argue for the rest. Thus we see that in
order to get (πa ∪ πb) ∨ σ = 12n we have to make the blocks for πb as
large as possible, i.e. we must take K(πa) for πb. As is also clear from
the foregoing induction argument the complement will really fulfill the
condition (πa ∪K(πa)) ∨ σ = 12n. Hence the above sum reduces to

kn(a1b1, . . . , anbn) =
∑

πa∈NC(n)

kπa [a1, . . . , an] · kK(πa)[b1, . . . , bn].

�

Remark 5.2.3. Theorem 8.2 can be used as a starting point for
a combinatorial treatment of Voiculescu’s description of multiplicative
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free convolution via the so-called S-transform. This is more compli-
cated as in the additive case, but nevertheless one can give again a
purely combinatorial and elementary (though not easy) proof of the
results of Voiculescu.

5.3. Compression by a free projection

Notation 5.3.1. If (A, ϕ) is a probability space and p ∈ A a
projection (i.e. p2 = p) such that ϕ(p) 6= 0, then we can consider the
compression (pAp, ϕpAp), where

ϕpAp(·) :=
1

ϕ(p)
ϕ(·) restricted to pAp.

Of course, (pAp, ϕpAp) is also a probability space. We will denote the
cumulants corresponding to ϕpAp by kpAp.

Example 5.3.2. If A = M4 are the 4 × 4-matrices equipped with
the normalized trace ϕ = tr4 and p is the projection

p =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

then

p


α11 α12 α13 α14

α21 α22 α23 α24

α31 α32 α33 α34

α41 α42 α43 α44

 p =


α11 α12 0 0
α21 α22 0 0
0 0 0 0
0 0 0 0

 ,

and going over to the compressed space just means that we throw away
the zeros and identify pM4p with the 2×2-matrices M2. Of course, the
renormalized state trpAp

4 coincides with the state tr2 on M2.

Theorem 5.3.3. Let (A, ϕ) be a probability space and consider
random variables p, a1, . . . , am ∈ A such that p is a projection with
ϕ(p) 6= 0 and such that p is free from {a1, . . . , am}. Then we have
the following relation between the cumulants of a1, . . . , am ∈ A and the
cumulants of the compressed variables pa1p, . . . , pamp ∈ pAp: For all
n ≥ 1 and all 1 ≤ i(1), . . . , i(n) ≤ m we have

(137) kpAp
n (pai(1)p, . . . , pai(n)p) =

1

λ
kn(λai(1), . . . , λai(n)),

where λ := ϕ(p).
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Remark 5.3.4. The fact that p is a projection implies

ϕ(pai(1)ppai(2)p . . . pai(n)p) = ϕ(pai(1)pai(2)p . . . ai(n)p),

so that apart from the first p we are in the situation where we have
a free product of a’s with p. If we would assume a tracial situation,
then of course the first p could be absorbed by the last one. However,
we want to treat the theorem in full generality. Namely, even without
traciality we can arrive at the situation from Theorem 8.2, just by
enlarging {a1, . . . , am} to {1, a1, . . . , am} (which does not interfere with
the freeness assumption because 1 is free from everything) and reading
ϕ(pai(1)pai(2)p . . . ai(n)p) as ϕ(1pai(1)pai(2)p . . . ai(n)p).

Proof. We have

ϕpAp
n (pai(1)p, . . . , pai(n)p) =

1

λ
ϕn(pai(1)p, . . . , pai(n)p)

=
1

λ
ϕn+1(1p, ai(1)p, . . . , ai(n)p)

=
1

λ

∑
σ∈NC(n+1)

kσ[1, ai(1), . . . , ai(n)] · ϕK(σ)[p, p, . . . , p].

Now we observe that kσ[1, ai(1), . . . , ai(n)] can only be different from
zero if σ does not couple the random variable 1 with anything else,
i.e. σ ∈ NC(0, 1, . . . , n) must be of the form σ = (0) ∪ π with
π ∈ NC(1, . . . , n). So in fact the sum runs over π ∈ NC(n) and
kσ[1, ai(1), . . . , ai(n)] is nothing but kπ[ai(1), . . . , ai(n)]. Furthermore, the
relation between K(σ) ∈ NC(0, 1, . . . , n) and K(π) ∈ NC(1, . . . , n) for
σ = (0) ∪ π is given by the observation that on 1, . . . , n they coincide
and 0 and n are always in the same block of K(σ). In particular, K(σ)
has the same number of blocks as K(π). But the fact p2 = p gives

ϕK(σ)[p, p, . . . , p] = λ|K(σ)| = λ|K(π)| = λn+1−|π|,

where we used for the last equality the easily checked fact that

(138) |π|+ |K(π)| = n + 1 for all π ∈ NC(n).

Now we can continue our above calculation.

ϕpAp
n (pai(1)p, . . . , pai(n)p) =

1

λ

∑
π∈NC(n)

kπ[ai(1), . . . , ai(n)]λ
n+1−|π|

=
∑

π∈NC(n)

1

λ|π|
kπ[λai(1), . . . , λai(n)].
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Since on the other hand we also know that

ϕpAp
n (pai(1)p, . . . , pai(n)p) =

∑
π∈NC(n)

kpAp
π [pai(1)p, . . . , pai(n)p],

we get inductively the assertion. Note the compatibility with multi-
plicative factorization, i.e. if we have

kpAp
n [pai(1)p, . . . , pai(n)p] =

1

λ
kn(λai(1), . . . , ai(n))

then this implies

kpAp
π [pai(1)p, . . . , pai(n)p] =

1

λ|π|
kπ(λai(1), . . . , ai(n)).

�

Corollary 5.3.5. Let (A, ϕ) be a probability space and p ∈
A a projection such that ϕ(p) 6= 0. Consider unital subalgebras
A1, . . . ,Am ⊂ A such that p is free from A1 ∪ · · · ∪ Am. Then the
following two statements are equivalent:

(1) The subalgebras A1, . . . ,Am ⊂ A are free in the original prob-
ability space (A, ϕ).

(2) The compressed subalgebras pA1p, . . . , pAmp ⊂ pAp are free
in the compressed probability space (pAp, ϕpAp).

Proof. Since the cumulants of the Ai coincide with the cumulants
of the compressions pAip up to some power of λ the vanishing of mixed
cumulants in the Ai is equivalent to the vanishing of mixed cumulants
in the pAip. �

Corollary 5.3.6. Let µ be a probability measure on R with com-
pact support. Then, for each real t ≥ 1, there exists a probability mea-
sure µt, such that we have µ1 = µ and

(139) µs+t = µs � µt for all real s, t ≥ 1.

Remark 5.3.7. For t = n ∈ N, we have of course the convolution
powers µn = µ�n. The corollary states that we can interpolate between
them also for non-natural powers. Of course, the crucial fact is that we
claim the µt to be always probability measures. As linear functionals
these objects exist trivially, the non-trivial fact is positivity.

Proof. Let x be a self-adjoint random variable and p be a pro-
jection in some C∗-probability space (A, ϕ) such that ϕ(p) = 1

t
, the

distribution of x is equal to µ, and x and p are free. (It is no problem
to realize such a situation with the usual free product constructions.)
Put now xt := p(tx)p and consider this as an element in the com-
pressed space (pAp, ϕpAp). It is clear that this compressed space is
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again a C∗-probability space, thus the distribution µt of xt ∈ pAp is
again a probability measure. Furthermore, by Theorem 8.6, we know
that the cumulants of xt are given by

kµt
n = kpAp

n (xt, . . . , xt) = tkn(
1

t
tx, . . . ,

1

t
tx) = tkn(x, . . . , x) = tkµ

n.

This implies that for all n ≥ 1

kµs+t
n = (s + t)kµ

n = skµ
n + tkµ

n = kµs
n + kµt

n ,

which just means that µs+t = µs � µt. Since kµ1
n = kµ

n, we also have
µ1 = µ. �

Remarks 5.3.8. 1) Note that the corollary states the existence of
µt only for t ≥ 1. For 0 < t < 1, µt does not exist as a probability
measure in general. In particular, the existence of the semi-group µt

for all t > 0 is equivalent to µ being infinitely divisible (in the free
sense).
2) There is no classical analogue of the semi-group µt for all t ≥ 1. In
the classical case one can usually not interpolate between the natural
convolution powers. E.g., if µ = 1

2
(δ−1 + δ1) is a Bernoulli distribution,

we have µ ∗ µ ∗ µ = 1
8
δ−3 + 3

8
δ−1 + 3

8
δ1 + 1

8
δ3 and it is trivial to check

that there is no possibility to write µ ∗ µ ∗ µ as ν ∗ ν for some other
probability measure ν = µ∗3/2.

Remark 5.3.9. By using the connection between N × N -random
matrices and freeness one can get a more ’concrete’ picture of the com-
pression results. The random matrix results are only asymptotically
true for N → ∞. However, we will suppress in the following this
limit and just talk about N × N matrices, which give for large N an
arbitrary good approximation of the asymptotic results. Let A be a
deterministic N × N -matrix with distribution µ and let U be a ran-
dom N ×N -unitary. Then UAU∗ has, of course, the same distribution
µ as A and furthermore, in the limit N → ∞, it becomes free from
the constant matrices. Thus we can take as a canonical choice for our
projection p the diagonal matrix which has λN ones and (1 − λ)N
zeros on the diagonal. The compression of the matrices corresponds
then to taking the upper left corner of length λN of the matrix UAU∗.
Our above results say then in particular that, by varying λ, the up-
per left corners of the matrix UAU∗ give, up to renormalization, the
wanted distributions µt (with t = 1/λ). Furthermore if we have two
deterministic matrices A1 and A2, the joint distribution of A1, A2 is
not destroyed by conjugating them by the same random unitary U . In
this ’randomly rotated’ realization of A1 and A2, the freeness of UA1U

∗
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from UA2U
∗ is equivalent to the freeness of a corner of UA1U

∗ from
the corresponding corner of UA2U

∗.

5.4. Compression by a free family of matrix units

Definition 5.4.1. Let (A, ϕ) be a probability space. A family of
matrix units is a set {eij}i,j=1,...,d ⊂ A (for some d ∈ N) with the
properties

eijekl = δjkeil for all i, j, k, l = 1, . . . , d(140)

d∑
i=1

eii = 1(141)

ϕ(eij) = δij
1

d
for all i, j = 1, . . . , d.(142)

Theorem 5.4.2. Let (A, ϕ) be a probability space and consider ran-
dom variables a(1), . . . , a(m) ∈ A. Furthermore, let {eij}i,j=1,...,d ⊂ A
be a family of matrix units such that {a(1), . . . , a(m)} is free from

{eij}i,j=1,...,d. Put now a
(r)
ij := e1ia

(r)ej1 and p := e11, λ := ϕ(p) =
1/d. Then we have the following relation between the cumulants of
a(1), . . . , a(m) ∈ A and the cumulants of the compressed variables

a
(r)
ij ∈ pAp (i, j = 1, . . . , d; r = 1, . . . ,m) : For all n ≥ 1 and all

1 ≤ r(1), . . . , r(n) ≤ m, 1 ≤ i(1), j(1), . . . , i(n), j(n) ≤ d we have

(143) kpAp
n (a

(r(1))
i(1)j(1), . . . , a

(r(n))
i(n)j(n)) =

1

λ
kn(λa(r(1)), . . . , λa(r(n)))

if j(k) = i(k + 1) for all k = 1, . . . , n (where we put i(n + 1) := i(1))
and zero otherwise.

Notation 5.4.3. Let a partition π ∈ NC(n) and an n-tuple
of double-indices (i(1)j(1), i(2)j(2), . . . , i(n)j(n)) be given. Then we
say that π couples in a cyclic way (c.c.w., for short) the indices
(i(1)j(1), i(2)j(2), . . . , i(n)j(n)) if we have for each block (r1 < r2 <
· · · < rs) ∈ π that j(rk) = i(rk+1) for all k = 1, . . . , s (where we put
rs+1 := r1).

Proof. As in the case of one free projection we calculate

ϕpAp
n (a

(r(1))
i(1)j(1), . . . , a

(r(n))
i(n)j(n))

=
1

λ

∑
σ∈NC(n+1)

kσ[1, a(r(1)), . . . , a(r(n))]·ϕK(σ)[e1,i(1), ej(1)i(2), . . . , ej(n)1].
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Again σ has to be of the form σ = (0)∪π with π ∈ NC(n). The factor
ϕK(σ) gives

ϕK(σ)[e1,i(1), ej(1)i(2), . . . , ej(n)1] = ϕK(π)[ej(1)i(2), ej(2),j(3), . . . , ej(n)i(1)]

=

{
λ|K(π)|, if K(π) c.c.w. (j(1)i(2), j(2)i(3), . . . , j(n)i(1))

0, otherwise

Now one has to observe that cyclicity of K(π) in
(j(1)i(2), j(2)i(3), . . . , j(n)i(1)) is equivalent to cyclicity of π in
(i(1)j(1), i(2)j(2), . . . , i(n)j(n)). This claim can be seen as follows:
K(π) has a block V = (l, l + 1, . . . , l + p) consisting of consec-
utive elements. The relevant part of π is given by the fact that
(l + 1), (l + 2), . . . , (l + p) ∈ π form singletons and that l and
l + p + 1 lie in the same block of π. But cyclicity of K(π) in
(j(1)i(2), j(2)i(3), . . . , j(n)i(1)) evaluated for the block V means
that i(l) = j(l), i(l + 1) = j(l + 1), . . . , i(l + p) = j(l + p), and
i(l + p + 1) = j(l). This, however, are the same requirements as given
by cyclicity of π in (i(1)j(1), i(2)j(2), . . . , i(n)j(n)) evaluated for the
relevant part of π. Now one can take out the points l, l + 1, . . . , l + p
from K(π) and repeat the above argumentation for the rest. This gives
a recursive proof of the claim. Having this claim one can continue the
above calculation as follows.

ϕpAp
n (a

(r(1))
i(1)j(1), . . . , a

(r(n))
i(n)j(n))

=
1

λ

∑
π∈NC(n)

π c.c.w. (i(1)j(1), i(2)j(2), . . . , i(n)j(n))

kπ[a(r(1)), . . . , a(r(n))] · λ|K(π)|

=
∑

π∈NC(n)
π c.c.w. (i(1)j(1), i(2)j(2), . . . , i(n)j(n))

1

λ|π|
kπ[λa(r(1)), . . . , λa(r(n))],

where we sum only over such π which couple in a cyclic way
(i(1)j(1), i(2)j(2), . . . , i(n)j(n)). By comparison with the formula

ϕpAp
n (a

(r(1))
i(1)j(1), . . . , a

(r(n))
i(n)j(n)) =

∑
π∈NC(n)

kpAp
π [a

(r(1))
i(1)j(1), . . . , a

(r(n))
i(n)j(n)]

this gives the statement. �

Corollary 5.4.4. Let (A, ϕ) be a probability space. Consider a
family of matrix units {eij}i,j=1,...,d ⊂ A and a subset X ⊂ A such
that {eij}i,j=1,...,d and X are free. Consider now, for i = 1, . . . , d, the
compressed subsets Xi := e1iX ei1 ⊂ e11Ae11. Then X1, . . . ,Xd are free
in the compressed probability space (e11Ae11, ϕ

e11Ae11).
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Proof. Since there are no π ∈ NC(n) which couple in a cyclic
way indices of the form (i(1)i(1), i(2)i(2), . . . , i(n)i(n)) if i(k) 6= i(l)
for some l and k, Theorem 8.14 implies that mixed cumulants in ele-
ments from X1, . . . ,Xd vanish. By the criterion for freeness in terms of
cumulants, this just means that X1, . . . ,Xd are free. �

Remark 5.4.5. Again one has a random matrix realization of this
statement: Take X as a subset of deterministic N × N -matrices and
consider a randomly rotated version X̃ := UXU∗ of this. Then, for
N = Md we write MN = MM ⊗ Md and take as eij = 1 ⊗ Eij the
embedding of the canonical matrix units of Md into MN . These matrix
units are free (for N →∞, keeping d fixed) from X̃ and in this picture
e1iX̃ ej1 corresponds to X̃ ⊗ Eij, i.e. we are just splitting our N × N -
matrices into N/d×N/d-sub-matrices. The above corollary states that
the sub-matrices on the diagonal are asymptotically free.

Theorem 5.4.6. Consider random variables aij (i, j = 1, . . . , d) in
some probability space (A, ϕ). Then the following two statements are
equivalent.

(1) The matrix A := (aij)
d
i,j=1 is free from Md(C) in the probability

space (Md(A), ϕ⊗ trd).
(2) The joint cumulants of {aij | i, j = 1, . . . , d} in the probability

space (A, ϕ) have the following property: only cyclic cumulants
kn(ai(1)i(2), ai(2)i(3), . . . , ai(n)i(1)) are different from zero and the
value of such a cumulant depends only on n, but not on the
tuple (i(1), . . . , i(n)).

Proof. (1) =⇒ (2) follows directly from Theorem 8.14 (for the
case m = 1), because we can identify the entries of the matrix A with
the compressions by the matrix units.
For the other direction, note that moments (with respect to ϕ ⊗ trd)
in the matrix A := (aij)

d
i,j=1 and elements from Md(C) can be ex-

pressed in terms of moments of the entries of A. Thus the freeness
between A and Md(C) depends only on the joint distribution of (i.e.
on the cumulants in) the aij. This implies that if we can present a
realization of the aij in which the corresponding matrix A = (aij)

d
i,j=1

is free from Md(C), then we are done. But this representation is given
by Theorem 8.14. Namely, let a be a random variable whose cumu-
lants are given, up to a factor, by the cyclic cumulants of the aij, i.e.
ka

n = dn−1kn(ai(1)i(2), ai(2)i(3), . . . , ai(n)i(1)). Let furthermore {eij}i,j=1,...,d

be a family of matrix units which are free from a in some probability
space (Ã, ϕ̃). Then we compress a with the free matrix units as in
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Theorem 8.14 and denote the compressions by ãij := e1iaej1. By The-
orem 8.14 and the choice of the cumulants for a, we have that the joint

distribution of the ãij in (e11Ãe11, ϕ̃
e11Ãe11) coincides with the joint dis-

tribution of the aij. Furthermore, the matrix Ã := (ãij)
d
i,j=1 is free from

Md(C) in (Md(e11Ãe11), ϕ̃
e11Ãe11 ⊗ trd), because the mapping

Ã → Md(e11Ãe11)

y 7→ (e1iyej1)
d
i,j=1

is an isomorphism which sends a into Ã and ekl into the canonical
matrix units Ekl in 1⊗Md(C). �



CHAPTER 6

R-diagonal elements

6.1. Definition and basic properties of R-diagonal elements

Remark 6.1.1. There is a quite substantial difference in our un-
derstanding of one self-adjoint (or normal) operator on one side and
more non-commuting self-adjoint operators on the other side. Whereas
the first case takes place in the classical commutative world, where we
have at our hand the sophisticated tools of analytic function theory,
the second case is really non-commutative in nature and presents a
lot of difficulties. This difference shows also up in our understanding
of fundamental concepts in free probability. (An important example
of this is free entropy. Whereas the case of one self-adjoint variable
is well understood and there are concrete formulas in that case, the
multi-dimensional case is the real challenge. In particular, we would
need an understanding or more explicit formulas for the general case of
two self-adjoint operators, which is the same as the general case of one
not necessarily normal operator.) In this section we present a special
class of non-normal operators which are of some interest, because they
are on one side simple enough to allow concrete calculations, but on
the other side this class is also big enough to appear quite canonically
in a lot of situations.

Notation 6.1.2. Let a be a random variable in a ∗-probability
space. A cumulant k2n(a1, . . . , a2n) with arguments from {a, a∗} is said
to have alternating arguments, if there does not exist any ai (1 ≤
i ≤ 2n − 1) with ai+1 = ai. We will also say that the cumulant
k2n(a1, . . . , a2n) is alternating. Cumulants with an odd number of
arguments will always be considered as not alternating.
Example: The cumulant k6(a, a∗, a, a∗, a, a∗) is alternating, whereas
k8(a, a∗, a∗, a, a, a∗, a, a∗) or k5(a, a∗, a, a∗, a) are not alternating.

Definition 6.1.3. A random variable a in a ∗-probability space
is called R-diagonal if for all n ∈ N we have that kn(a1, . . . , an) = 0
whenever the arguments a1, . . . , an ∈ {a, a∗} are not alternating in a
and a∗.
If a is R-diagonal we denote the non-vanishing cumulants by αn :=

95
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k2n(a, a∗, a, a∗, . . . , a, a∗) and βn := k2n(a∗, a, a∗, a, . . . , a∗, a) (n ≥ 1).
The sequences (αn)n≥1 and (βn)n≥1 are called the determining series
of a.

Remark 6.1.4. As in Theorem 8.18, it seems to be the most concep-
tual point of view to consider the requirement that a ∈ A is R-diagonal

as a condition on the matrix A :=

(
0 a
a∗ 0

)
∈ M2(A). However, this

characterization needs the frame of operator-valued freeness and thus
we want here only state the result: a is R-diagonal if and only if the ma-
trix A is free from M2(C) with amalgamation over the scalar diagonal

matrices D := {
(

α 0
0 β

)
| α, β ∈ C}.

Notation 6.1.5. In the same way as for cumulants and moments
we define for the determining series (αn)n≥1 of an R-diagonal element
(or more general for any sequence of numbers) a function on non-
crossing partitions by multiplicative factorization:

(144) απ :=
∏
V ∈π

α|V |.

Examples 6.1.6. 1) By the first part of Example 6.6, we know that
the only non-vanishing cumulants for a circular element are k2(c, c

∗) =
k2(c

∗, c) = 1. Thus a circular element is R-diagonal with determining
series

(145) αn = βn =

{
1, n = 1

0, n > 1.

2) Let u be a Haar unitary. We calculated its cumulants in part 4
of Example 6.6. In our present language, we showed there that u is
R-diagonal with determining series

(146) αn = βn = (−1)n−1Cn−1.

Remark 6.1.7. It is clear that all information on the ∗-distribution
of an R-diagonal element a is contained in its determining series. An-
other useful description of the ∗-distribution of a is given by the dis-
tributions of aa∗ and a∗a. The next proposition connects these two
descriptions of the ∗-distribution of a.

Proposition 6.1.8. Let a be an R-diagonal random variable and

αn : = k2n(a, a∗, a, a∗, . . . , a, a∗),

βn : = k2n(a∗, a, a∗, a, . . . , a∗, a)
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the determining series of a.
1) Then we have:

kn(aa∗, . . . , aa∗) =
∑

π∈NC(n)
π={V1,...,Vr}

α|V1|β|V2| · · · β|Vr|(147)

kn(a∗a, . . . , a∗a) =
∑

π∈NC(n)
π={V1,...,Vr}

β|V1|α|V2| · · · β|Vr|(148)

where V1 denotes that block of π ∈ NC(n) which contains the first
element 1. In particular, the ∗-distribution of a is uniquely determined
by the distributions of aa∗ and of a∗a.
2) In the tracial case (i.e. if αn = βn for all n) we have

(149) kn(aa∗, . . . , aa∗) = kn(a∗a, . . . , a∗a) =
∑

π∈NC(n)

απ.

Proof. 1) Applying Theorem 5.2 yields

kn(aa∗, . . . , aa∗) =
∑

π∈NC(2n)
π∨σ=12n

kπ[a, a∗, . . . , a, a∗]

with

σ = {(a, a∗), . . . , (a, a∗)} =̂ {(1, 2), . . . , (2n − 1, 2n)}.

We claim now the following: The partitions π which fulfill the con-
dition π∨σ = 12n are exactly those which have the following properties:
the block of π which contains the element 1 contains also the element
2n, and, for each k = 1, . . . , n − 1, the block of π which contains the
element 2k contains also the element 2k + 1 .

Since the set of those π ∈ NC(2n) fulfilling the claimed condition
is in canonical bijection with NC(n) and since kπ[a, a∗, . . . , a, a∗] goes
under this bijection to the product appearing in our assertion, this
gives directly the assertion.

So it remains to prove the claim. It is clear that a partition which
has the claimed property does also fulfill π ∨ σ = 12n. So we only have
to prove the other direction.

Let V be the block of π which contains the element 1. Since a is
R-diagonal the last element of this block has to be an a∗, i.e., an even
number, let’s say 2k. If this would not be 2n then this block V would
in π ∨ σ not be connected to the block containing 2k + 1, thus π ∨ σ
would not give 12n. Hence π∨σ = 12n implies that the block containing
the first element 1 contains also the last element 2n.
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V� -

×↔◦
?

1

?

2

· · · ×↔◦
?

2k − 1

?

2k

×↔◦
?

2k + 1

?

2k + 2

· · ·

Now fix a k = 1, . . . , n − 1 and let V be the block of π containing
the element 2k. Assume that V does not contain the element 2k + 1.
Then there are two possibilities: Either 2k is not the last element in V ,
i.e. there exists a next element in V , which is necessarily of the form
2l + 1 with l > k ...

· · · ×↔◦
?

2k − 1

?

2k

×↔◦
?

2k + 1

?

2k + 2

· · · ×↔◦
?

2l − 1

?

2l

×↔◦
?

2l + 1

?

2l + 2

· · ·

... or 2k is the last element in V . In this case the first element of
V is of the form 2l + 1 with 0 ≤ l ≤ k − 1.

×↔◦
?

2l + 1

?

2l + 2

· · · ×↔◦
?

2k − 1

?

2k

×↔◦
?

2k + 1

?

2k + 2

· · ·
V� -

In both cases the block V gets not connected with 2k + 1 in π ∨ σ,
thus this cannot give 12n. Hence the condition π ∨ σ = 12n forces 2k
and 2k + 1 to lie in the same block. This proves our claim and hence
the assertion.

2) This is a direct consequence from the first part, if the α’s and
β’s are the same. �
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Remark 6.1.9. It is also true that, for a R-diagonal, aa∗ and a∗a
are free. We could also prove this directly in the same spirit as above,
but we will defer it to later, because it will follow quite directly from
a characterization of R-diagonal elements as those random variables
whose ∗-distribution is invariant under multiplication with a free Haar
unitary.

6.1.1. Proposition. Let a and x be elements in a ∗-probability
space (A, ϕ) with a being R-diagonal and such that {a, a∗} and {x, x∗}
are free. Then ax is R-diagonal.

Proof. We examine a cumulant kr(a1a2, . . . , a2r−1a2r) with
a2i−1a2i ∈ {ax, x∗a∗} for i ∈ {1, . . . , r}.
According to the definition of R-diagonality we have to show that this
cumulant vanishes in the following two cases:

(1◦) r is odd.
(2◦) There exists at least one s(1 ≤ s ≤ r−1) such that a2s−1a2s =

a2s+1a2s+2.

By Theorem 5.2, we have

kr(a1a2, . . . , a2r−1a2r) =
∑

π∈NC(2r)
π∨σ=12r

kπ[a1, a2, . . . , a2r−1, a2r] ,

where σ = {(a1, a2), . . . , (a2r−1, a2r)}.
The fact that a and x are ∗-free implies, by the vanishing of mixed

cumulants, that only such partitions π ∈ NC(2r) contribute to the
sum each of whose blocks contains elements only from {a, a∗} or only
from {x, x∗}.

Case (1◦): As there is at least one block of π containing a different
number of elements a and a∗, kπ vanishes always. So there are no par-
titions π contributing to the above sum, which consequently vanishes.

Case (2◦): We assume that there exists an s ∈ {1, . . . , r − 1} such
that a2s−1a2s = a2s+1a2s+2. Since with a also a∗ is R-diagonal, it
suffices to consider the case where a2s−1a2s = a2s+1a2s+2 = ax, i.e.,
a2s−1 = a2s+1 = a and a2s = a2s+2 = x.
Let V be the block containing a2s+1. We have to examine two situa-
tions:

A. On the one hand, it might happen that a2s+1 is the first ele-
ment in the block V . This can be sketched in the following
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way:

a ↔ x a ↔ x x∗ ↔ a∗

· · · a2s−1 a2s a2s+1 a2s+2 · · · ag−1 ag · · ·

V -�

In this case the block V is not connected with a2s in π ∨ σ,
thus the latter cannot be equal to 12n.

B. On the other hand, it can happen that a2s+1 is not the first
element of V . Because a is R-diagonal, the preceding element
must be an a∗.

x∗ ↔ a∗ a ↔ x a ↔ x

· · · af−1 af · · · a2s−1 a2s a2s+1 a2s+2 · · ·

But then V will again not be connected to a2s in π ∨ σ. Thus
again π ∨ σ cannot be equal to 12n.

As in both cases we do not find any partition contributing to the in-
vestigated sum, this has to vanish. �

Theorem 6.1.10. Let x be an element in a ∗-probability space
(A, ϕ). Furthermore, let u be a Haar unitary in (A, ϕ) such that {u, u∗}
and {x, x∗} are free. Then x is R-diagonal if and only if (x, x∗) has
the same joint distribution as (ux, x∗u∗):

x R-diagonal ⇐⇒ µx,x∗ = µux,x∗u∗ .

Proof. =⇒: We assume that x is R-diagonal and, by Prop. 9.10,
we know that ux is R-diagonal, too. So to see that both have the same
∗-distribution it suffices to see that the respective determining series
agree. By Prop. 9.8, this is the case if the distribution of xx∗ agrees with
the distribution of ux(ux)∗ and if the distribution of x∗x agrees with
the distribution of (ux)∗ux. For the latter case this is directly clear,
whereas for the first case one only has to observe that uau∗ has the
same distribution as a if u is ∗-free from a. (Note that in the non-tracial
case one really needs the freeness assumption in order to get the first u
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cancel the last u∗ via ϕ((uau∗)n) = ϕ(uanu∗) = ϕ(uu∗)ϕ(an) = ϕ(an).)
⇐=: We assume that the ∗-distribution of x is the same as the ∗-
distribution of ux. As, by Prop. 9.10, ux is R-diagonal, x is R-diagonal,
too. �

Corollary 6.1.11. Let a be R-diagonal. Then aa∗ and a∗a are
free.

Proof. Let u be a Haar unitary which is ∗-free from a. Since a has
the same ∗-distribution as ua it suffices to prove the statement for ua.
But there it just says that uaa∗u∗ and a∗u∗ua = a∗a are free, which is
clear by the very definition of freeness. �

Corollary 6.1.12. Let (A, ϕ) be a W ∗-probability space with ϕ
a faithful trace and let a ∈ A be such that ker(a) = {0}. Then the
following two statements are equivalent.

(1) a is R-diagonal.
(2) a has a polar decomposition of the form a = ub, where u is a

Haar unitary and u, b are ∗-free.

Proof. The implication 2) =⇒ 1) is clear, by Prop. 9.10, and the
fact that a Haar unitary u is R-diagonal.
1) =⇒ 2): Consider ũ, b̃ in some W ∗-probability space (Ã, ϕ̃), such

that ũ is Haar unitary, ũ and b̃ are ∗-free and furthermore b̃ ≥ 0
has the same distribution as |a| =

√
a∗a (which is, by traciality, the

same as the distribution of
√

aa∗.) But then it follows that ã := ũb̃

is R-diagonal and the distribution of ãã∗ = ũb̃b̃ũ∗ is the same as the
distribution of aa∗ and the distribution of ã∗ã = b̃ũ∗ũb̃ = b̃b̃ is the
same as the distribution of a∗a. Hence the ∗-distributions of a and ã
coincide. But this means that the von Neumann algebra generated by
a is isomorphic to the von Neumann algebra generated by ã via the
mapping a 7→ ã. Since the polar decomposition takes places inside
the von Neumann algebras, the polar decompostion of a is mapped to
the polar decomposition of ã under this isomorphism. But the polar
decomposition of ã is by construction just ã = ũb̃ and thus has the
stated properties. Hence these properties (which rely only on the ∗-
distributions of the elements involved in the polar decomposition) are
also true for the elements in the polar decomposition of a. �

Prop. 9.10 implies in particular that the product of two free R-
diagonal elements is R-diagonal again. This raises the question how
the alternating cumulants of the product are given in terms of the
alternating cumulants of the factors. This is answered in the next
proposition.
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Proposition 6.1.13. Let a and b be R-diagonal random variables
such that {a, a∗} is free from {b, b∗}. Furthermore, put

αn := k2n(a, a∗, a, a∗, . . . , a, a∗) ,

βn := k2n(a∗, a, a∗, a, . . . , a∗, a) ,

γn := k2n(b, b∗, b, b∗, . . . , b, b∗).

Then ab is R-diagonal and the alternating cumulants of ab are given
by

(150) k2n(ab, b∗a∗, . . . , ab, b∗a∗)

=
∑

π=πa∪πb∈NC(2n)
πa={V1,...,Vk}∈NC(1,3,...,2n−1)

πb={V ′
1,...,V ′

l
}∈NC(2,4,...,2n)

α|V1|β|V2| · · · β|Vk|γ|V ′
1 | · · · γ|V ′

l | ,

where V1 is that block of π which contains the first element 1.

Remark 6.1.14. Note that in the tracial case the statement reduces
to

(151) k2n(ab, b∗a∗, . . . , ab, b∗a∗) =
∑

πa,πb∈NC(n)

πb≤K(πa)

απaβπb
.

Proof. R-diagonality of ab is clear by Prop. 9.10. So we only have
to prove the formula for the alternating cumulants.

By Theorem 5.2, we get

k2n(ab, b∗a∗, . . . , ab, b∗a∗) =
∑

π∈NC(4n)
π∨σ=14n

kπ[a, b, b∗, a∗, . . . , a, b, b∗, a∗] ,

where σ = {(a, b), (b∗, a∗), . . . , (a, b), (b∗, a∗)}. Since {a, a∗} and {b, b∗}
are assumed to be free, we also know, by the vanishing of mixed cu-
mulants that for a contributing partition π each block has to contain
components only from {a, a∗} or only from {b, b∗}.
As in the proof of Prop. 9.8 one can show that the requirement
π ∨ σ = 14n is equivalent to the following properties of π: The block
containing 1 must also contain 4n and, for each k = 1, ..., 2n − 1, the
block containing 2k must also contain 2k + 1. (This couples always b
with b∗ and a∗ with a, so it is compatible with the ∗-freeness between
a and b.) The set of partitions in NC(4n) fulfilling these properties
is in canonical bijection with NC(2n). Furthermore we have to take
care of the fact that each block of π ∈ NC(4n) contains either only
elements from {a, a∗} or only elements from {b, b∗}. For the image of
π in NC(2n) this means that it splits into blocks living on the odd
numbers and blocks living on the even numbers. Furthermore, under
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these identifications the quantity kπ[a, b, b∗, a∗, . . . , a, b, b∗, a∗] goes over
to the expression as appearing in our assertion. �

6.2. The anti-commutator of free variables

An important way how R-diagonal elements can arise is as the
product of two free even elements.

Notations 6.2.1. We call an element x in a ∗-probability space
(A, ϕ) even if it is selfadjoint and if all its odd moments vanish, i.e. if
ϕ(x2k+1) = 0 for all k ≥ 0.
In analogy with R-diagonal elements we will call (αn)n≥1 with αn := kx

2n

the determining series of an even variable x.

Remarks 6.2.2. 1) Note that the vanishing of all odd moments is
equivalent to the vanishing of all odd cumulants.
2) Exactly the same proof as for Prop. 9.8 shows that for an even
variable x we have the following relation between its determining series
αn and the cumulants of x2:

(152) kn(x2, . . . , x2) =
∑

π∈NC(n)

απ.

Theorem 6.2.3. Let x, y be two even random variables. If x and y
are free then xy is R-diagonal.

Proof. Put a := xy. We have to see that non alternating cumu-
lants in a = xy and a∗ = yx vanish. Since it is clear that cumulants
of odd length in xy and yx vanish always it remains to check the van-
ishing of cumulants of the form kn(. . . , xy, xy, . . . ). (Because of the
symmetry of our assumptions in x and y this will also yield the case
kn(. . . , yx, yx, . . . ).) By Theorem 5.2, we can write this cumulant as

kn(. . . , xy, xy, . . . ) =
∑

π∈NC(2n)
π∨σ=12n

kπ[. . . , xy, xy, . . . ],

where σ = {(1, 2), (3, 4), . . . , (2n − 1, 2n)}. In order to be able to
distinguish y appearing at different possitions we will label them by
indices (i.e. yi = y for all appearing i). Thus we have to look at
kπ[. . . , xy1, xy2, . . . ] for π ∈ NC(2n). Because of the freeness of x and
y, π only gives a contribution if it does not couple x with y. Further-
more all blocks of π have to be of even length, by our assumption that
x and y are even. Let now V be that block of π which contains y1.
Then there are two possibilities.
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(1) Either y1 is not the last element in V . Let y3 be the next
element in V , then we must have a situation like this

. . . , x y1 , x y2 , . . . , y3 x , . . .

Note that y3 has to belong to a product yx as indicated, be-
cause both the number of x and the number of y lying between
y1 and y3 have to be even. But then everything lying between
y1 and y3 is not connected to the rest (neither by π nor by σ),
and thus the condition π ∨ σ = 12n cannot be fulfilled.

(2) Or y1 is the last element in the block V . Let y0 be the first
element in V . Then we have a situation as follows

. . . , y0 x , . . . , x y1 , x y2 , . . .

Again we have that y0 must come from a product yx, because
the number of x and the number of y lying between y0 and y1

have both to be even (although now some of the y from that
interval might be connected to V , too, but that has also to be
an even number). But then everything lying between y0 and y1

is separated from the rest and we cannot fulfill the condition
π ∨ σ = 12n.

Thus in any case there is no π which fulfills π ∨ σ = 12n and has
also kπ[. . . , xy1, xy2, . . . ] different from zero. Hence k(. . . , xy, xy, . . . )
vanishes. �

Corollary 6.2.4. Let x and y be two even elements which are free.
Consider the free anti-commutator c := xy + yx. Then the cumulants
of c are given in terms of the determining series αx

n = kx
2n of x and

αy
n := ky

2n of y by

(153) kc
2n = 2

∑
π1,π2∈NC(n)

π2≤K(π1)

αx
π1

αy
π2

.

Proof. Since xy is R-diagonal it is clear that cumulants in c of
odd length vanish. Now note that ϕ restricted to the unital ∗-algebra
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generated by x and y is a trace (because the the unital ∗-algebra gen-
erated by x and the unital ∗-algebra generated by y are commutative
and the free product preserves traciality), so that the R-diagonality of
xy gives

kc
2n = k2n(xy + yx, . . . , xy + yx)

= k2n(xy, yx, . . . , xy, yx) + k2n(yx, xy, . . . , yx, xy)

= 2k2n(xy, yx, . . . , xy, yx).

Furthermore, the same kind of argument as in the proof of Prop. 9.14
allows to write this in the way as claimed in our assertion. �

Remarks 6.2.5. 1) The problem of the anti-commutator for the
general case is still open. For the problem of the commutator i(xy−yx)
one should remark that in the even case this has the same distribution
as the anti-commutator and that the general case can, due to cancel-
lations, be reduced to the even case.
2) As it becomes clear from our Prop. 9.14 and our result about the
free anti-commutator, the combinatorial formulas are getting more and
more involved and one might start to wonder how much insight such
formulas provide. What is really needed for presenting these solutions
in a useful way is a machinery which allows to formalize the proofs and
manipulate the results in an algebraic way without having to spend
too much considerations on the actual kind of summations. Such a
machinery will be presented later (in the course of A. Nica), and it will
be only with the help of that apparatus that one can really formulate
the results in a form also suitable for concrete calculations.

6.3. Powers of R-diagonal elements

Remark 6.3.1. According to Prop. 9.10 multiplication preserves R-
diagonality if the factors are free. Haagerup and Larsen showed that, in
the tracial case, the same statement is also true for the other extreme
relation between the factors, namely if they are the same – i.e., powers
of R-diagonal elements are also R-diagonal. The proof of Haagerup
and Larsen relied on special realizations of R-diagonal elements. Here
we will give a combinatorial proof of that statement. In particular,
our proof will – in comparison with the proof of Prop. 9.10 – also
illuminate the relation between the statements “a1, . . . , ar R-diagonal
and free implies a1 · · · ar R-diagonal” and “a R-diagonal implies ar R-
diagonal”. Furthermore, our proof extends without problems to the
non-tracial situation.
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Proposition 6.3.2. Let a be an R-diagonal element and let r be a
positive integer. Then ar is R-diagonal, too.

Proof. For notational convenience we deal with the case r = 3.
General r can be treated analogously.
The cumulants which we must have a look at are kn(b1, . . . , bn) with
arguments bi from {a3, (a3)∗} (i = 1, . . . , n). We write bi = bi,1bi,2bi,3

with bi,1 = bi,2 = bi,3 ∈ {a, a∗}. According to the definition of
R-diagonality we have to show that for any n ≥ 1 the cumulant
kn(b1,1b1,2b1,3, . . . , bn,1bn,2bn,3) vanishes if (at least) one of the follow-
ing things happens:

(1◦) There exists an s ∈ {1, . . . , n− 1} with bs = bs+1.
(2◦) n is odd.

Theorem 5.2 yields

kn(b1,1b1,2b1,3, . . . , bn,1bn,2bn,3)

=
∑

π∈NC(3n)
π∨σ=13n

kπ[b1,1, b1,2, b1,3, . . . , bn,1, bn,2, bn,3] ,

where σ := {(b1,1, b1,2, b1,3), . . . , (bn,1, bn,2, bn,3)}. The R-diagonality of
a implies that a partition π gives a non-vanishing contribution to the
sum only if its blocks link the arguments alternatingly in a and a∗.
Case (1◦): Without loss of generality, we consider the cumulant
kn(. . . , bs, bs+1, . . . ) with bs = bs+1 = (a3)∗ for some s with 1 ≤ s ≤
n− 1. This means that we have to look at kn(. . . , a∗a∗a∗, a∗a∗a∗, . . . ).
Theorem 5.2 yields in this case

kn(. . . , a∗a∗a∗, a∗a∗a∗, . . . ) =
∑

π∈NC(3n)
π∨σ=13n

kπ[. . . , a∗, a∗, a∗, a∗, a∗, a∗, . . . ],

where σ := {. . . , (a∗, a∗, a∗), (a∗, a∗, a∗), . . . }. In order to find out which
partitions π ∈ NC(3n) contribute to the sum we look at the structure
of the block containing the element bs+1,1 = a∗; in the following we will
call this block V .
There are two situations which can occur. The first possibility is that
bs+1,1 is the first component of V ; in this case the last component of
V must be an a and, since each block has to contain the same number
of a and a∗, this a has to be the third a of an argument a3. But then
the block V gets in π ∨ σ not connected with the block containing bs,3

and hence the requirement π ∨ σ = 13n cannot be fulfilled in such a
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situation.

· · · a∗↔ a∗↔ a∗ a∗↔ a∗↔ a∗ · · · a ↔ a ↔ a · · ·

bs,1 bs,2 bs,3 bs+1,1 bs+1,2 bs+1,3

V� -

The second situation that might happen is that bs+1,1 is not the first
component of V . Then the preceding element in this block must be
an a and again it must be the third a of an argument a3. But then
the block containing bs,3 is again not connected with V in π ∨ σ. This
possibility can be illustrated as follows:

· · · a ↔ a ↔ a · · · a∗↔ a∗↔ a∗ a∗↔ a∗↔ a∗ · · ·

bs,1 bs,2 bs,3 bs+1,1 bs+1,2 bs+1,3

Thus, in any case there exists no π which fulfills the requirement π∨σ =
13n and hence kn(. . . , a∗a∗a∗, a∗a∗a∗, . . . ) vanishes in this case.

Case (2◦): In the case n odd, the cumulant
kπ[b1,1, b1,2, b1,3, . . . , bn,1, bn,2, bn,3] has a different number of a and
a∗ as arguments and hence at least one of the blocks of π cannot be
alternating in a and a∗. Thus kπ vanishes by the R-diagonality of a.

As in both cases we do not find any partition giving a non-vanishing
contribution, the sum vanishes and so do the cumulants kn(b1, . . . , bn).

�

Remark 6.3.3. We are now left with the problem of describing the
alternating cumulants of ar in terms of the alternating cumulants of
a. We will provide the solution to this question by showing that the
similarity between a1 · · · ar and ar goes even further as in the Remark
9.21. Namely, we will show that ar has the same ∗-distribution as
a1 · · · ar if a1, . . . , ar are ∗-free and all ai (i = 1, . . . , r) have the same
∗-distribution as a. The distribution of ar can then be calculated by an
iteration of Prop. 9.14. In the case of a trace this reduces to a result of
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Haagerup and Larsen. The specical case of powers of a circular element
was treated by Oravecz.

Proposition 6.3.4. Let a be an R-diagonal element and r a pos-
itive integer. Then the ∗-distribution of ar is the same as the ∗-
distribution of a1 · · · ar where each ai (i = 1, . . . , r) has the same ∗-
distribution as a and where a1, . . . , ar are ∗-free.

Proof. Since we know that both ar and a1 · · · ar are R-diagonal
we only have to see that the respective alternating cumulants coincide.
By Theorem 5.2, we have

k2n(ar, a∗r, . . . , ar, a∗r)

=
∑

π∈NC(2nr)
π∨σ=12nr

kπ[a, . . . , a, a∗, . . . , a∗, . . . , a, . . . , a, a∗, . . . , a∗]

and

k2n(a1 · · · ar, a
∗
r · · · a∗1, . . . , a1 · · · ar, a

∗
r · · · a∗1)

=
∑

π∈NC(2nr)
π∨σ=12nr

kπ[a1, . . . , ar, a
∗
r, . . . , a

∗
1, . . . , a1, . . . , ar, a

∗
r, . . . , a

∗
1],

where in both cases σ = {(1, . . . , r), (r + 1, . . . , 2r), . . . , (2(n − 1)r +
1, . . . , 2nr)}. The only difference between both cases is that in the sec-
ond case we also have to take care of the freeness between the ai which
implies that only such π contribute which do not connect different ai.
But the R-diagonality of a implies that also in the first case only such
π give a non-vanishing contribution, i.e. the freeness in the second case
does not really give an extra condition. Thus both formulas give the
same and the two distributions coincide. �



CHAPTER 7

Free Fisher information

7.1. Definition and basic properties

Remarks 7.1.1. 1) In classical probability theory there exist two
important concepts which measure the ’amount of information’ of a
given distribution. These are the Fisher information and the entropy
(the latter measures the absence of information). There exist vari-
ous relations between these quantities and they form a cornerstorne of
classical probability theory and statistics. Voiculescu introduced free
probability analogues of these quantities, called free Fisher informa-
tion and free entropy, denoted by Φ and χ, respectively. However, the
present situation with these quantities is a bit confusing. In particular,
there exist two different approaches, each of them yielding a notion of
entropy and Fisher information. One hopes that finally one will be able
to prove that both approaches give the same, but at the moment this is
not clear. Thus for the time being we have to distinguish the entropy
χ and the free Fisher information Φ coming from the first approach
(via micro-states) and the free entropy χ∗ and the free Fisher infor-
mation Φ∗ coming from the second approach (via a non-commutative
Hilbert transform). We will in this section only deal with the second
approach, which fits quite nicely with our combinatorial theory of free-
ness. In this approach the Fisher information is the basic quantity (in
terms of which the free entropy χ∗ is defined), so we will restrict our
attention to Φ∗.
2) The concepts of information and entropy are only useful when we
consider states (so that we can use the positivity of ϕ to get estimates
for the information or entropy). Thus in this section we will always
work in the framework of a von Neumann probability space. Further-
more, it is crucial that we work with a trace. The extension of the
present theory to non-tracial situations is unclear.
3) The basic objects in our approach to free Fisher information, the
conjugate variables, do in general not live in the algebra A, but in
the L2-space L2(A, ϕ) associated to A with respect to the given trace
ϕ. We will also consider cumulants, where one argument comes from
L2(A) and all other arguments are from A itself. Since this corresponds

109
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to moments where we multiply one element from L2(A) with elements
from A this is well-defined within L2(A). (Of course the case where
more than one argument comes from L2(A) would be problematic.)
Thus, by continuity, such cumulants are well-defined and we can work
with them in the same way as for the case where all arguments are
from A.

Notations 7.1.2. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ.
1) We denote by L2(A, ϕ) (or for short L2(A) if the state is clear) the
completion of A with respect to the norm ‖a‖ := ϕ(a∗a)1/2.
2) For a subset X ⊂ A we denote by

L2(X , ϕ) = L2(X ) := alg(X ,X ∗)
‖·‖

the closure in L2(A) of the unital ∗-algebra generated by the set X .
3) A self-adjoint family of random variables is a family of random
variables F = {ai}i∈I (for some index set I) with the property that with
ai ∈ F also a∗i ∈ F (thus a∗i = aj for some j ∈ I).

Definitions 7.1.3. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ. Let I be a finite index set and consider a self-adjoint
family of random variables {ai}i∈I ⊂ A.
1) We say that a family {ξi}i∈I of vectors in L2(A, ϕ) fulfills the
conjugate relations for {ai}i∈I , if

(154) ϕ(ξiai(1) · · · ai(n)) =
n∑

k=1

δii(k)ϕ(ai(1) · · · ai(k−1))·ϕ(ai(k+1) · · · ai(n))

for all n ≥ 0 and all i, i(1), . . . , i(n) ∈ I.
2) We say that a family {ξi}i∈I of vectors in L2(A, ϕ) is a conjugate
system for {ai}i∈I , if it fulfills the conjugate relations (1) and if in
addition we have that

(155) ξi ∈ L2({aj}j∈I , ϕ) for all i ∈ I.

Remarks 7.1.4. 1) A conjugate system for {ai}i∈I is unique, if it
exists.
2) If there exists a family {ξi}i∈I in L2(A, ϕ) which fulfills the con-
jugate relations for {ai}i∈I , then there exists a conjugate system for
{ai}i∈I . Namely, let P be the orthogonal projection from L2(A, ϕ)
onto L2({aj}j∈I , ϕ). Then {Pξi}i∈I is the conjugate system for {ai}i∈I .

Proposition 7.1.5. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ. Let I be a finite index set and consider a self-adjoint
family of random variables {ai}i∈I ⊂ A. A family {ξi}i∈I of vectors
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in L2(A, ϕ) fulfills the conjugate relations for {ai}i∈I , if and only if we
have for all n ≥ 0 and all i, i(1), . . . , i(n) ∈ I that

(156) kn+1(ξi, ai(1), . . . , ai(n)) =

{
δii(1), n = 1

0, n 6= 1.

Proof. We only show that (1) implies (2). The other direction is
similar.
We do this by induction on n. For n = 0 and n = 1, this is clear:

k1(ξi) = ϕ(ξi) = 0

k2(ξi, ai(1)) = ϕ(ξiai(1))− ϕ(ξi)ϕ(ai(1)) = δii(1).

Consider now n ≥ 2. Then we have

ϕ(ξiai(1) · · · ai(n)) =
∑

π∈NC(n+1)

kπ[ξi, ai(1), . . . , ai(n)]

= kn(ξi, ai(1), . . . , ai(n)) +
∑

π 6=1n+1

kπ[ξi, ai(1), . . . , ai(n)].

By induction assumption, in the second term only such partitions π ∈
NC(0, 1, . . . , n) contribute which couple ξi with exactly one ai(k), i.e.
which are of the form π = (0, k) ∪ π1 ∪ π2, for some 1 ≤ k ≤ n and
where π1 ∈ NC(1, . . . , k − 1) and π2 ∈ NC(k + 1, . . . , n). Thus we get

ϕ(ξiai(1) · · · ai(n)) = kn(ξi, ai(1), . . . , ai(n))

+
n∑

k=1

δii(k)

( ∑
π1∈NC(1,...,k−1)

kπ1 [ai(1), . . . , ai(k−1)]
)

·
( ∑

π2∈NC(k+1,...,n)

kπ2 [ai(k+1), . . . , ai(n)]
)

= kn(ξi, ai(1), . . . , ai(n)) +
n∑

k=1

δii(k)ϕ(ai(1) · · · ai(k−1)) · ϕ(ai(k+1) · · · ai(n))

= kn(ξi, ai(1), . . . , ai(n)) + ϕ(ξiai(1) · · · ai(n)).

This gives the assertion. �

Example 7.1.6. Let {si}i∈I be a semi-circular family, i.e. si (i ∈ I)
are free and each of them is a semi-circular of variance 1. Then the
conjugate system {ξi}i∈I for {si}i∈I is given by ξi = si for all i ∈ I.
This follows directly from 4.8, which states that

kn+1(si, si(1), . . . , si(n)) = δn1δii(1).
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Definition 7.1.7. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ. Let I be a finite index set and consider a self-adjoint
family of random variables {ai}i∈I ⊂ A. If {ai}i∈I has a conjugate
system {ξi}i∈I , then the free Fisher information of {ai}i∈I is defined
as

(157) Φ∗({ai}i∈I) :=
∑
i∈I

‖ξi‖2.

If {ai}i∈I has no conjugate system, then we put Φ∗({ai}i∈I) := ∞.

Remarks 7.1.8. 1) Note that by considering real and imaginary
parts of our operators we could reduce the above frame to the case
where all appearing random variables are self-adjoint. E.g. consider
the case {x = x∗, a, a∗}. Then it is easy to see that

(158) Φ∗(x, a, a∗) = Φ∗(x,
a + a∗√

2
,
a− a∗√

2i

)
.

2) Since an orthogonal projection in a Hilbert space does not increase
the length of the vectors, we get from Remark 10.4 the following
main tool for deriving estimates on the free Fisher information: If
{ξi}i∈I fulfills the conjugate relations for {ai}i∈I , then we have that
Φ∗({ai}i∈I) ≤

∑
i∈I ‖ξi‖2. Note also that we have equality if and only

if ξi ∈ L2({aj}j∈I , ϕ) for all i ∈ I.

7.2. Minimization problems

Remarks 7.2.1. 1) In classical probability theory there exists a
kind of meta-mathematical principle, the ”maximum entropy princi-
ple”. Consider a classical situation of which only some partial knowl-
edge is available. Then this principle says that a generic description
in such a case is given by a probability distribution which is compat-
ible with the partial knowledge and whose classical entropy is max-
imal among all such distributions. In the same spirit, one has the
following non-commutative variant of this: A generic description of
a non-commutative situation subject to given constraints is given by
a non-commutative distribution which respects the given constraints
and whose free entropy is maximal (or whose free Fisher information
is minimal) among all such distributions.
2) Thus it is natural to consider minimization problems for the free
Fisher information and ask in particular in which case the minimal
value is really attained. We will consider four problems of this kind
in the following. The first two are due to Voiculescu; in particular the
second contains the main idea how to use equality of Fisher informa-
tions to deduce something about the involved distributions (this is one
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of the key observations of Part VI of the series of Voiculescu on the
analogues of entropy and Fisher’s information measure in free proba-
bility theory). The other two problems are due to Nica, Shlyakhtenko,
and Speicher and are connected with R-diagonal distributions and the
distributions coming from compression by a free family of matrix units.

Problem 7.2.2. Let r > 0 be given. Minimize Φ∗(a, a∗) under the
constraint that ϕ(a∗a) = r.

Proposition 7.2.3. (free Cramer-Rao inequality). Let (A, ϕ)
be a W ∗-probability space with a faithful trace ϕ. Let a ∈ A be a random
variable.
1) Then we have

(159) Φ∗(a, a∗) ≥ 2

ϕ(a∗a)
.

2) We have equality in Equation (6) if and only if a is of the form
a = λc, where λ > 0 and c is a circular element.

Proof. 1) If no conjugate system for {a, a∗} exists, then the left
hand side is infinite, so the statement is trivial. So let {ξ, ξ∗} be a
conjugate system for {a, a∗}. Then we have

2 = ϕ(ξa) + ϕ(ξ∗a∗)

= 〈ξ∗, a〉+ 〈ξ, a∗〉
≤ ‖ξ∗‖ · ‖a‖+ ‖ξ‖ · ‖a∗‖

=
(
2‖a‖(‖ξ∗‖2 + ‖ξ‖2)

)1/2

=
(
Φ∗(a, a∗) · 2ϕ(a∗a)

)1/2
,

which gives the assertion.
2) We have equality in the above inequalities exactly if ξ = ra∗ for
some r ∈ C. But this means that the only non-vanishing cumulants in
the variables a and a∗ are

ϕ(a∗a) = k2(a, a∗) = k2(a
∗, a) =

1

r
k2(ξ, a) =

1

r

Hence r > 0 and
√

ra is a circular element, by Example 6.6. �

Problem 7.2.4. Let µ and ν be probability measures on R. Min-
imize Φ∗(x, y) for selfadjoint variables x and y under the constraints
that the distribution of x is equal to µ and the distribution of y is equal
to ν.
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Proposition 7.2.5. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ and consider two selfadjoint random variables x, y ∈ A.
Then we have

(160) Φ∗(x, y) ≥ Φ∗(x) + Φ∗(y).

Proof. We can assume that a conjugate system {ξx, ξy} ⊂ L(x, y)
for {x, y} exists (otherwise the assertion is trivial). Then ξx fulfills
the conjugate relation for x, hence Φ∗(x) ≤ ‖ξx‖2, and ξy fulfills the
conjugate relation for y, hence Φ∗(y) ≤ ‖ξy‖2. Thus we get

Φ∗(x, y) = ‖ξx‖2 + ‖ξy‖2 ≥ Φ∗(x) + Φ∗(y).

�

Proposition 7.2.6. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ and consider two selfadjoint random variables x, y ∈ A.
Assume that x and y are free. Then we have

(161) Φ∗(x, y) = Φ∗(x) + Φ∗(y).

Proof. Let ξx ∈ L2(x) be the conjugate variable for x and let
ξy ∈ L2(y) be the conjugate variable for y. We claim that {ξx, ξy}
fulfill the conjugate relations for {x, y}. Let us only consider the equa-
tions involving ξx, the others are analogous. We have to show that
kn+1(ξx, a1, . . . , an) = 0 for all n 6= 1 and all a1, . . . , an ∈ {x, y} and
that k2(ξx, x) = 1 and k2(ξx, y) = 0. In the case that all ai = x we get
this from the fact that ξx is conjugate for x. If we have ai = y for at
least one i, then the corresponding cumulant is always zero because it
is a mixed cumulant in the free sets {ξx, x} and {y}. Thus {ξx, ξy} ful-
fills the conjugate relations for {x, y} and since clearly ξx, ξy ∈ L2(x, y),
this is the conjugate system. So we get

Φ∗(x, y) = ‖ξx‖2 + ‖ξy‖2 = Φ∗(x) + Φ∗(y).

�

Proposition 7.2.7. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ and consider two selfadjoint random variables x, y ∈ A.
Assume that

(162) Φ∗(x, y) = Φ∗(x) + Φ∗(y) < ∞.

Then x and y are free.

Proof. Let {ξx, ξy} ⊂ L2(x, y) be the conjugate system for {x, y}.
If we denote by Px and Py the orthogonal projections from L2(x, y)
onto L2(x) and onto L2(y), respectively, then Pxξx is the conjugate
variable for x and Pyξy is the conjugate variable for y. Our assertion on
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equality in Equation (9) is equivalent to the statements that Pxξx = ξx

and Pyξy = ξy, i.e. that ξx ∈ L2(x) and ξy ∈ L2(y). This implies in
particular xξx = ξxx, and thus

kn+1(xξx, a1, . . . , an) = kn+1(ξxx, a1, . . . , an)

for all n ≥ 0 and all a1, . . . , an ∈ {x, y}. However, by using our formula
for cumulants with products as entries, the left hand side gives

LHS = kn+2(x, ξx, a1, . . . , an) + δa1xkn(x, a2, . . . , an),

whereas the right hand side reduces to

RHS = kn(ξx, x, a1, . . . , an) + δxankn(x, a1, . . . , an−1).

For n ≥ 1, the first term disappears in both cases and we get

δa1xkn(x, a2, . . . , an) = δxankn(x, a1, . . . , an−1)

for all choices of a1, . . . , an ∈ {x, y}. If we put in particular an = x and
a1 = y then this reduces to

0 = kn(x, y, a2, . . . , an−1) for all a2, . . . , an−1 ∈ {x, y}.
But this implies, by traciality, that all mixed cumulants in x and y
vanish, hence x and y are free. �

Problem 7.2.8. Let µ be a probability measure on R. Then we
want to look for a generic representation of µ by a d × d matrix
according to the following problem: What is the minimal value of
Φ∗({aij}i,j=1,...,d) under the constraint that the matrix A := (aij)

d
i,j=1

is self-adjoint (i.e. we must have aij = a∗ji for all i, j = 1, . . . , d) and
that the distribution of A is equal to the given µ? In which cases is
this minimal value actually attained?

Let us first derive an lower bound for the considered Fisher infor-
mations.

Proposition 7.2.9. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ. Consider random variables aij ∈ A (i, j = 1, . . . , d)
with aij = a∗ji for all i, j = 1, . . . , d. Put A := (aij)

d
i,j=1 ∈ Md(A). Then

we have

(163) Φ∗({aij}i,j=1,...,d) ≥ d3Φ∗(A).

Proof. If no conjugate system for {aij}i,j=1,...,d exists, then the
left hand side of the assertion is ∞, thus the assertion is trivial. So let
us assume that a conjugate system {ξij}i,j=1,...,d for {aij}i,j=1,...,d exists.
Then we put

Ξ :=
1

d
(ξji)

d
i,j=1 ∈ Md(L

2(A)) =̂ L2(Md(A)).
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We claim that Ξ fulfills the conjugate relations for A. This can be seen
as follows:

ϕ⊗ trd(XAn) =
1

d

d∑
i(1),...,i(n+1)=1

ϕ(
1

d
ξi(2)i(1)ai(2)i(3) . . . ai(n+1)i(1))

=
n+1∑
k=2

1

d2
δi(2)i(k)δi(1)i(k+1)

d∑
i(1),...,i(n+1)=1

ϕ(ai(2)i(3) . . . ai(k−1)i(k))

· ϕ(ai(k+1)i(k+2) . . . ai(n+1)i(1))

=
n+1∑
k=2

(1

d

d∑
i(2),...,i(k−1)=1

ϕ(ai(2)i(3) . . . ai(k−1)i(2))
)

·
(1

d

d∑
i(1),i(k+2),...,i(n+1)=1

ϕ(ai(1)i(k+2) . . . ai(n+1)i(1))
)

=
n+1∑
k=2

ϕ⊗ trd(A
k−1) · ϕ⊗ trd(A

n−k).

Thus we have according to Remark 10.8

Φ∗(A) ≤ ‖Ξ‖2 =
1

d

d∑
i,j=1

ϕ(
1

d
ξ∗ij

1

d
ξij) =

1

d3

d∑
i,j=1

‖ξij‖2 = Φ∗({aij}i,j=1,...,d).

�

Next we want to show that the lower bound is actually achieved.

Proposition 7.2.10. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ. Consider random variables aij ∈ A (i, j = 1, . . . , d)
with aij = a∗ji for all i, j = 1, . . . , d. Put A := (aij)

d
i,j=1 ∈ Md(A). If A

is free from Md(C), then we have

(164) Φ∗({aij}i,j=1,...,d) = d3Φ∗(A).

Proof. Let {ξij}i,j=1,...,d be a conjugate system for {aij}i,j=1,...,d.
Then we put as before Ξ := 1

d
(ξji)

d
i,j=1. In order to have equality

in Inequality (10), we have to show that Ξ ∈ L2(A, ϕ ⊗ trd). Since
our assertion depends only on the joint distribution of the considered
variables {aij}i,j=1,...,d, we can choose a convenient realization of the
assumptions. Such a realization is given by the compression with a free
family of matrix units. Namely, let a be a self-adjoint random variable
with distribution µ (where µ is the distribution of the matrix A) and let
{eij}i,j=1,...,d be a family of matrix units which is free from a. Then the
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compressed variables ãij := e1iaej1 have the same joint distribution as
the given variables aij and by Theorem 8.14 and Theorem 8.18 we know

that the matrix Ã := (ãij}d
i,j=1 is free from Md(C). Thus we are done

if we can show the assertion for the ãij and Ã. Let ξ be the conjugate
variable for a, then we get the conjugate variables for {ãij}i,j=1,...,d also

by compression. Namely, let us put ξ̃ij := de1iξej1. Then we have by
Theorem 8.14

ke11Ãe11
n (ξ̃i(1)j(1), ãi(2)j(2), . . . , ãi(n)j(n))

=

{
dkn(1

d
dξ, 1

d
a, . . . , 1

d
a), if (i(1)j(1), . . . , i(n)j(n)) cyclic

0, otherwise

=

{
δj(1)i(2)δj(2)1(1), n = 2

0, n 6= 2.

Thus {ξ̃ji}i,j=1,...,d fulfills the conjugate relations for {ãij}i,j=1,...,d. Fur-

thermore, it is clear that {ξ̃ij} ⊂ L2({ãkl}k,l=1,...,d), hence this gives the

conjugate family. Thus the matrix Ξ̃ (of which we have to show that
it belongs to L2(Ã)) has the form

Ξ̃ =
1

d
(ξ̃ij)

d
i,j=1 = (e1iξej1)

d
i,j=1.

However, since the mapping y 7→ (e1iyej1)
d
i,j=1 is an isomorphism, which

sends a to Ã and ξ to Ξ̃, the fact that ξ ∈ L2(a) implies that Ξ̃ ∈
L2(Ã). �

Now we want to show that the minimal value of the Fisher infor-
mation can be reached (if it is finite) only in the above treated case.

Proposition 7.2.11. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ. Consider random variables aij ∈ A (i, j = 1, . . . , d)
with aij = a∗ji for all i, j = 1, . . . , d. Put A := (aij)

d
i,j=1 ∈ Md(A).

Assume that we also have

(165) Φ∗({aij}i,j=1,...,d) = d3Φ∗(A) < ∞.

Then A is free from Md(C).

Proof. By Theorem 8.18, we know that the freeness of A from
Md(C) is equivalent to a special property of the cumulants of the aij.
We will show that the assumed equality of the Fisher informations im-
plies this property for the cumulants. Let {ξij}i,j=1,...,d be a conjugate
system for {aij}i,j=1,...,d and put as before Ξ := 1

d
(ξji)

d
i,j=1. Our assump-

tion is equivalent to the statement that Ξ ∈ L2(A). But this implies in
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particular that XA = AX or

d∑
k=1

ξkiakj =
d∑

k=1

aikξjk for all i, j = 1, . . . , d.

This gives for arbitrary n ≥ 1 and 1 ≤ i, j, i(1), j(1), . . . , i(n), j(n) ≤ d
the equation

d∑
k=1

kn+1(ξkiakj, ai(1)j(1), . . . , ai(n)j(n)) =
d∑

k=1

kn+1(aikξjk, ai(1)j(1), . . . , ai(n)j(n)).

Let us calculate both sides of this equation by using our formula for
cumulants with products as entries. Since the conjugate variable can,
by Prop. 10.5, only be coupled with one of the variables, this formula
reduces to just one term. For the right hand side we obtain

d∑
k=1

kn+1(aikξjk, ai(1)j(1), . . . , ai(n)j(n))

=
d∑

k=1

δji(1)δkj(1)kn(aik, ai(2)j(2), . . . , ai(n)j(n))

= δji(1)kn(aij(1), ai(2)j(2), . . . , ai(n)j(n)),

whereeas the left hand side gives

d∑
k=1

kn+1(ξkiakj, ai(1)j(1), . . . , ai(n)j(n))

=
d∑

k=1

δki(n)δij(n))kn(akj, ai(1)j(1), . . . , ai(n−1)j(n−1))

= δij(n)kn(ai(n)j, ai(1)j(1), . . . , ai(n−1)j(n−1)).

Thus we have for all n ≥ 1 and 1 ≤ i, j, i(1), j(1), . . . , i(n), j(n) ≤ d
the equality

δji(1)kn(aij(1), ai(2)j(2), . . . , ai(n)j(n))

= δij(n)kn(ai(n)j, ai(1)j(1), . . . , ai(n−1)j(n−1)).

If we put now i = j(n) and j 6= i(1) then this gives

kn(ai(n)j, ai(1)j(1), . . . , ai(n−1)j(n−1)) = 0.

Thus each cumulant which does not couple in a cyclic way the first
double index with the second double index vanishes. By traciality this
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implies that any non-cyclic cumulant vanishes.
Let us now consider the case j = i(1) and i = j(n). Then we have

kn(aj(n)j(1), ai(2)j(2), . . . , ai(n)j(n)) = kn(ai(n)i(1), ai(1)j(1), . . . , ai(n−1)j(n−1)).

Let us specialize further to the case j(1) = i(2), j(2) = i(3),. . . ,
j(n− 1) = i(n), but not necessarily j(n) = i(1). Then we get

kn(aj(n)i(2), ai(2)i(3), . . . , ai(n)j(n)) = kn(ai(n)i(1), ai(1)i(2), . . . , ai(n−1)i(n))

= kn(ai(1)i(2), ai(2)i(3), . . . , ai(n)i(1)).

Thus we see that we have equality between the cyclic cumulants
which might differ at one position in the index set (i(1), . . . , i(n))
(here at position n). Since by iteration and traciality we can change
that index set at any position, this implies that the cyclic cumulants
kn(ai(1)i(2), . . . , ai(n)i(1)) depend only on the value of n. But this gives,
according to Theorem 8.18, the assertion. �

Problem 7.2.12. Let a probability measure ν on R+ be given.
What is the minimal value of Φ∗(a, a∗) under the constraint that the
distribution of aa∗ is equal to the given ν? In which cases is this
minimal value actually attained?

Notation 7.2.13. Let ν be a probability measure on R+. Then we
call symmetric square root of ν the unique probability measure µ
on R which is symmetric (i.e. µ(S) = µ(−S) for each Borel set S ⊂ R)
and which is connected with ν via
(166)

µ(S) = ν({s2 | s ∈ S}) for each Borel set S such that S = −S.

Remark 7.2.14. For a ∈ A we put

(167) A :=

(
0 a
a∗ 0

)
∈ M2(A).

Then we have that A = A∗, A is even and the distribution of A2 is
equal to the distribution of a∗a (which is, by traciality, the same as
the distribution of aa∗). Thus we can reformulate the above problem
also in the following matrix form: For a given ν on R+ let µ be the
symmetric square root of ν. Determine the minimal value of Φ∗(a, a∗)
under the constraint that the matrix

A =

(
0 a
a∗ 0

)
has distribution µ. In which cases is this minimal value actually
achieved?
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Let us start again by deriving a lower bound for the Fisher infor-
mation Φ∗(a, a∗).

Proposition 7.2.15. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ and let a ∈ A be a random variable. Put

(168) A :=

(
0 a
a∗ 0

)
∈ M2(A).

Then we have

(169) Φ∗(a, a∗) ≥ 2Φ∗(A).

Proof. Again it suffices to consider the case where the left hand
side of our assertion is finite. So we can assume that a conjugate system
for {a, a∗} exists, which is automatically of the form {ξ, ξ∗} ∈ L2(a, a∗).
Let us put

Ξ :=

(
0 ξ∗

ξ 0

)
.

We claim that Ξ fulfills the conjugate relations for A. This can be seen
as follows: ϕ ⊗ tr2(ΞAn) = 0 if n is even, and in the case n = 2m + 1
we have

ϕ⊗ tr2(ΞA2m+1) =
1

2

(
ϕ(ξ∗a∗(aa∗)m) + ϕ(ξa(a∗a)m)

)
=

1

2

m∑
k=1

(
ϕ((a∗a)k−1) · ϕ((aa∗)m−k) + ϕ((aa∗)k−1) · ϕ((a∗a)m−k)

)
=

m∑
k=1

ϕ⊗ tr2(A
2(k−1)) · ϕ⊗ tr2(A

2(m−k)).

Thus we get

Φ∗(A) ≤ ‖X‖2 =
1

2
(‖ξ‖2 + ‖ξ∗‖2) =

1

2
Φ∗(a, a∗).

�

Next we want to show that the minimal value is actually achieved
for R-diagonal elements.

Proposition 7.2.16. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ and let a ∈ A be a random variable. Put

A :=

(
0 a
a∗ 0

)
.

Assume that a is R-diagonal. Then we have

(170) Φ∗(a, a∗) = 2Φ∗(A).
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Proof. As before we put

Ξ :=

(
0 ξ∗

ξ 0

)
.

We have to show that Ξ ∈ L2(A). Again we will do this with the help
of a special realization of the given situation. Namely, let x be an even
random variable with distribution µ (where µ is the symmetric square
root of the distribution of aa∗) and let u be a Haar unitary which is
∗-free from x. Then ã := ux is R-diagonal with the same ∗-distribution
as a. Thus it suffices to show the assertion for

Ã =

(
0 ã
ã∗ 0

)
and Ξ̃ :=

(
0 ξ̃∗

ξ̃ 0

)
,

where {ξ̃, ξ̃∗} is the conjugate system for {ã, ã∗}. Let ζ be the conju-
gate variable for x. We claim that the conjugate system for {ux, xu∗}
is given by {ζu∗, uζ}. This can be seen as follows: Let us denote
a1 := ux and a2 := xu∗. We will now consider kn+1(uζ, ai(1), . . . , ai(n))
for all possible choices of i(1), . . . , i(n) ∈ {1, 2}. If we write each ai

as a product of two terms, and use our formula for cumulants with
products as entries, we can argue as usual that only such π contribute
which connect ζ with the x from ai(1) and that actually ai(1) must be
of the form xu∗. But the summation over all possibilities for the re-
maining blocks of π corresponds exactly to the problem of calculating
kn(uu∗, ai(2), . . . , ai(n)), which is just δn1. Hence we have

kn+1(uζ, xu∗, ai(2), . . . , ai(n)) = k2(ζ, x) · kn(uu∗, ai(2), . . . , ai(n)) = δn1.

The conjugate relations for ζu∗ can be derived in the same way. Fur-
thermore, one has to observe that x even implies ϕ(ζx2m) = 0 for all
m ∈ N, and thus ζ lies in the L2-closure of the linear span of odd
powers of x. This, however, implies that ζu∗ and uζ are elements in
L2(ux, xu∗) = L2(a, a∗), and thus {ζu∗, uζ} is indeed the conjugate
system for {a, a∗}.
Thus we have

Ã =

(
u 0
0 1

) (
0 x
x 0

) (
u∗ 0
0 1

)
and

Ξ̃ =

(
u 0
0 1

) (
0 ζ
ζ 0

) (
u∗ 0
0 1

)
.

But the fact that ζ ∈ L2(x) implies (by using again the fact that only
odd powers of x are involved in ζ)(

0 ζ
ζ 0

)
∈ L2(

(
0 x
x 0

)
)
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and hence also Ξ̃ ∈ L2(Ã). �

Finally, we want to show that equality in Inequality (16) is, in the
case of finite Fisher information, indeed equivalent to being in the R-
diagonal situation.

Proposition 7.2.17. Let (A, ϕ) be a W ∗-probability space with a
faithful trace ϕ and let a ∈ A be a random variable. Put

A :=

(
0 a
a∗ 0

)
.

Assume that we have

(171) Φ∗(a, a∗) = 2Φ∗(A) < ∞.

Then a is R-diagonal.

Proof. Let {ξ, ξ∗} be the conjugate system for {a, a∗} and put

Ξ :=

(
0 ξ∗

ξ 0

)
.

Our assumption on equality in Equation (18) is equivalent to the fact
that Ξ ∈ L2(A). In particular, this implies that ΞA = AΞ or(

ξ∗a∗ 0
0 ξa

)
=

(
aξ 0
0 a∗ξ∗

)
.

We will now show that the equality ξ∗a∗ = aξ implies that a is R-
diagonal. We have for all choices of n ≥ 1 and a1, . . . , an ∈ {a, a∗}

kn+1(ξ
∗a∗, a1, . . . , an) = kn+1(aξ, a1, . . . , an).

Calculating both sides of this equation with our formula for cumulants
with products as entries we get

δana∗kn(a∗, a1, . . . , an−1) = δa1akn(a, a2, . . . , an).

Specifying a1 = an = a we get that

kn(a, a2, . . . , an−1, a) = 0

for arbitrary a2, . . . , an−1 ∈ {a, a∗}. By traciality, this just means that
non-alternating cumulants vanish, hence that a is R-diagonal. �
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CHAPTER 8

Infinitely divisible distributions

8.1. General free limit theorem

Theorem 8.1.1. (general free limit theorem) Let, for each N ∈
N, (AN , ϕN) be a probability space. Let I be an index set. Consider
a triangular field of random variables, i.e. for each i ∈ I, N ∈ N
and 1 ≤ r ≤ N we have a random variable a

(i)
N ;r ∈ AN . Assume

that, for each fixed N ∈ N, the sets {a(i)
N ;1}i∈I , . . . , {a(i)

N ;N}i∈I are free
and identically distributed and that furthermore for all n ≥ 1 and all
i(1), . . . , i(n) ∈ I the limits

(172) lim
N→∞

N · ϕN(a
i(1)
N ;r · · · a

i(n)
N ;r)

(which are independent of r by the assumption of identical distribution)
exist. Then we have

(173)
(
a

(i)
N ;1 + · · ·+ a

(i)
N ;N

)
i∈I

distr−→ (ai)i∈I ,

where the joint distribution of the family (ai)i∈I is determined by (n ≥
1, i(1), . . . , i(n) ∈ I)

(174) kn(ai(1), . . . , ai(n)) = lim
N→∞

N · ϕN(a
i(1)
N ;r · · · a

i(n)
N ;r).

Lemma 8.1.2. Let (AN , ϕN) be a sequence of probability spaces and

let, for each i ∈ I, a random variable a
(i)
N ∈ AN be given. Denote by

kN the free cumulants corresponding to ϕN . Then the following two
statements are equivalent:

(1) For each n ≥ 1 and each i(1), . . . , i(n) ∈ I the limit

(175) lim
N→∞

N · ϕN(a
i(1)
N · · · ai(n)

N )

exists.
(2) For each n ≥ 1 and each i(1), . . . , i(n) ∈ I the limit

(176) lim
N→∞

N · kN
n (a

i(1)
N · · · ai(n)

N )

exists.

Furthermore the corresponding limits agree in both cases.

125
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Proof. (2) =⇒ (1): We have

lim
N→∞

N · ϕN(a
i(1)
N · · · ai(n)

N ) = lim
N→∞

∑
π∈NC(n)

N · kπ[a
i(1)
N , . . . , a

i(n)
N ].

By assumption (2), all terms for π with more than one block tend to
zero and the term for π = 1n tends to a finite limit.
The other direction (1) =⇒ (2) is analogous. �

Proof. We write

(a
(i(1))
N ;1 + · · ·+ a

(i(N))
N ;N )n =

N∑
r(1),...,r(n)=1

ϕN(a
(i(1))
N ;r(1) + · · ·+ a

(i(n))
N ;r(n))

and observe that for fixed N a lot of terms in the sum give the same
contribution. Namely, the tuples (r(1), . . . , r(n)) and (r′(1), . . . , r′(n))
give the same contribution if the indices agree at the same places. As
in the case of the central limit theorem, we encode this relevant infor-
mation by a partition π (which might apriori be a crossing partition).
Let (r(1), . . . , r(n)) be an index-tuple corresponding to a fixed π. Then
we can write

ϕN(a
(i(1))
N ;r(1) + · · ·+ a

(i(n))
N ;r(n)) =

∑
σ∈NC(n)

kN
σ [a

(i(1))
N ;r + · · ·+ a

(i(n))
N ;r ]

(where the latter expression is independent of r). Note that because
elements belonging to different blocks of π are free the sum runs ef-
fectively only over such σ ∈ NC(n) with the property σ ≤ π. The
number of tuples (r(1), . . . , r(n)) corresponding to π is of order N |π|,
thus we get

lim
N→∞

(a
(i(1))
N ;1 + · · ·+ a

(i(n))
N ;N )n =

∑
π∈P(n)

∑
σ∈NC(n)

σ≤π

lim
N→∞

N |π|kN
σ [a

(i(1))
N ;r + · · ·+ a

(i(n))
N ;r ].

By Lemma ..., we get non-vanishing contributions exactly in those cases
where the power of N agrees with the number of factors from the
cumulants kσ. This means that |π| = |σ|, which can only be the case
if π itself is a non-crossing partition and σ = π. But this gives exactly
the assertion. �

This general limit theorem can be used to determine the cumulants
of creation, annihilation and gauge operators on a full Fock space.

Proposition 8.1.3. Let H be a Hilbert space and consider the C∗-
probability space (A(H), ϕH). Then the cumulants of the random vari-
ables l(f), l∗(g), Λ(T ) (f, g ∈ H, T ∈ B(H)) are of the following form:
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We have (n ≥ 2, f, g ∈ H, T1, . . . , Tn−2 ∈ B(H))

(177) kn(l∗(f), Λ(T1), . . . , Λ(Tn−2), l(g)) = 〈f, T1 . . . Tn−2g〉
and all other cumulants with arguments from the set {l(f) | f ∈ H} ∪
{l∗(g) | g ∈ H} ∪ {Λ(T ) | T ∈ B(H)} vanish.

Proof. For N ∈ N, put

HN := H⊕ · · · ⊕ H︸ ︷︷ ︸
N times

and (f, g ∈ H, T ∈ B(H))
Then it is easy to see that the random variables {l(f), l∗(g), Λ(T ) |

f, g ∈ H, T ∈ B(H)} in (A(H), ϕH) have the same joint distribution
as the random variables

{l(f ⊕ · · · ⊕ f√
N

), l∗(
g ⊕ · · · ⊕ g√

N
), Λ(T ⊕ · · · ⊕ T ) | f, g ∈ H, T ∈ B(H)}

in (A(HN), ϕHN
). The latter variables, however, are the sum of N free

random variables, the summands having the same joint distribution as
{lN(f), l∗N(g), ΛN(T ) | f, g ∈ H, T ∈ B(H)} in (A(H), ϕH), where

lN(f) :=
1√
N

l(f)

l∗N(g) :=
1√
N

l∗(g)

ΛN(T ) := Λ(T ).

Hence we know from our limit theorem that the cumulants
kn(a(1), . . . , a(n)) for a(i) ∈ {l(f), l∗(g), Λ(T ) | f, g ∈ H, T ∈ B(H)}
can also be calculated as

kn(a(1), . . . , a(n)) = lim
N→∞

N · ϕHN
(a

(1)
N · · · a(n)

N ).

This yields directly the assertion. �

8.2. Freely infinitely divisible distributions

Definition 8.2.1. Let µ be a probability measure on R with com-
pact support. We say that µ is infinitely divisible (in the free sense)
if, for each positive integer n, the convolution power µ�1/n is a proba-
bility measure.

Remark 8.2.2. Since µ�p/q = (µ�1/q)�p for positive integers p, q, it
follows that the rational convolution powers are probability measures.
By continuity, we get then also that all convolution powers µ�t for real
t > 0 are probability measure. Thus the property ’infinitely divisible’
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is equivalent to the existence of the convolution semi-group µ�t in the
class of probability measures for all t > 0.

Corollary 8.2.3. Let H be a Hilbert space and consider the C∗-
probability space (A(H), ϕH). For f ∈ H and T = T ∗ ∈ B(H) let a be
the self-adjoint operator

(178) a := l(f) + l∗(f) + Λ(T ).

Then the distribution of a is infinitely divisible.

Proof. This was shown in the proof of Prop. ... �

Notation 8.2.4. Let (tn)n≥1 be a sequence of complex numbers.
We say that (tn)n≥1 is conditionally positive definite if we have for
all r ∈ N and all α1, . . . , αr ∈ C that

∑r
n,m=1 αnᾱmtn+m ≥ 0.

Theorem 8.2.5. Let µ be a probability measure on R with compact
support and let kn := kµ

n be the free cumulants of µ. Then the following
two statements are equivalent:

(1) µ is infinitely divisible.
(2) The sequence (kn)n≥1 of free cumulants of µ is conditionally

positive definite.

Proof. (1)=⇒(2): Let aN be a self-adjoint random variable in
some C∗-probability space (AN , ϕN) which has distribution µ�1/N .
Then our limit theorem tells us that we get the cumulants of µ as

kn = lim
N→∞

ϕN(an
N).

Consider now α1, . . . , αr ∈ C. Then we have
k∑

n,m=1

αnᾱmkn+m = lim
N→∞

N ·
k∑

n,m=1

ϕN(αnᾱman+m
N )

= lim
N→∞

N · ϕN

(
(

k∑
n=1

αna
n) · (

k∑
m=1

αmam)∗
)

≥ 0,

because all ϕN are positive.
(2)=⇒(1): Denote by C0〈X〉 the polynomials in one variable X without
constant term, i.e.

C0〈X〉 := CX ⊕ CX2 ⊕ . . . .

We equip this vector space with an inner product by sesquilinear ex-
tension of

(179) 〈Xn, Xm〉 := kn+m (n, m ≥ 1).
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The assumption (2) on the sequence of cumulants yields that this is
indeed a non-negative sesquilinear form. Thus we get a Hilbert space
H after dividing out the kernel and completion. In the following we
will identify elements from C0〈X〉 with their images in H. We consider
now in the C∗-probability space (A(H), ϕH) the operator

(180) a := l(X) + l∗(X) + Λ(X) + k1 · 1,
where X in Λ(X) is considered as the multiplication operator with
X. By Corollary ..., we know that the distribution of a is infinitely
divisible. We claim that this distribution is the given µ. This follows
directly from Prop....: For n = 1, we have

k1(a) = k1;

for n = 2, we get

k2(a) = k2(l
∗(X), l(X)) = 〈X,X〉 = k2,

and for n > 2, we have

kn(a) = kn(l∗(X), Λ(X), . . . , Λ(X), l(X)〉 = 〈X, Λ(X)n−2X〉 = 〈X, Xn−1〉 = kn.

Thus all cumulants of a agree with the corresponding cumulants of µ
and hence both distributions coincide. �


