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1 Short History

The theory of operator spaces grew out of the analysis of completely positive and
completely bounded mappings. These maps were first studied on C∗-algebras, and later
on suitable subspaces of C∗-algebras. For such maps taking values in B(H) represen-
tation and extension theorems were proved [Sti55], [Arv69], [Haa80], [Wit81], [Pau82].
Many of the properties shared by completely positive mappings can be taken over to
the framework of operator systems [CE77]. Operator systems provide an abstract de-
scription of the order structure of selfadjoint unital subspaces of C∗-algebras. Paulsen’s
monograph [Pau86] presents many applications of the theory of completely bounded
maps to operator theory. The extension and representation theorems for completely
bounded maps show that subspaces of C∗-algebras carry an intrinsic metric structure
which is preserved by complete isometries. This structure has been characterized by
Ruan in terms of the axioms of an operator space [Rua88]. Just as the theory of C∗-
algebras can be viewed as noncommutative topology and the theory of von Neumann
algebras as noncommutative measure theory, one can think of the theory of operator
spaces as noncommutative functional analysis.

This program has been presented to the mathematical community by E.G. Effros
[Eff87] in his address to the ICM in 1986. The following survey articles give a fairly
complete account of the development of the theory: [CS89], [MP94], [Pis97].

2 Operator Spaces and Completely Bounded Maps

2.1 Basic facts

The spaces

LetX be a complex vector space. A matrix seminorm [EW97b] is a family of mappings
‖ · ‖ : Mn(X)→ lR, one on each matrix level1 Mn(X) = Mn⊗X for n ∈ IN, such that

(R1) ‖αxβ‖ ≤ ‖α‖‖x‖‖β‖ for all x ∈Mn(X), α ∈Mm,n, β ∈Mn,m

(R2) ‖x⊕ y‖ = max{‖x‖, ‖y‖} for all x ∈Mn(X), y ∈Mm(X).2

Then every one of these mappings ‖ · ‖ : Mn(X) → lR is a seminorm. If one (and
then every one) of them is definite, the operator space seminorm is called a matrix
norm.

1 The term matrix level is to be found for instance in []
2 It suffices to show one of the following two weaker conditions:

(R1′) ‖αxβ‖ ≤ ‖α‖‖x‖‖β‖ for all x ∈Mn(X), α ∈Mn, β ∈Mn,
(R2) ‖x⊕ y‖ = max{‖x‖, ‖y‖} for all x ∈Mn(X), y ∈Mm(X),

which is often found in the literature, or

(R1) ‖αxβ‖ ≤ ‖α‖‖x‖‖β‖ for all x ∈Mn(X), α ∈Mm,n, β ∈Mn,m,
(R2′) ‖x⊕ y‖ ≤ max{‖x‖, ‖y‖} for all x ∈Mn(X), y ∈Mm(X),

which seems to be appropriate in convexity theory.
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A matricially normed space is a complex vector space with a matrix norm. It
can be defined equivalently, and is usually defined in the literature, as a complex vector
space with a family of norms with (R1) and (R2) on its matrix levels.

If Mn(X) with this norm is complete for one n (and then for all n), then X is called
an operator space3([Rua88], cf. [Wit84a]).

For a matricially normed space (operator space) X the spaces Mn(X) are normed
spaces (Banach spaces).4 These are called the matrix levels of X (first matrix level,
second level . . . ).

The operator space norms on a fixed vector space X are partially ordered by the
pointwise order on each matrix level Mn(X). One says that a greater operator space
norm dominates a smaller one.

The mappings

A linear mapping Φ between vector spaces X and Y induces a linear mapping Φ(n) =
idMn ⊗ Φ ,

Φ(n) : Mn(X) → Mn(Y )
[xij ] 7→ [Φ(xij)] ,

the nth amplification of Φ.
For matricially normed X and Y , one defines

‖Φ‖cb := sup
{
‖Φ(n)‖

∣∣∣ n ∈ IN
}

.

Φ is called completely bounded if ‖Φ‖cb < ∞ and completely contractive if
‖Φ‖cb ≤ 1.

Among the complete contractions, the complete isometries and the complete quotient
mappings play a special role. Φ is called completely isometric if all Φ(n) are isometric,5

and a complete quotient mapping if all Φ(n) are quotient mappings.6

The set of all completely bounded mappings from X to Y is denoted by CB(X,Y )
[Pau86, Chap. 7].

An operator space X is called homogeneous if each bounded operator Φ ∈
B(M1(X)) is completely bounded with the same norm: Φ ∈ CB(X), and ‖Φ‖cb = ‖Φ‖
[Pis96].

3 In the literature, the terminology is not conseqent. We propose this distinction between matricially
normed space and operator space in analogy with normed space and Banach space.

4 In the literature, the normed space M1(X) usually is denoted also by X. We found that a more
distinctive notation is sometimes usefull.

5 I. e.: ‖x‖ = ‖Φ(n)(x)‖ for all n ∈ IN, x ∈Mn(X).
6 I. e.: ‖y‖ = inf{‖x‖ | x ∈ Φ(n)−1

(y)} for alle n ∈ IN and y ∈ Mn(Y ), or equivalently
Φ(n)(Ball◦Mn(X)) = Ball◦Mn(Y ) for all n ∈ IN, where Ball◦Mn(X) = {x ∈Mn(X) | ‖x‖ < 1}.
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Notations

Using the disjoint union

M(X) :=
⋃̇
n∈IN

Mn(X),

the notation becomes simpler.7

Examples

B(H) is an operator space by the identification Mn(B(H)) = B(Hn). Generally, each
C∗-algebra A is an operator space if Mn(A) is equipped with its unique C∗-norm. Closed
subspaces of C∗-algebras are called concrete operator spaces. Each concrete operator
space is an operator space. Conversely, by the theorem of Ruan, each operator space is
completely isometrically isomorphic to a concrete operator space.

Commutative C∗-algebras are homogeneous operator spaces.
The transposition Φ on l2(I) has norm ‖Φ‖ = 1, but ‖Φ‖cb = dim l2(I). If I is

infinite, then Φ is bounded, but not completely bounded.
If dimH ≥ 2, then B(H) is not homogeneous [Pau86, p. 6].

Smith’s lemma

For a matricially normed space X and a linear operator Φ : X →Mn, we have ‖Φ‖cb =
‖Φ(n)‖. In particular, Φ is completely bounded if and only if Φ(n) is bounded [Smi83,
Thm. 2.10].

Rectangular matrices

For a matricially normed space X, the spaces Mn,m(X) = Mn,m ⊗X of n×m-matrices
over X are normed by adding zeros so that one obtains a square matrix, no matter of
which size.

Then

Mn,m(B(H)) = B(Hm,Hn)

holds isometrically.
7 The norms on the matrix levels Mn(X) are then one mapping M(X) → lR. The amplifications of

Φ : X → Y can be described as one mapping Φ : M(X)→M(Y ). We have

‖Φ‖cb = sup{‖Φ(x)‖ | x ∈M(X), ‖x‖ ≤ 1}.

Φ is completely isometric if ‖x‖ = ‖Φ(x)‖ for all x ∈ M(X), and Φ is a complete quotient mapping
if ‖y‖ = inf{‖x‖ | x ∈ Φ−1(y)} for all y ∈ M(Y ) or Φ(Ball◦X) = Ball◦Y , where Ball◦X = {x ∈
M(X) | ‖x‖ < 1}.
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2.2 Ruan’s theorem

Each concrete operator space is an operator space. The converse is given by
Ruan’s theorem: Each (abstract) operator space is completely isometrically isomorphic
to a concrete operator space [Rua88].
More concretely, for a matricially normed space X let Sn be the set of all complete
contractions from X to Mn. Then the mapping

Φ : X →
⊕
n∈IN

⊕
Φ∈Sn

Mn

x 7→ (Φ(x))Φ

is a completely isometric embedding of X into a C∗-algebra [ER93].
A proof relies on the separation theorem for absolutely matrix convex sets.
This theorem can be used to show that many constructions with concrete operator

spaces yield again concrete operator spaces (up to complete isometry).

2.3 Elementary constructions

Subspaces and quotients

Let X be a matricially normed space and X0 ⊂ X a linear subspace. Then Mn(X0) ⊂
Mn(X), and X0 together with the restriction of the operator space norm again is a
matricially normed space. The embedding X0 ↪→ X is completely isometric. If X is an
operator space and X0 ⊂ X is a closed subspace, then Mn(X0) ⊂Mn(X) is closed and
X0 is an operator space.

Algebraically we have Mn(X/X0) = Mn(X)/Mn(X0). If X0 is closed, then X/X0

together with the quotient norm on each matrix level is matricially normed (an operator
space if X is one). The quotient mapping X → X/X0 is a complete quotient mapping.

More generally, a subspace of a matricially normed space (operator space) X is
a matricially normed space (operator space) Y together with a completely isometric
operator Y → X. A quotient of X is a matricially normed space (operator space) Y
together with a complete quotient mapping X → Y .

Matrices over an operator space

The vector space Mp(X) of matrices over a matricially normed space X itself is matri-
cially normed in a natural manner: The norm on the nth level Mn(Mp(X)) is given by
the identification

Mn(Mp(X)) = Mnp(X)

[BP91, p. 265]. We8 write

lMp(X)
8 In the literature, the symbol Mp(X) stands for both the operator space with first matrix level

Mp(X) and for the pth level of the operator space X. We found that the distinction between lMp(X)
and Mp(X) clarifies for instance the definition of the operator space structure of CB(X,Y ).
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for Mp(X) with this operator space structure. In particular,

M1(lMp(X)) = Mp(X)

holds isometrically. Analogously Mp,q(X) becomes a matricially normed space lMp,q(X)
by the identification

Mn(Mp,q(X)) = Mnp,nq(X).

By adding zeros it is a subspace of lMr(X) for r ≥ p, q.
Examples: For a C∗-algebra A, lMp(A) is the C∗-Algebra of p× p-matrices over A

with its natural operator space structure.
The Banach space Mp(A) is the first matrix level of the operator space lMp(A).
The complex numbers have a unique operator space structure which on the first

matrix level is isometric to Cl , and for this Mp(Cl ) = Mp holds isometrically. We write

lMp := lMp(Cl ).

Then lMp always stands for the C∗-algebra of p × p-matrices with its operator space
structure. The Banach space Mp is the first matrix level of the operator space lMp.

Columns and rows of an operator space

The space Xp of p-tupels over an operator space X can be made into an operator space
for instance by reading the p-tupels as p × 1- or as 1 × p-matrices. This leads to the
frequently used columns and rows of an operator space X:

Cp(X) := lMp,1(X) and Rp(X) := lM1,p(X).

The first matrix level of these spaces are

M1(Cp(X)) = Mp,1(X) and M1(Rp(X)) = M1,p(X), respectively.

If X 6= {0}, the spaces Cp(X) and Rp(X) are not completely isometric. In general even
the first matrix levels Mp,1(X) and M1,p(X) are not isometric.
Cp := Cp(Cl ) is called the p-dimensional column space and Rp := Rp(Cl ) the

p-dimensional row space.
The first matrix levels of Cp and Rp are isometric to lp2, but Cp and Rp are not

completely isometric.

2.4 The space CB(X, Y )

Let X and Y be matricially normed spaces. A matrix [Tij ] ∈Mn(CB(X,Y )) determines
a completely bounded operator

T : X → lMn(Y )
x 7→ [Tij(x)] .



What are operator spaces ? January 7, 2001 http://www.math.uni-sb.de/∼wittck/ 8

Defining ‖[Tij ]‖ = ‖T‖cb, CB(X,Y ) becomes a matricially normed space. It is an
operator space, if Y is one. The equation

lMp(CB(X,Y )) cb= CB(X, lMp(Y ))

holds completely isometrically.

2.5 The dual

The dual9 of a matricially normed space X is defined as X∗ = CB(X,Cl ) [Ble92a].10

Its first matrix level is the dual of the first matrix level of X: M1(X∗) = (M1(X))∗.
The canonical embedding X ↪→ X∗∗ is completely isometric [BP91, Thm. 2.11].

Some formulae

For matricially normed spaces X and Y , m ∈ IN, y ∈ Mm(Y ) and T ∈ CB(X,Y ) we
have

‖y‖ = sup {‖Φ(y)‖ | n ∈ IN, Φ ∈ CB(Y, lMn), ‖Φ‖cb ≤ 1}

and

‖T‖cb = sup{‖Φ(n) ◦ T‖cb | n ∈ IN, Φ ∈ CB(Y, lMn), ‖Φ‖cb ≤ 1}.

A matrix [Tij ] ∈Mn(X∗) defines an operator

T : Mn(X) → Cl

[xij ] 7→
∑
i,j

Tijxij .

Thus we have an algebraic identification of Mn(X∗) and Mn(X)∗ and further of Mn(X∗∗)
and Mn(X)∗∗. The latter even is a complete isometry ([Ble92b, Cor. 2.14]):

lMn(X∗∗) cb= lMn(X)∗∗.

The isometry on the first matrix level is shown in [Ble92a, Thm. 2.5]. This already
implies11 the complete isometry. More generally we have12

CB(X∗, lMn(Y )) cb= CB(lMn(X)∗, Y ).
9In the literature, this dual was originally called standard dual [Ble92a].

10 The norm of a matricially normed space X is given by the unit ball BallX ⊂ M(X). Here,
BallX∗ = {Φ : X →Mn | n ∈ IN, Φ completely contractive}.

11

Mk(lMn(X)∗∗) = Mk(Mn(X))∗∗ = Mkn(X)∗∗ = Mkn(X∗∗) = Mk(lMn(X∗∗)).

12 This follows from lMn(X∗∗)
cb
= lMn(X)∗∗ and the above mentioned formula

‖T‖cb = sup{‖Φ(n) ◦ T‖cb | n ∈ IN, Φ ∈ CB(Y, lMn), ‖Φ‖cb ≤ 1}.
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X is called reflexive, if X cb= X∗∗. An operator space X is reflexive if and only if
its first matrix level M1(X) is a reflexive Banach space.

The adjoint operator

For T ∈ CB(X,Y ), the adjoint operator T ∗ is defined as usual. We have: T ∗ ∈
CB(Y ∗, X∗), and ‖T‖cb = ‖T ∗‖cb. The mapping

∗ : CB(X,Y ) → CB(Y ∗, X∗)
T 7→ T ∗

even is completely isometric [Ble92b, Lemma 1.1].13

T ∗ is a complete quotient mapping if and only if T is completely isometric; T ∗ is
completely isometric if T is a complete quotient mapping. Especially for a subspace
X0 ⊂ X we have [Ble92a]:

X∗0
cb= X∗/X⊥0

and, if X0 is closed,

(X/X0)∗ cb= X⊥0 .

2.6 Direct sums

∞-direct sums

Let I be an index set and Xi for each i ∈ I an operator space. Then there are an
operator space X and complete contractions πi : X → Xi with the following universal
mapping property : For each family of complete contractions ϕi : Z → Xi there is exactly
one complete contraction ϕ : Z → X such that ϕi = πi ◦ ϕ for all i. X is called ∞-
direct sum of the Xi and is denoted by

⊕
∞(Xi | i ∈ I). The πi are complete quotient

mappings.
One can construct a ∞-direct sum for instance as the linear subspace X =

{(xi) ∈
∏
i∈I Xi | sup{‖xi‖ | i ∈ I} < ∞} of the cartesian product of the

Xi, the πi being the projections on the components. We have Mn(X) = {(xi) ∈∏
i∈IMn(Xi) | sup{‖xi‖ | i ∈ I} < ∞}, and the operator space norm is given by
‖(xi)‖ = sup{‖xi‖ | i ∈ I}.

13 The isometry on the matrix levels follows from the isometry on the first matrix level using the

above mentioned formula CB(lMn(X)∗, Y )
cb
= CB(X∗, lMn(Y )):

Mn(CB(X,Y )) = M1(CB(X, lMn(Y )))

↪→ M1(CB(lMn(Y )∗, X∗))

= M1(CB(Y ∗, lMn(X∗)))

= Mn(CB(Y ∗, X∗)).
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1-direct sums

Let I be an index set and Xi for each i ∈ I an operator space. Then there are an
operator space X and complete contractions ιi : Xi → X with the following universal
mapping property : For each family of complete contractions ϕi : Xi → Z there is exactly
one complete contraction ϕ : X → Z such that ϕi = ϕ ◦ ιi for all i. X is called 1-direct
sum of the Xi and is denoted by

⊕
1(Xi | i ∈ I).The ιi are completely isometric.

One can construct a 1-direct sum for instance as the closure of the sums of the
images of the mappings Xi ↪→ X∗∗i

π∗i→ (
⊕
∞(X∗i | i ∈ I))∗, where πi is the projection

from
⊕
∞(X∗i | i ∈ I) onto X∗i .

The equation

(
⊕

1

(Xi | i ∈ I))∗ =
⊕
∞

(X∗i | i ∈ I)

holds isometrically.

p-direct sums

p-direct sums of operator spaces for 1 < p <∞ can be obtained by interpolation between
the ∞- and the 1-direct sum.

2.7 MIN and MAX

Let E be a normed space. Among all operator space norms on E which coincide on the
first matrix level with the given norm, there is a greatest and a smallest. The matricially
normed spaces given by these are called MAX (E) and MIN (E). They are characterized
by the following universal mapping property :14 For a matricially normed space X,

M1(CB(MAX (E), X)) = B(E,M1(X))

and

M1(CB(X,MIN (E))) = B(M1(X), E)

holds isometrically.
We have [Ble92a]

MIN (E)∗ cb= MAX (E∗),

MAX (E)∗ cb= MIN (E∗).

For dim(E) =∞,
idE : MIN (E)→ MAX (E)

14 MAX is the left adjoint and MIN the right adjoint of the forgetfull functor which maps an operator
space X to the Banach space M1(X).



What are operator spaces ? January 7, 2001 http://www.math.uni-sb.de/∼wittck/ 11

is not completely bounded[Pau92, Cor. 2.13].15

Subspaces of MIN -spaces are MIN -spaces: For each isometric mapping ϕ : E0 → E,
the mapping ϕ : MIN (E0)→ MIN (E) is completely isometric.

Quotients of MAX -spaces are MAX -spaces: For each quotient mapping ϕ : E → E0,
the mapping ϕ : MAX (E)→ MAX (E0) is a complete quotient mapping.

Construction of MIN :

For a commutative C∗-algebra A = C(K), each bounded linear mapping Φ : M1(X)→ A
is automatically completely bounded with ‖Φ‖cb = ‖Φ‖ [Loe75].16

Each normed space E is isometric to a subspace of the commutative C∗-algebra
l∞(Ball(E∗)). Thus the operator space MIN (E) is given as a subspace of l∞(Ball(E∗)).

For x ∈Mn(MIN (E)) we have

‖x‖ = sup
{
‖f (n)(x)‖

∣∣∣ f ∈ Ball(E∗)
}

.

The unit ball of MIN (E) is given as the absolute matrix polar of Ball(E∗).

Construction of MAX :

For a index set I, l1(I) = c0(I)∗. l1(I) is an operator space as dual of the commutative
C∗-algebra c0(I), and each bounded linear mapping Φ : l1(I)→M1(X) is automatically
completely bounded with ‖Φ‖cb = ‖Φ‖.17

Each Banach space18 E is isometric to a quotient of l1(Ball(E)). Thus the operator
space MAX (E) is given as a quotient of l1(Ball(E)).

For x ∈Mn(MAX (E)) we have

‖x‖ = sup{‖ϕ(n)(x)‖ | n ∈ IN, ϕ : E →Mn, ‖ϕ‖ ≤ 1}.

The unit ball of MAX (E) is given as the absolute matrix bipolar of Ball(E).

2.8 Injective operator spaces

2.8.1 Definition

A matricially normed space X is called injective if completely bounded mappings into
X can be extended with the same norm. More exactly:

For all matricially normed spaces Y0 and Y , each complete contraction ϕ : Y0 → X
and each complete isometry ι : Y0 → Y there is a complete contraction ϕ̃ : Y → X such
that ϕ̃ι = ϕ.

15 Paulsen uses in his proof a false estimation for the projection constant of the finite dimensional
Hilbert spaces; the converse estimation is correct [Woj91, p. 120], but here useless. The gap can be
filled [Lam97, Thm. 2.2.15] using the famous theorem of Kadets-Snobar: The projection constant of an
n-dimensional Banach space is less or equal than

√
n [KS71].

16I. e. A is a MIN -space.
17I. e. l1(I) is a MAX -space.
18 A similar construction is possible for normed spaces.
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It suffices to consider only operator spaces Y0 and Y . Injective matricially normed
spaces are automatically comlete, so they are also called injective operator spaces.

2.8.2 Examples and elementary constructions

B(H) is injective [].
Completely contractively projectable subspaces of injective operator spaces are in-

jective.
L∞-direct sums of injective operator spaces are injective.
Injective operator systems, injective C∗-algebras and injective von Neumann-

algebras are injective operator spaces.

2.8.3 Characterizations

For a matricially normed space X the following conditions are equivalent:
a) X is injective.
b) For each complete isometry ι : X → Z there is a complete contraction π : Z → X

such that πι = idX . I. e. X is completely contractively projectable in each space
containing it as a subspace.

c) For each complete isometry ι : X → Z and each complete contraction ϕ : X →
Y there is a complete contraction ϕ̃ : Z → Y such that ϕ̃ι = ϕ. I. e. Complete
contractions from X can be extended completely contractively to any space conaining
X as a subspace.19

d) X is completely isometric to a completely contractively projectable subspace of
B(H) for some Hilbert space H.

e) X is completely isometric to pAq, where A is an injective C∗-algebra and p and
q are projections in A.[]

Robertson[] characterized the infinite dimensional injective subspaces of B(l2) up
to isometry (not complete isometry!). They are B(l2), l∞, l2, l∞ ⊕ l2 and

⊕L∞

n∈IN l2.
(Countable L∞-direct sums of such are again comletely isometric to one of these.) If an
injective subspace of B(l2) is isometric to l2, it is completely isometric to Rl2 or Cl2 .[]

Injective envelopes

Let X be a matricially normed space.
An operator space Z together with a completely isometric mapping ι : X → Z is

called an injective envelope of X if Z is injective, and if idZ is the unique extension
of ι onto Z.

This is the case if and only if Z is the only injective subspace of Z which contains
the image of X.[]

Each matricially normed space has an injective envelope. It is unique up to a canon-
ical isomorphism.

19Equivalently: Completely bounded mappings from X can be extended with the same norm.
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A matricially normed space Z together with a completely isometric mapping ι :
X → Z is called an essential extension of X if a complete contraction ϕ : Z → Y is
completely isometric if only ϕ ◦ ι is completely isometric.

ι : X → Z is an injective envelope if and only if Z is injective and ι : X → Z is an
essential extension.

Every injective envelope ι : X → Z is a maximal essential extension, i. e. for each
essential extension ι̃ : X → Z̃, there is a completely isometric mapping ϕ : Z̃ → Z such
that ϕ ◦ ι̃ = ι.

3 Operator Systems and Completely Positive Maps

3.1 Definitions

Let V be a complex vector space. An involution on V is a conjugate linear map
∗ : V → V , v 7→ v∗, such that v∗∗ = v. A complex vector space is an involutive vector
space if there is an involution on V . Let V be an involutive vector space. Then Vsa is
the real vector space of selfadjoint elements of V , i.e. those elements of V , such that
v∗ = v. An involutive vector space is an ordered vector space if there is a proper cone20

V + ⊂ Vsa. The elements of V + are called positive and there is an order on Vsa defined
by v ≤ w if w − v ∈ V + for v, w ∈ Vsa.

An element 1l ∈ V + is an order unit if for any v ∈ Vsa there is a real number t > 0,
such that −t1l ≤ v ≤ t1l. If V+ has an order unit then Vsa = V+ − V+.

The cone V + is called Archimedian if w ∈ −V + whenever there exists v ∈ Vsa such
that tw ≤ v for all t > 0. If there is an order unit 1l then V+ is Archimedian if w ∈ −V +

whenever tw ≤ 1l for all t > 0.
Let V be an ordered vector space. If V+ is Archimedian and contains a distinguished

order unit 1l then (V, 1l) is called an ordered unit space.
Let V,W be involutive vector spaces. We define an involution ? on the space L(V,W )

of all linear mappings from V →W by ϕ?(v) = ϕ(v∗)∗, ϕ ∈ L(V,W ). If moreover V,W
are ordered vector spaces, then ϕ is positive if ϕ? = ϕ and ϕ(V +) ⊂W+. If (V, 1l) and
(W, 1l′) are ordered unit spaces a positve map ϕ : V →W is called unital if ϕ(1l) = 1l′.

Let V be an involutive vector space. ThenMn(V ) is also an involutive vector space by
[vij ]∗ = [v∗ji]. V is a matrix ordered vector space if there are proper cones Mn(V )+ ⊂
Mn(V )sa for all n ∈ IN, such that α∗Mp(V )+α ⊂Mq(V )+ for all α ∈Mpq and p, q ∈ IN
holds21. This means that (Mn(V )+)n∈IN is a matrix cone.

Let V,W be matrix ordered vector spaces. A linear mapping φ : V → W is
completely positive if φ(n) : Mn(V )→Mn(W ) is positive for all n ∈ IN. A complete
order isomorphism22 from V to W is a completely positive map from V → W that
is bijective, such that the inverse map is completely positive.

20A cone K is a subset of a vector space, such that K + K ⊂ K and lR+K ⊂ K. If moreover
(−K) ∩K = {0} holds, K is a proper cone.

21If V + = M1(V )+ is a proper cone, by the matrix condition all the cones Mn(V )+ will be proper.
22Note that some authors don’t include surjectivity in the definition.
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The well-known Stinespring theorem for completely positive maps reads [Pau86,
Theorem 4.1]:

Let A be a unital C∗-algebra and let H be a Hilbert space. If ψ : A → B(H)
is completely positive then there are a Hilbert space Hπ, a unital ∗-homomorphism
π : A → B(Hπ) and a linear mapping V : H → Hπ, such that ψ(a) = V ∗π(a)V for all
a ∈ A.

Let V be an involutive vector space. Then V is called an operator system if it is a
matrix ordered ordered unit space, such that Mn(V )+ is Archimedian for all n ∈ IN. In
this case Mn(V ) is an ordered unit space with order unit 1ln = 1l⊗ idMn for all n ∈ IN,
where 1l ∈ V+ is the distinguished order unit of V and idMn is the unit of lMn.

Example
Let H be a Hilbert space. Then, obviously, B(H) is an ordered unit space with

order unit the identity operator. Using the identification Mn(B(H)) = B(Hn) we let
Mn(B(H))+ = B(Hn)+. So we see that B(H) is an operator system.

Let L be an operator system. Then any subspace S ⊂ L that is selfadjoint, i.e.
S∗ ⊂ S, and contains the order unit of L is again an operator system with the induced
matrix order. So unital C∗-algebras and selfadjoint subspaces of unital C∗-algebras
containig the identity are operator systems.

Note that a unital complete order isomorphism between unital C∗-algebras must be
a ∗-isomorphism [Cho74, Corollary 3.2]. So unital C∗-algebras are completely charac-
terized by their matrix order. They are not characterized by their order. For instance
take the opposite algebra Aop of a unital C∗-algebra A. Then A+ = Aop+ but A and Aop

are not ∗-isomorphic. Obviously M2(A)+ 6= M2(Aop)+.

3.2 Characterization

Choi and Effros [CE77, Theorem 4.4] showed the following characterization theorem:
Let V be an operator system. Then there are a Hilbert space H and a unital complete

order isomorphism from V to a selfadjoint subspace of B(H).
A unital complete order isomorphism is obtained by

Φ : V →
⊕
n∈IN

⊕
ϕ∈Sn

lMn

x 7→ (ϕ(x))ϕ,

where Sn is the set of all unital completely positive maps ϕ : V → lMn.

3.3 Matrix order unit norm

Let L be an operator system. We define norms by

‖x‖n := inf
{
r ∈ lR|

(
r1ln x
x∗ r1ln

)
∈M2n(L)+

}
(1)
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for all n ∈ IN and x ∈Mn(L). With these norms L becomes an operator space.
If Φ is any unital completely positve embedding from L into some B(H) (cf. section

3.2) then ‖Φ(n)(x)‖ = ‖x‖n for all n ∈ IN and x ∈ Mn(L). This holds because ‖y‖ ≤ 1
if and only if

0 ≤
(

1l y
y∗ 1l

)
for all y ∈ B(H) and all Hilbert spaces H.

Let L and S be operator systems and let ψ : L → S be completely positive. We
supply L and S with the norms from equation (1). Then ψ is completely bounded and
‖ψ(1l)‖ = ‖ψ‖ = ‖ψ‖cb (cf. [Pau86, Proposition 3.5]).

3.4 Injective operator systems

An operator system R is called injectiv if given operator systems N ⊂ M each com-
pletely positive map ϕ : N → R has a completely positive extension ψ : M → R.

If an operator system R is injective then there is a unital complete order isomorphism
from R onto a unital C∗-algebra. The latter is conditionally complete23. (cf. [CE77,
Theorem 3.1])

4 Hilbertian Operator Spaces

4.1 The spaces

An operator space X is called hilbertian, if M1(X) is a Hilbert space H. An operator
space X is called homogeneous, if each bounded operator T : M1(X) → M1(X) is
completely bounded and ‖T‖cb = ‖T‖ [Pis96].

Examples The minimal hilbertian operator space MINH := MIN (H) and the
maximal hilbertian operator space MAXH := MAX (H), the column Hilbert space
CH := B(Cl ,H) and the row Hilbert space RH := B(H,Cl ) are homogeneous hilber-
tian operator spaces on the Hilbert space H.

Furthermore, for two Hilbert spaces H and K, we have completely isometric isomor-
phisms [ER91, Thm. 4.1] [Ble92b, Prop. 2.2]

CB(CH, CK) cb= B(H,K) and CB(RH,RK) cb= B(K,H).

These spaces satisfy the following dualities [Ble92b, Prop. 2.2] [Ble92a, Cor. 2.8]:

C∗H
cb= RH

R∗H
cb= CH

MIN ∗H
cb= MAXH

MAX ∗H
cb= MINH.

23An ordered vector space V is conditionally complete if any upward directed subset of Vsa that is
bounded above has a supremum in Vsa.
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For each Hilbert spaceH there is a unique completely self dual homogeneous operator
space, the operator Hilbert space OHH [Pis96, §1]:

OH ∗H
cb= OHH.

The intersection and the sum of two homogeneous hilbertian operator spaces are
again homogeneous hilbertian operator spaces [Pis96].

4.2 The morphisms

The space CB(X,Y ) of completely bounded mappings between two homogeneous hilber-
tian operator spaces X,Y enjoys the following properties (cf. [MP95, Prop. 1.2]):

1. (CB(X,Y ), ‖ · ‖cb) is a Banach space.

2. ‖ATB‖cb ≤ ‖A‖‖T‖cb‖B‖ for all A, B ∈ B(H), T ∈ CB(X,Y ).

3. ‖T‖cb = ‖T‖ for all T with rank(T ) = 1.

Consequently, CB(X,Y ) is a symmetrically normed ideal (s.n. ideal) in the sense of
Calkin, Schatten [Sch70] and Gohberg [GK69].

The classical examples for s.n. ideals are the famous Schatten ideals:

Sp := {T ∈ B(H) | the sequence of singular values of T is in `p } (1 ≤ p <∞).

Many, but not all s.n. ideals can be represented as spaces of completely bounded maps
between suitable homogeneous hilbertian operator spaces.

The first result in this direction was

CB(RH, CH) = S2(H) = HS (H)

isometrically [ER91, Cor. 4.5].
We have the following characterizations isometrically or only isomorphically (')

[Mat94], [MP95], [Lam97]:

CB(↓,→) MINH CH OHH RH MAXH
MINH B(H) HS (H) ' HS (H) HS (H) ' N(H)
CH B(H) B(H) S4(H) HS (H) HS (H)
OHH B(H) S4(H) B(H) S4(H) ' HS (H)
RH B(H) HS (H) S4(H) B(H) HS (H)

MAXH B(H) B(H) B(H) B(H) B(H)

As a unique completely isometric isomorphism, we get CB(CH) cb= B(H) (cf. [Ble95,
Thm. 3.4]). The result

CB(MINH,MAXH) ' N(H)

is of special interest. Here, we have a new quite natural norm on the nuclear operators,
which is not equal to the canonical one.
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Even in the finite dimensional case, we only know

n

2
≤ ‖id : MIN (`n2 )→ MAX (`n2 )‖cb ≤

n√
2

[Pau92, Thm. 2.16]. To compute the exact constant is still an open problem. Paulsen
conjectured that the upper bound is sharp [Pau92, p. 121].

Let E be a Banach space and H a Hilbert space. An operator T ∈ B(E,H) is
completely bounded from MIN (E) to CH, if and only if T is 2-summing [Pie67] from E
to H (cf. [ER91, Thm. 5.7]):

M1(CB(MIN (E), CH)) = Π2(E,H)

with ‖T‖cb =π2(T ).

4.3 The column Hilbert space CH
For the Hilbert space H = `2, we can realize the column Hilbert space CH as a column,
by the embedding

H ↪→ B(H),
...
ξi
...
...

 7→


... 0 · · · 0 · · ·

ξi
...

...
... 0 · · · 0
...

...
. . .

 .

Via this identification, C`n2 is the n-dimensional column space Cn.
CH is a homogeneous hilbertian operator space: All bounded maps on H are com-

pletely bounded with the same norm on CH. Actually we have CB(CH) cb= B(H) com-
pletely isometrically [ER91, Thm. 4.1].
CH is a injective operator space (cf. [Rob91]).

Tensor products

Let X be an operator space. We have complete isometries [ER91, Thm. 4.3 (a)(c)]
[Ble92b, Prop. 2.3 (i)(ii)]:

CH ⊗h X
cb= CH

∨
⊗ X

and
X ⊗h CH

cb= X
∧
⊗ CH.

Herein, ⊗h is the Haagerup tensor product,
∨
⊗ the injective tensor product and

∧
⊗ the

projective tensor product.
For Hilbert spaces H and K, we have complete isometries [ER91, Cor. 4.4.(a)]

[Ble92b, Prop. 2.3(iv)]

CH ⊗h CK
cb= CH

∨
⊗ CK

cb= CH
∧
⊗ CK

cb= CH⊗2K.
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4.3.1 Characterizations

In connection with the column Hilbert space, it is enough to calculate the row norm

‖T‖row := sup
n∈IN

sup
‖[x1...xn]‖M1,n(X)≤1

‖[Tx1 . . . Txn]‖M1,n(Y )

or the column norm

‖T‖col := sup
n∈IN

sup∥∥∥∥∥∥∥
 x1...
xn


∥∥∥∥∥∥∥
Mn,1(Y )

≤1

∥∥∥∥∥∥∥
 Tx1

...
Txn


∥∥∥∥∥∥∥
Mn,1(X)

of an operator T , instead of the cb-norm, to ascertain the complete boundedness.
Let X be an operator space and S : CH → X bzw. T : X → CH. Then we have

‖S‖cb = ‖S‖row resp. ‖T‖cb = ‖T‖col ([Mat94, Prop. 4] resp. [Mat94, Prop. 2]).
The column Hilbert space is characterized as follows,

(A) as a hilbertian operator space [Mat94, Thm. 8]:

For an operator space X on an Hilbert space H, we have the following equivalences:

1. X is completely isometric to CH.

2. For all operator spaces Y and all T : X → Y we have ‖T‖cb = ‖T‖row, and
for all S : Y → X we have ‖S‖ = ‖S‖row. For all operator spaces Y and
all T : Y → X we have ‖T‖cb = ‖T‖col, and for all S : X → Y we have
‖S‖ = ‖S‖col.

3. X coincides with the maximal hilbertian operator space on columns and with
the minimal hilbertian operator space on rows. That means isometrically

Mn,1(X) = Mn,1(MAX (H))
M1,n(X) = M1,n(MIN (H))

(B) as an operator space: For an operator space X TFAE:

1. There is a Hilbert space H, such that X cb= CH completely isometrically.

2. We have
Mn,1(X) = ⊕2M1(X)

and
M1,n(X) = M1,n(MIN (M1(X)))

isometrically. [Mat94, Thm. 10].

3. CB(X) with the composition as multiplication is an operator algebra [Ble95,
Thm. 3.4].
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4.4 Column Hilbert space factorization

Let X, Y be operator spaces. We say that a linear map T : M1(X) → M1(Y ) factors
through a column Hilbert space, if there is a Hilbert space H and completely bounded
maps T2 : X → CH, T1 : CH → Y with T = T1 ◦ T2. We define

γ2(T ) := inf ‖T1‖cb‖T2‖cb,

where the infimum runs over all possible factorizations. If no such factorisation exists
we say γ2(T ) := ∞. Γ2(X,Y ) is the Banach space of all linear maps T : X → Y with
γ2(T ) <∞ [ER91, Chap. 5],[Ble92b, p. 83].

Let X1 and Y1 be operator spaces and T ∈ Γ2(X,Y ), S ∈ CB(X1, X), R ∈
CB(Y, Y1). Then we have the CB ideal property

γ2(RTS) ≤ ‖R‖cbγ2(T )‖S‖cb.

We interpret a matrix T = [Tij ] ∈ Mn(Γ2(X,Y )) as a mapping from X to Mn(Y ):
[Tij ](x) := [Tij(x)]. T has a factorization in completely bounded mappings

X
T2→M1,n(CH) T1→Mn(Y ).

Again, we define
γ2(T ) := inf ‖T1‖cb‖T2‖cb,

where the infimum is taken over all factorizations. So we get an operator space structure
on Γ2(X,Y ) [ER91, Cor. 5.4].

Let X,Y be operator spaces and Y0 an operator subspace of Y . Then the inclusion
Γ2(X,Y0) ↪→ Γ2(X,Y ) is completely isometric [ER91, Prop. 5.2].

Let X, Y be operator spaces. It is well known that every linear map

T : X → Y ∗

defines a linear functional
fT : Y ⊗X → Cl

via
〈fT , y ⊗ x〉 := 〈T (x), y〉.

This identification determines the complete isometry [ER91, Thm. 5.3] [Ble92b, Thm.
2.11]

Γ2(X,Y ∗) cb= (Y ⊗h X)∗.

Let X, Y , Z be operator spaces. We get a complete isometry

Γ2(Y ⊗h X,Z) cb= Γ2(X,Γ2(Y, Z))

via the mapping

T 7→ T̃

T̃ (x)(y) := T (y ⊗ x)

[ER91, Cor. 5.5].
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5 Multiplicative Structures

For an abstract C∗-algebra the GNS construction provides a concrete representation
of its elements as bounded operators on a Hilbert space. For non-selfadjoint algebras
there is, hitherto, no analogue in the framework of classical functional analysis. But
endowed with an operator space structure (which is compatible with the multiplica-
tive structure), these non-selfadjoint algebras do have a representation in some B(H)
(theorem of Ruan type for operator algebras).

The so-called operator modules (over algebras) are also characterized by
Axioms of Ruan type; here, matrices whose entries are algebra elements
take the place of the scalar ones. The corresponding morphisms are the
completely bounded module homomorphisms, the most important properties of which

make their appearance in Representation, Decomposition and Extension Theorems.

5.1 Operator modules

Let A1, A2 ⊂ B(H) be C∗-algebras with 1lH ∈ A1, A2. A closed subspace X of B(H) is
called a concrete (A1, A2)-operator module , if A1X ⊂ X and XA2 ⊂ X. Whenever
A1 = A2 = A, we call X a concrete A-operator bimodule (cf. [ER88, p. 137]).

In analogy to the operator space or the operator algebra situation, there is an
abstract characterization of operator modules (cf. [Pop00, Déf. 4.1]):
Consider, as above, two unital C∗-algebras A1, A2 ⊂ B(H) with 1lH ∈ A1, A2, and an
(algebraic) (A1, A2)-module X. We call X an abstract (A1, A2)-operator module, if it
carries an operator space structure satisfying the following axioms (of Ruan type):

(R1) ‖axb‖m ≤ ‖a‖‖x‖m‖b‖

(R2)
∥∥∥∥( x 0

0 y

)∥∥∥∥
m+n

= max{‖x‖m, ‖y‖n},

where m,n ∈ IN, a ∈Mm(A1), x ∈Mm(X), y ∈Mn(Y ), b ∈Mm(A2).
For abstract operator modules holds a representation theorem of Ruan type

(cf. [Pop00, Thm. 4.7]):
Let V be an abstract (A1, A2)-operator module. Then there exist a Hilbert space K, a
complete isometry Θ : X ↪→ B(K) and ∗-representations π1, π2 of A1 resp. A2 in B(K)
such that:

Θ(axb) = π1(a)Θ(x)π2(b),

where x ∈ X, a ∈ A1, b ∈ A2. In case A1 = A2, one can even choose π1 = π2.

Basic examples of operator modules

Let A be a unital C∗-algebra, X a normed space, and Y an operator space. Then
B(X,A) resp. CB(Y,A) are operator spaces via the identifications Mn(B(X,A)) =



What are operator spaces ? January 7, 2001 http://www.math.uni-sb.de/∼wittck/ 21

B(X,Mn(A)) resp. Mn(CB(Y,A)) = CB(Y,Mn(A)). These become A-operator bimod-
ules, when endowed with the natural module operations as follows ([ER88, p. 140]):

(a · ϕ · b)(x) = aϕ(x)b

for all a, b ∈ A, ϕ ∈ B(X,A) resp. CB(Y,A), x ∈ X resp. x ∈ Y .
In the category of operator modules, the morphisms are the

completely bounded module homomorphisms. For these we have a representation and
an extension theorem.
Representation theorem (cf. [Hof95, Kor. 1.4]):

Let H be a Hilbert space, M a C∗-algebra in B(H), and A, B C∗-subalgebras of M .
Then the following hold true:

(a) (cf. [Pau86, Thm. 7.4]) For each completely bounded (A,B)-module homo-
morphism Φ : M → B(H), there exist a Hilbert space K, a ∗-representation
π : M → B(K) and linear operators v, w ∈ B(H,K) sharing the following proper-
ties:

(a1) Φ(x) = v∗π(x)w for all x ∈M , i.e. (K;π; v∗;w) is a representation of Φ

(a2) ‖Φ‖cb = ‖v‖‖w‖
(a3) lin(π(M)vH) = lin(π(M)wH) = K
(a4) v∗π(a) = av∗ for all a ∈ A and π(b)w = wb for all b ∈ B.

(b) (cf. also [Smi91, Thm.3.1]) If, in addition, M ⊂ B(H) is a von Neumann algebra
and Φ : M → B(H) is a normal completely bounded (A,B)-module homomor-
phism, one can require the ∗-representation π of part (a) to be normal. There
exist families (ai)i∈I and (bi)i∈I in the commutant of A and B, respectively, with
the following properties (the sums are to be taken in the WOT topology):

(b1) Φ(x) =
∑

i∈I aixbi for all x ∈M
(b2)

∑
i∈I aia

∗
i ∈ B(H),

∑
i∈I b

∗
i bi ∈ B(H) and ‖Φ‖cb =

‖
∑

i∈I aia
∗
i ‖

1
2 ‖
∑

i∈I b
∗
i bi‖

1
2 .

Extension theorem ([Wit84a, Thm. 3.1], cf. also [MN94, Thm. 3.4] and [Pau86, Thm.
7.2]):
Let F be an injective C∗-algebra, and let A,B ⊂ F be two unital C∗-subalgebras.
Consider furthermore two (A,B)-operator modules E0 and E with E0 ⊂ E. Then for
each φ0 ∈ CB (A,B)(E0, F ), there exists an extension φ ∈ CB (A,B)(E,F ) with φ|E0 = φ0

and ‖φ‖cb = ‖φ0‖cb.
The decomposition theorem for completely bounded module homomorphisms can be

found in the corresponding chapter.
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5.2 Completely bounded module homomorphisms

Let A,B ⊂ B(H) be C∗-algebras with 1lH ∈ A,B, and let E and F be two (A,B)-
operator modules, i.e. (algebraic) A-left-B-right-modules. A mapping φ ∈ L(E,F )
is called (A,B)-module homomorphism (in case A = B A-bimodule homomor-
phism) if

φ(axb) = aφ(x)b

for all a ∈ A, b ∈ B, x ∈ E.
Furthermore we will write CB (A,B)(E,F ) for the set of all completely bounded (A,B)-
module homomorphisms between E and F . The space CB (A,B)(E) with the composition
of operators as multiplication is a Banach algebra.

Let A1, A2 ⊂ B(H) be C∗-algebras such that 1lH ∈ A1, A2. Let further A ⊂ A1 ∩A2

be a unital ∗-subalgebra of A1 and A2 with 1lH ∈ A. An A-bimodule homomorphism

Φ : A1 → A2

is called self-adjoint if
Φ(x)∗ = Φ(x∗)

for all x ∈ A1.
Dealing with completely bounded module homomorphisms, we have at our disposal

a representation theorem, an extension theorem and the following decomposition
theorem of Wittstock ([Wit81, Satz 4.5] and cf. [Pau86, Thm. 7.5]):

Let A, E and F be unital C∗-algebras. Let moreover F be injective, and A be a
subalgebra of E and F with 1lE = 1lF = 1lA. Then for each self-adjoint completely
bounded A-bimodule homomorphism φ : E → F , there exist two completely positive
A-bimodule homomorphisms φ1 and φ2 sharing the properties φ = φ1−φ2 and ‖φ‖cb =
‖φ1 + φ2‖cb .

Consider two von Neumann algebrasM andN , and two C∗-algebras A1, A2 ⊂ B(H),
where 1lH ∈ A1, A2 and A1∪A2 ⊂M ∩N . We then have the decomposition theorem
of Tomiyama-Takesaki (cf. [Tak79, Def. 2.15]): Each operator φ ∈ CB (A1,A2)(M,N)
has a unique decomposition φ = φσ + φs, φσ, φs ∈ CB (A1,A2)(M,N) normal resp.
singular, where ‖φσ‖cb, ‖φs‖cb ≤ ‖φ‖cb. We thus obtain the algebraically direct sum
decomposition:

CB (A1,A2)(M,N) = CBσ
(A1,A2)(M,N)⊕ CBs

(A1,A2)(M,N). (2)

Here, the notions ”normal” and ”singular”, repectively, are built in analogy to the
framework of linear functionals on a von Neumann algebra M .24

We list some basic facts about the spaces and mappings mentioned in (2):
24Let M∗ denote the (unique) predual of M . Then we have the `1-direct sum decomposition

M∗ = M∗ ⊕`1 (M∗)s

of M∗ into normal (i.e. w∗-continuous) and singular functionals. [In the literature, one usually writes
M⊥∗ instead of M∗s, corresponding to M∗(= M∗σ).] Analogously, an operator φ ∈ B(M,N), M , N von
Neumann algebras, is called normal (i.e. w∗-w∗-continuous), if φ∗(N∗) ⊂M∗, and it is called singular,
if φ∗(N∗) ⊂M∗s.
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(a) In case M = N , all the spaces in (2) are Banach algebras.

(b) The following properties of φ are hereditary for the normal part φσ and the singular
part φs : completely positive, homomorphism, ∗-homomorphism.

(c) If α ∈ Aut(M) and β ∈ Aut(N) are ∗-automorphisms, we have (βφα)σ = βφσα
and (βφα)s = βφsα .

(d) For φ ∈ CB(B(H)), H a Hilbert space, we have: φ ∈ CBs(B(H))⇔ φ|K(H) ≡ 0 .

Let H be a Hilbert space, and let A1, A2 ⊂ B(H) be two C∗-algebras with 1lH ∈ A1, A2.
Then we obtain [Pet97, Prop. 4.2.5]:

CBσ
(A1,A2)(B(H)) cb= CB (A1,A2)(K(H), B(H)) (3)

CBs
(A1,A2)(B(H)) cb= CB (A1,A2)(Q(H), B(H)) (4)

completely isometrically, where Q(H) = B(H)/K(H) denotes the Calkin algebra.
Let X be an arbitrary operator space. Then the space of all completely bounded

(A1, A2)-module homomorphisms between X and B(H) can be identified with the dual
of a module Haagerup tensor product in the following way ([Pet97, p. 67], cf. also
[ER91, Cor. 4.6], [Ble92b, Prop. 2.3]):

CB (A1,A2)(X,B(H)) cb= (RH ⊗hA1 X ⊗hA2 CH)∗

completely isometrically. Hence we see that CB(B(H)) itself and (looking at (3), (4)),
just so, CBσ

(A1,A2)(B(H)) and CBs
(A1,A2)(B(H)) are dual operator spaces [Pet97, p. 70].

5.3 Operator algebras

In analogy to concrete operator spaces we define (cf. [BRS90, Def. 1.1]): An operator
algebra is a closed, not necessarily self-adjoint subalgebra X of B(H) (H a Hilbert
space).
Example: For selfadjoint X we have the theory of C∗-algebras.

As in the operator space situation, one can also adopt an abstract point of view: here,
this leads to considering Banach algebras which are operator spaces and are equipped
with a multiplication compatible with the operator space structure. These provide an
abstract characterization of the (concrete) operator algebras (cf. below: analogue of
Ruan’s theorem for operator algebras).

If X, Y , Z are operator spaces, and if Φ : X × Y → Z is bilinear, we can define
another bilinear map in the following way (cf.: Amplification of bilinear mappings):

Φ(n,l) : Mn,l(X)×Ml,n(Y ) → Mn(Z)

([xij ] , [yjk]) 7→

 l∑
j=1

Φ(xij , yjk)

 (l, n ∈ IN).
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This is called the bilinear amplification25 of Φ.
Φ is called completely bounded if ‖Φ‖cb := supn‖Φ(n,n)‖ < ∞, and completely

contractive if ‖Φ‖cb ≤ 1.26 Compare this definition with the approach presented in
Completely bounded bilinear Mappings.

[In the sequel, for Banach algebras with unit e, we will require ‖e‖ = 1.] An operator
space (X, ‖·‖n) with a bilinear, associative and completely contractive mapm : X×X →
X, the multiplication, is called an abstract operator algebra (cf. [BRS90, Def. 1.4]).
Here, the multiplication on Mn(X) is just the matrix multiplication mn.
In the unital case m is automatically associative [BRS90, Cor. 2.4].

We have an analogue of Ruan’s theorem ([Ble95, Thm. 2.1], cf. also [BRS90, Thm.
3.1]): Let A be a unital Banach algebra and an operator space. Then A is completely
isometrically isomorphic to an operator algebra if and only if the multiplication on A is
completely contractive.
This yields the following stability result:
1.) The quotient of an operator algebra with a closed ideal is again an operator algebra
[BRS90, Cor. 3.2].
With this at hand, one deduces another important theorem on hereditary properties of
operator algebras:
2.) The class of operator algebras is stable under complex interpolation [BLM95, (1.12),
p. 320].

Adopting a more general point of view than in the Ruan type Representation The-
orem above, one obtains the following [Ble95, Thm. 2.2]: Let A be a Banach algebra
and an operator space. Then A is completely isomorphic to an operator algebra if and
only if the multiplication on A is completely bounded. (cf. the chapter Examples!)

Basic examples of operator algebras are provided by the completely bounded maps
on some suitable operator spaces. More precisely, for an operator space X, one obtains
the following [Ble95, Thm. 3.4]: CB(X) with the composition as multiplication, is
completely isomorphic to an operator algebra if and only if X is completely isomorphic
to a column Hilbert space. – An analogue statement holds for the isometric case.

In the following result, for operator algebras A and B, the assumption that A and
B be (norm-) closed, is essential (in contrast to the whole rest) [ER90b, Prop. 3.1]:
A unital complete isometry ϕ between A ⊂ B(H) and B ⊂ B(K) (H, K Hilbert spaces),
where 1lB(H) ∈ A, 1lB(K) ∈ B, is already an algebra homomorphism.

Examples

In the sequel we will equip the spaces `p (1 ≤ p ≤ ∞) with the pointwise product and
consider them as Banach algebras. We will further consider the Schatten classes Sp
(1 ≤ p ≤ ∞) endowed with either the usual multiplication or the Schur product.

25In the literature, e.g. in [BRS90, p. 190], the bilinear amplification Φ(n,n) is often referred to as the
amplification and is noted by Φ(n).

26In order to define the notion of complete boundedness of bilinear mappings, it suffices to consider
only the Φ(n,n) instead of all the Φ(n,l); this definition is usually chosen in the literature about completely
bounded bi- and, analogously, multilinear maps [BRS90, p. 190], [CES87, p. 281].
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1. The space `2 [BLM95, Thm. 2.1]

With the following operator space structures, `2 is completely isometrically iso-
morphic to an operator algebra: R`2 , C`2 , OH `2 , R`2 ∩ C`2 , MAX `2 .
More generally: The space `2 is completely isometrically isomorphic to an operator
algebra, if endowed with an operator space structure which dominate dominates
both R`2 and C`2 .

With the following operator space structures, `2 is not completely isomorphic to
an operator algebra: R`2 + C`2 , MIN `2 .
More generally: The space `2 is not completely isomorphic to an operator algebra,
if endowed with an operator space structure which is dominate dominated by
both R`2 and C`2 .

2. The spaces27 MIN (`p), MAX (`p) and O`p = (MIN (`∞),MAX (`1)) 1
p

In the extreme cases p = 1 resp. p = ∞, we have two opposite results [BLM95,
Thm. 3.1]:

(a) Equipped with any operator space structure, `1 is completely isometrically
isomorphic to an operator algebra.

(b) MIN (`∞) is, up to complete isomorphy, the only operator algebra structure
on `∞.

For 1 ≤ p ≤ ∞ the following holds true (cf. [BLM95, Thm. 3.4]):

(a) MIN (`p) is completely isomorphic to an operator algebra if and only if p = 1
or p =∞.

(b) MAX (`p), in case 1 ≤ p ≤ 2, is completely isometrically isomorphic to an
operator algebra. In all the other cases MAX (`p) is not completely isomorphic
to an operator algebra.

On the contrary, the operator space structure on the `p spaces obtained via
complex interpolation always defines an operator algebra structure. More
precisely [BLM95, Cor. 3.3]:
For each 1 ≤ p ≤ ∞, O`p is completely isometrically isomorphic to an operator
algebra.

3. The Schatten classes Sp
We write OSp for the operator space structure defined on Sp by G. Pisier. This
operator space structure is obtained by complex interpolation between S∞ = K(`2)
and S1 = K(`2)∗.

27For the construction of the operator spaces O`p compare the chapter on complex interpolation.
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(a) Let us first consider the usual product on the Schatten classes Sp. Here we
have the following negative result [BLM95, Thm. 6.3]: For each 1 ≤ p <∞,
the operator space OSp with the usual product is not completely isomorphic
to an operator algebra.

(b) Consider now the Schur product on the Schatten classes Sp. Here we obtain
positive results, even for different operator space structures:

(b1) MAX (Sp) with the Schur product is, in case 1 ≤ p ≤ 2, completely
isometrically isomorphic to an operator algebra [BLM95, Thm. 6.1].

(b2) OSp with the Schur product is, in case 2 ≤ p ≤ ∞, completely isometri-
cally isomorphic to an operator algebra [BLM95, Cor. 6.4].

Caution is advised: The space OS1 (and likewise OSop
1 ), whether endowed with the

usual or the Schur product, is not completely isomorphic to an operator algebra
[BLM95, Thm. 6.3].

6 Tensor Products

An operator space tensor product is an operator space whose structure is deduced from
the operator space structure of the factors. Operator space tensor products are defined
for all operator spaces and have functorial properties. On the tensor product of two fixed
operator spaces one usually considers operator space norms which are cross norms.

A lot of spaces, especially spaces of mappings, may be considered as operator space
tensor products of simpler ones. The theory of operator space tensor products follows
the lines of the theory of tensor products of Banach spaces. But at some points tensor
products of operator spaces have new properties not found for tensor products of Banach
spaces or even better properties as their counterparts. So in some cases the theory of
operator space tensor products gives solutions to problems not solvable within the theory
of Banach spaces (cp. [ER90a, Thm. 3.2]).

The Haagerup tensor product ⊗h has a variety of applications in the theory of op-
erator spaces and completely bounded operators.

The injective operator space tensor product
∨
⊗ is the least28 and the projective oper-

ator space tensor product
∧
⊗ is the greatest 29among all operator space tensor products.

[BP91, Prop. 5.10].
On the algebraic tensor product X⊗Y of operator spaces X, Y one can compare an

operator space tensor norm ‖ ·‖α with the injective tensor norm ‖ ·‖λ and the projective
tensor norm ‖ · ‖γ of normed spaces:

‖ · ‖λ ≤ ‖ · ‖∨,1 ≤ ‖ · ‖α,1 ≤ ‖ · ‖∧,1 ≤ ‖ · ‖γ .
28i.e. the injective operator space tensor norm is minimal among all operator space tensor norms.
29i.e. the projective operator space tensor norm is maximal among all operator space tensor norms.
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6.1 Operator space tensor products

An operator space tensor product is the completion of the algebraic tensor product with
respect to an operator space tensor norm.

An operator space tensor norm ‖ · ‖α is defined for each pair (X,Y ) of opera-
tor spaces and endows their algebraic tensor product X ⊗ Y with the structure of an
matrix normed space (X ⊗ Y, ‖ · ‖α) thuch that the following two properties 1 and 2
[BP91, Def. 5.9]. hold.

The completion is called the α-operator space tensor product of X and Y and
is denoted by X ⊗α Y .

1. For the complex numbers holds

Cl ⊗α Cl = Cl .

2. For all S ∈ CB(X1, X2) and T ∈ CB(Y1, Y2) the operator S⊗T : X1⊗Y1 → X2⊗Y2

has a continuous extension

S ⊗α T ∈ CB(X1 ⊗α Y1, X2 ⊗α Y2).

The bilinear mapping

⊗α : CB(X1, X2)× CB(Y1, Y2) → CB(X1 ⊗α Y1, X2 ⊗α Y2)
(S, T ) 7→ S ⊗α T

is jointly completely contractive.30

Property 2 may be replaced by the assumptions 3 and 4.31

30i.e., let [Sij ] ∈ Mp(CB(X1, X2)), [Tkl] ∈ Mq(CB(Y1, Y2)), p, q ∈ IN, then the norm of the linear
operator

[Sij ⊗α Tkl] ∈Mpq(CB(X1 ⊗α Y1, X2 ⊗α Y2))

is estimated by

‖[Sij ⊗ Tkl]‖cb ≤ ‖[Sij ]‖cb‖[Tkl]‖cb.

Remark: This is indeed an equality.
31(2) ⇒(3),(4): Condition 3 is a special case of 2. Let I ∈ Mp(CB(lMp(X), X)), J ∈

Mq(CB(lMq(Y ), Y )) be matrices, which are algebraically the the identical mappings of the vector spaces
Mp(X) respectivly Mq(Y ). By assumption 2 we have

I ⊗α J ∈Mpq(CB(lMp(X)⊗α lMq(Y ), X ⊗α Y ))

= M1(CB(lMp(X)⊗α lMq(Y ), lMpq(X ⊗α Y ))),

‖I ⊗α J‖cb ≤ ‖I‖cb‖J‖cb = 1.

Now I ⊗α J : lMp(X)⊗α lMq(Y )→ lMpq(X ⊗α Y ) is the shuffle-map in 4.
(3),(4)⇒(2): Let [Sij ] ∈ Mp(CB(X1, X2)), [Tkl] ∈ Mq(CB(Y1, Y2)), p, q ∈ IN, and S ∈
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3. An operator space tensor product ⊗α is functorial: For all S ∈ CB(X1, X2) and
T ∈ CB(Y1, Y2) the operator S⊗T : X1⊗Y1 → X2⊗Y2 has a continuous extension

S ⊗α T ∈ CB(X1 ⊗α Y1, X2 ⊗α Y2),

and

‖S ⊗α T‖cb ≤ ‖S‖cb‖T‖cb.

Remark: This is indeed an equality ‖S ⊗α T‖cb = ‖S‖cb‖T‖cb.

4. The algebraic shuffle isomorphism Mp(X)⊗Mq(Y ) ∼= Mpq(X⊗Y ) has a continuous
extension to a complete contraction:

lMp(X)⊗α lMq(Y )→ lMpq(X ⊗α Y ).

This complete contraction is called the shuffle map of the α-operator space tensor
product.

Condition 4 is equivalent to the following two conditions: The shuffle mappings

lMp(X)⊗α Y → lMp(X ⊗α Y ),
X ⊗α lMq(Y ) → lMq(X ⊗α Y )

are completely contractive.
Operator space tensor producte may have further special properties:

An operator space tensor product ⊗α is called

symmetric, if X ⊗α Y
cb= Y ⊗α X is a complete isometry;

associative, if (X ⊗α Y )⊗α Z
cb= X ⊗α (Y ⊗α Z) is acomplete isometry;

injective, if for all subspaces X1 ⊂ X, Y1 ⊂ Y the map X1 ⊗α Y1 ↪→ X ⊗α Y is
acomplete isometry;

projective, if for all subspaces X1 ⊂ X, Y1 ⊂ Y the map X ⊗α Y → X/X1 ⊗α Y/Y1

is a complete quotient map;

CB(X1, lMp(X2)), T ∈ CB(Y1, lMq(Y2)) the corresponding operators. By 3 holds

S ⊗α T ∈ CB(X1 ⊗α Y1, lMp(X2)⊗α lMq(Y2)),

‖S ⊗α T‖cb ≤ ‖S‖cb‖T‖cb = ‖[Sij ]‖cb‖[Tkl]‖cb.

We apply the shuffle map A : lMp(X2)⊗α lMq(Y2)→ lMpq(X2 ⊗α Y2) and obtain from 4

[Sij ⊗α Tkl] = A(S ⊗α T ) ∈ M1(CB(X1 ⊗α Y1, lMpq(X2 ⊗α Y2))) = Mpq(CB(X1 ⊗α Y1, X2 ⊗α Y2),

‖[Sij ⊗α Tkl]‖cb ≤ ‖S ⊗α T‖cb ≤ ‖[Sij ]‖cb‖[Tkl]‖cb.

Hence ⊗α is jointly completely bounded.
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self dual, if the algebraic embedding X∗⊗Y ∗ ⊂ (X ⊗α Y )∗ has a completely isometric
extension X∗ ⊗α Y ∗ ⊂ (X ⊗α Y )∗.

In many applications one finds the Haagerup-tensor product. It is not symmetric,
but associative, injective, projective and self dual.

cross norms

Sometimes one considers an operator space norm on the algebraic tensor product of two
fixed operator spaces. Then one usually demands that this norm and its dual norm are
at least cross norms. Operator space tensor norms always have these properties.

An operator space norm ‖·‖α on the algebraic tensor product X⊗Y of two operator
spaces X and Y is said to be a cross norm, if

‖x⊗ y‖α,pq = ‖x‖p ‖y‖q

for all p, q ∈ IN, x ∈Mp(X), y ∈Mq(Y ) holds.

For cross norms Cl ⊗α X
cb= X is completely isometric.

For an operator space norm ‖·‖α on the algebraic tensor product of two fixed operator
spaces X and Y one usually asks for the following three properties (i)–(iii).32

(i) ‖ · ‖α is a cross norm.

(ii) Let ϕ ∈ X∗, ψ ∈ Y ∗ be linear functionals and

ϕ⊗ ψ : X ⊗ Y → Cl
〈x⊗ y, ϕ⊗ ψ〉 := 〈x, ϕ〉〈y, ψ〉

where x ∈ X, y ∈ Y . their tensorproduct. The tensor product ϕ ⊗ ψ has a
continuous linear extension to X ⊗α Y .

Then the dual operator space norm ‖ ·‖α∗ is defined on the algebraic tensor product
X∗ ⊗ Y ∗ by the algebraic embedding

X ⊗ Y ⊂ (X∗ ⊗α Y ∗)∗.

(iii) The dual operator space norm ‖ · ‖α∗ is a cross norm.

There is a smallest operator space norms among the operator space norms on X⊗Y ,
for which ‖ · ‖α and the dual norm ‖ · ‖α∗ are cross norms. This is the injective operator
space tensor norm ‖ · ‖∨. [BP91, Prop. 5.10].

32The conditions (i)-(iii) are equivalent to the following: The bilinear maps

X × Y → X ⊗α Y, (x, y) 7→ x⊗ y
X∗ × Y ∗ → (X ⊗α Y )∗, (ϕ,ψ) 7→ ϕ⊗ ψ

are jointly completely bounded.
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There is a greatest operator space norm among the operator space norms on X ⊗Y ,
for which ‖·‖α and the dual norm ‖·‖α∗ are cross norms. This is the projective operator
space tensor norm ‖ · ‖∧ [BP91, Prop. 5.10].

On the algebraic tensor product X ⊗ Y one can compare the operator space norms
‖ · ‖α for which ‖ · ‖α and the dual norm ‖ · ‖α∗ are cross norms with the injective tensor
norm ‖ · ‖λ and the projective tensor norm ‖ · ‖γ of normed spaces:

‖ · ‖λ ≤ ‖ · ‖∨,1 ≤ ‖ · ‖α,1 ≤ ‖ · ‖∧,1 ≤ ‖ · ‖γ .

6.2 Injective operator space tensor product

The representations of two operator spaces X in B(H) and Y in B(K) yield a repre-
sentation of the algebraic tensor product of X and Y in B(H ⊗2 K). The operator
space structure obtained in this way turns out to be independent of the representations
chosen. It is called the injectiveoperator space tensor product of X and Y and
is denoted by X

∨
⊗ Y [BP91, p. 285]. Hence, in the case of C∗–algebras, the injective

operator space tensor product and the minimal C∗–tensor product coincide.33

By means of the duality of tensor products we obtain a formula [BP91, Thm. 5.1]
for the injective operator space tensor norm of an element u ∈ Mn(X ⊗ Y ) which is
representation free:

‖u‖∨ = sup ‖〈u, ϕ⊗ ψ〉‖Mnkl
,

where k, l ∈ IN, ϕ ∈ Ball(Mk(X∗)) and ψ ∈ Ball(Ml(Y ∗)).
Interpreting, as is usual, the elements of the algebraic tensor product as finite rank

operators we have the completely isometric embeddings [BP91, Cor. 5.2]

X
∨
⊗ Y ↪→ CB(X∗, Y ) resp. X

∨
⊗ Y ↪→ CB(Y ∗, X).

The injective operator space tensor norm is the least cross norm whose dual norm
again is a cross norm.

The injective operator space tensor product is symmetric, associative and injective.
But it is not projective [BP91, Cor. 5.2].

The injective norm is the dual norm of the projective operator space tensor norm
[BP91, Thm. 5.6]; but the projective operator space tensor norm is not in general the
dual of the injective operator space tensor norm even if one of the two spaces involved
is finite dimensional [ER90a, p. 168], [ER91, p. 264].

33For this reason the injective operator space tensor product is also called spatial tensor product of
operator spaces and denoted by X ⊗min Y .
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Some formulae for the injective operator space tensor product

If E and F are normed spaces, then [BP91, Prop. 4.1]

MIN(E)
∨
⊗MIN(F ) cb= MIN(E ⊗λ F )

holds completely isometrically.

6.2.1 Exact operator spaces

We consider now the exact sequence

0 ↪→ K(`2) ↪→ B(`2)→ Q(`2)→ 0.

An operator space X is said to be exact [Pis95, §1], if the short sequence of injective
tensor products

0 ↪→ X
∨
⊗ K(`2) ↪→ X

∨
⊗ B(`2)→ X

∨
⊗ Q(`2)→ 0

is again exact. Then tensorizing with such an operator space preserves the exactness
of arbitrary exact sequences of C∗-algebras (for C∗-algebras cf [Kir83]). Obviously, all
finite dimensional operator spaces are exact.

Exactness is inherited by arbitrary subspaces. The injective tensor product of two
exact operator spaces is again exact. For an exact space X we are given a degree of
exactness by the quantity

ex(X) = ‖X
∨
⊗ Q(H)→ (X

∨
⊗ B(H))/(X

∨
⊗ K(H))‖.

We have 1 ≤ ex(X) <∞ [Pis95, §1], because the mapping

(X
∨
⊗ B(H))/(X

∨
⊗ K(H))→ X

∨
⊗ Q(H)

is a complete contraction. For non-exact operator spaces X we put ex(X) =∞.
For an exact C∗-algebra 34 A we have ex(A) = 1.
For an operator space X we have:

ex(X) = sup{ex(L) : L ⊂ X, dimL <∞}.

so we can confine our examinations to finite dimensional spaces. From this it is also
immediate that: ex(X0) ≤ ex(X) if X0 ⊂ X. One has for finite dimensional operator
spaces X1 and X2 the complete variant of the Banach-Mazur distance

dCB(X1, X2) = inf{‖ϕ‖cb‖ϕ−1‖cb}

( the infimum is taken over all isomorphisms ϕ from X1 to X2 ). Via this Banach-Mazur
distance we can define the quantity

dSK(X) := inf{dCB(X,L),dim(L) = dim(X), L ⊂Mn, n ∈ IN}

According to [Pis95, Thm. 1] ex(X) = dSK(X) holds, and ex(X) ≤
√

dim(X).
34 A characterization of exact C∗-algebras is given in [Kir94] and [Kir95].
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6.3 Projective operator space tensor product

The projective operator space tensor product X
∧
⊗ Y of two operator spaces X

and Y is characterized by the following complete isometry:

(X
∧
⊗ Y )∗ cb= CB(X,Y ∗) cb= CB(Y,X∗).

where linear mappings are identified in the usual way with bilinear forms.
One can also characterize the projective operator space tensor product by the fol-

lowing universal property [BP91, Def. 5.3]

CB(X
∧
⊗ Y, Z) cb= JCB(X × Y ;Z),

where Z is an operator space.
Here, JCB(X × Y ;Z) denotes the operator space of jointly completely bounded bi-

linear mappings.
One also has an explicit expression for the projective operator space tensor norm of

an element u ∈Mn(X ⊗ Y ): (cf. [ER91, Formel (2.10)])

‖u‖∧ = inf {‖α‖‖x‖p‖y‖q‖β‖ : u = α(x⊗ y)β} ,

where p, q ∈ IN, x ∈Mp(X), y ∈Mq(Y ) and α ∈Mn,pq, β ∈Mpq,n.
The projective operator space tensor norm is symmetric, associative and projective

[ER91, p. 262]. But it is not injective.
The projective operator space tensor norm is the greatest operator space tensor norm

which is a cross norm [BP91, Thm. 5.5].
Its dual norm is the injective operator space tensor norm [BP91, Thm. 5.6]; but the

projective operator space tensor norm is not in general the dual of the injective operator
space tensor norm even if one of the two spaces involved is finite dimensional [ER90a,
p. 168], [ER91, p. 264].

Some formulae for the projective operator space tensor product

1. If E and F are normed spaces, we have [BP91, Prop. 4.1]

MAX(E)
∧
⊗MAX(F ) cb= MAX(E ⊗γ F )

completely isometrically.

2. Taking the projective operator space tensor product of various combinations of
the column Hilbert spaces C, the row Hilbert spaces R and an arbitrary operator
space X one obtains the following completely isometric identifications: [ER91],
[Ble92b, Prop. 2.3]

(i) X
∧
⊗ CH

cb= X ⊗h CH

(ii) RH
∧
⊗ X cb= RH ⊗h X
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(iii) CH
∧
⊗ CK

cb= CH
∨
⊗ CK

cb= CH ⊗h CK
cb= CH⊗2K

(iv) RH
∧
⊗ RK

cb= RH
∨
⊗ RK

cb= RH ⊗h RK
cb= RH⊗2K

(v) RH
∧
⊗ CK

cb= RH ⊗h CK
cb= T (H,K)

(vi) X
∧
⊗ T (H,K) cb= RH

∧
⊗ X

∧
⊗ CK

cb= RH ⊗h X ⊗h CK

(vii) CB(X,B(K,H)) cb= (RH
∧
⊗ X

∧
⊗ CK)∗ cb= (RH ⊗h X ⊗h CK)∗,

where the space of trace class operators T (H,K) is endowed with its natural op-
erator space structure: T (H,K) :cb= K(K,H)∗.

3. Let M and N be von Neumann algebras and denote by M⊗N the von Neumann
tensor product35. For the preduals one has

M∗
∧
⊗ N∗

cb= (M⊗N)∗

completely isometrically [ER90a].

Let G and H be locally compact topological groups and denote by VN (G),
VN (H) the corresponding group von Neumann algebras.36 It is well-known that
VN (G)⊗VN (H) = V N(G ×H). Since the Fourier algebra37 A(G) can be iden-
tified with the predual of the group von Neumann algebra VN (G) [Eym64], this
implies that

A(G)
∧
⊗ A(H) cb= A(G×H)

holds completely isometrically38 [ER90a].

6.4 The Haagerup tensor product

The Haagerup tensor product was first introduced by Effros and Kishimoto [EK87] for
C∗-algebras generalizing the original work of U. Haagerup [Haa80].

The Haagerup tensor productX⊗hY of two operator spacesX and Y is characterized
by the complete isometry

(X ⊗h Y )∗ cb= CB(X × Y ; Cl ),
35If M ⊂ B(H), N ⊂ B(K) are von Neumann algebras, M⊗N is defined to be the closure in the weak

operator topology of the algebraic tensor product M ⊗N ⊂ B(H⊗2 K).
36The group von Neumann algebra VN (G) of a locally compact group G is defined to be the von

Neumann algebra generated by the left regular representation of G in B(L2(G)).
37For a locally compact group G, the set {f ∗ ǧ|f, g ∈ L2(G)} ⊂ C0(G) turns out to be a linear

space and even an algebra (with pointwise multiplication). Its completion with respect to the norm
‖u‖ = inf{‖f‖2‖g‖2 | u = f ∗ ǧ} is a Banach algebra and is called the Fourier algebra of G.

38If G is a locally compact abelian group, then A(G) is identified – via the Fourier transform –

with L1(Ĝ), where Ĝ denotes the dual group of G. Thus, for locally compact groups G and H, the

identification A(G)
∧
⊗ A(H)

cb
= A(G × H) can be thought of as a non commutative analogue of the

well-known classical identification L1(G)⊗γ L1(H) = L1(G×H).
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where bilinear forms are identified with linear maps in the usual fashion.
We can also characterize the Haagerup tensor product by the following universal

property: For an operator space Z we have

CB(X ⊗h Y ;Z) cb= CB(X × Y ;Z)

completely isometrically.
Here, CB(X × Y ;Z) denotes the operator space of completely bounded bilinear

mappings.
For operator spaces X and Y the Haagerup operator space tensor norm of

u ∈Mn(X ⊗ Y ) is explicitly given by (cf. [ER91, Formel (2.11)], [BP91, Lemma 3.2])

‖u‖h = inf ‖x‖n,l ‖y‖l,n,

where l ∈ IN, x ∈ Mn,l(X), y ∈ Ml,n(Y ) and u is the tensor matrix product u = x� y.
The Haagerup tensor product X ⊗h Y then of course is the completion of the algebraic
tensor product X⊗Y with respect to this operator space tensor norm. There are several
other useful formulae 2 3, 4 for the Haagerup norm.

The Haagerup tensor product is not symmetric as shown by concrete examples. But
it is associative, injective [PS87, p. 272; Thm. 4.4], [BP91, Thm. 3.6], projektiv [ER91,
Thm. 3.1] and selfdual [ER91, Thm. 3.2]. Thus the embedding

X∗ ⊗h Y ∗ ↪→ (X ⊗h Y )∗

is a complete isometry.
The extension of the identity mapping on the algebraic tensor product of two oper-

ator spaces X, Y from the Haagerup tensor product into the injective tensor product is
injective. One therefore obtains a canonical embedding

X ⊗h Y ⊂ X
∨
⊗ Y.

The complex interpolation of operator spaces and the Haagerup tensor product com-
mute [Pis96, Thm. 2.3]. Let (X0, X1) and (Y0, Y1) be compatible pairs of operator
spaces. Then (X0 ⊗h Y0, X1 ⊗h Y1) is a compatible pair of operator spaces and we have
completely isometrically

(X0 ⊗h Y0, X1 ⊗h Y1)ϑ
cb= (X0, X1)ϑ ⊗h (Y0, Y1)ϑ

for 0 ≤ ϑ ≤ 1.
On normed spaces there is no tensor norm which at the same time is associative,

injective, projective and selfdual. The Haagerup tensor product can be interpreted as
a generalization of the H-tensor product introduced by Grothendieck39 for normed

39This tensor norm also is known as γ2 [Pis86].
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spaces E and F [BP91, pp. 277-279, Prop. 4.1]. In fact, on the first matrix level we
have:

MIN (E)⊗h MIN (F ) = E ⊗H F,

MAX (E)⊗h MAX (F ) = E ⊗H∗ F

isometrically. The non-associativity of the H-tensor product is reflected by the fact that
in general MIN (E)⊗h MIN (F ) and MIN (E ⊗H F ) are not completely isometric.

Some formulae for the Haagerup tensor product

1. Let A and B be C∗-algebras in B(H). Then on the algebraic tensor product A⊗B
the Haagerup tensor norm is explicitly given by

‖u‖h := inf
{
‖
∑n

ν=1 aνa
∗
ν‖

1
2 ‖
∑n

ν=1 b
∗
νbν‖

1
2 : u =

∑n
ν=1 aν ⊗ bν

}
,

where n ∈ IN, aν ∈ A, bν ∈ B.

The Haagerup norm of
∑n

ν=1 aν⊗bν ∈ A⊗B equals the cb–norm of the elementary
operator B(H) 3 x 7→

∑n
ν=1 aνxbν . The Haagerup tensor product A ⊗h B is the

completion of the algebraic tensor product A⊗B with respect to the above norm.
The following more general definition in particular yields a completely isometric
embedding A⊗h B ↪→ CB(B(H)).

2. We have

‖u‖h = inf{
∑k

κ=1 ‖xκ‖‖yκ‖ : u =
∑k

κ=1 xκ � yκ}

where k, l ∈ IN, xκ ∈Mn,l(X), yκ ∈Ml,n(Y ). In fact, one summand suffices [BP91,
Lemma 3.2].

3. For elements u ∈ Mn(X ⊗ Y ) in the algebraic tensor product there is an l ∈ IN
and elements x ∈Mn,l(X), y ∈Ml,n(Y ) such that

u = x� y
‖u‖h = ‖x‖‖y‖.

The infimum occuring in the formula describing the norm in this case is actually
a minimum [ER91, Prop. 3.5].

4. The Haagerup norm of an element u ∈ Mn(X ⊗h Y ) can also be expressed using
a supremum:40

‖u‖h = sup ‖〈u, ϕ� ψ〉‖Mn2 ,
40For x ∈ X, y ∈ Y , we have:

(ϕ� ψ)(x⊗ y) = 〈x⊗ y, ϕ� ψ〉 =

[
l∑

j=1

〈x⊗ y, ϕij ⊗ ψjk〉

]
= ϕ(x)ψ(y) ∈Mn.

Here, we used the definitions of two fundamental notions in operator space theory: the
tensor matrix multiplication ϕ�ψ of mappings ϕ, ψ and the joint amplification of the duality of tensor
products.
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where l ∈ IN, ϕ ∈Mn,l(X∗), ψ ∈Ml,n(Y ∗), ‖ϕ‖ = ‖ψ‖ = 1 [ER91, Prop. 3.4].

5. From the definition of the Haagerup norm one easily deduces that the shuffle-map

lMp(X)⊗h lMq(Y )→ lMpq(X ⊗h Y )

is a complete contraction. Hence the Haagerup tensor product enjoys property 2
of an operator space tensor product.

But the shuffle-map is not an isometry in general as shown by the following ex-
ample:41

lMn(Cl)⊗h lMn(Rl)
cb= lMl(lMn((Tn)) 6= lMl(lMn(lMn)) cb= lMn(lMn(Cl ⊗h Rl)).

Since the bilinear mapping

⊗h : CB(X1, X2)× CB(Y1, Y2) → CB(X1 ⊗h X2, Y1 ⊗h Y2)
(S, T ) 7→ S ⊗h T

is contractive, it is jointly completely contractive.42

In fact, using 8, we see that it is even completely contractive.

6. For the row and column structure the shuffle-map even is a complete isometry.
We have the Lemma of Blecher and Paulsen [BP91, Prop. 3.5]:

Cn(X)⊗h Rn(Y ) cb= lMn(X ⊗h Y ).

In many cases it suffices to prove a statement about the Haagerup tensor product
on the first matrix level and then to deduce it for all matrix levels using the above
formula.43

41Algebraically, we have on both sides the same spaces of matrices. But on the left side one obtains
the finer operator space structure Tn := lM∗n of the trace class:

lMn(Cl)⊗h lMn(Rl)
cb
= Cl(lMn)⊗h Rl(lMn)

cb
= lMl(lMn ⊗h lMn)

= lMl(Cn ⊗h Rn ⊗h Cn ⊗h Rn) = lMl(Cn ⊗h Tn ⊗h Rn)
cb
= lMl(Mn(Tn)).

On the right side, we get the coarser operator space structure of the matrices Mn:

lMn(lMn(Cl ⊗h Rl) = lMn(lMn(lMl))
cb
= lMl(lMn(lMn)).

42This follows from the equivalence of the property 2 and the properties 3 and 4 of operator space
tensor products.

43This method can be applied to obtain this complete isometry itself. It is easy to see that on the
first matrix level we have

M1(Cn(X)⊗h Rn(Y )) = Mn(X ⊗h Y )

isometrically. From this the complete isometry follows – for all p ∈ IN we have:

Mp(Cn(X)⊗h Rn(Y )) = M1(Cp(Cn(X))⊗h Rp(Rn(Y ))) = M1(Cpn(X)⊗h Rpn(Y ))

= Mpn(X ⊗h Y ) = Mp(lMn(X ⊗h Y ))

isometrically .
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Here we list some special cases of the Lemma of Blecher and Paulsen:

Cn ⊗h Rn
cb= lMn,

Cn ⊗h X
cb= Cn(X),

X ⊗h Rn
cb= Rn(X),

Cn ⊗h X ⊗h Rn
cb= lMn(X).

7. In contrast to 6, for Rn ⊗h Cn one obtains the finer operator space structure of
the trace class

Tn := lM∗n
cb= Rn

∧
⊗ Cn

cb= Rn ⊗h Cn.

For an operator space X we have [Ble92b, Prop. 2.3]:

Rn ⊗h X
cb= Rn

∧
⊗ X,

X ⊗h Cn
cb= Cn

∧
⊗ X,

Rn ⊗h X ⊗h Cn
cb= Tn

∧
⊗ X,

Rn ⊗h X∗ ⊗h Cn
cb= lMn(X)∗.

8. By the very construction the bilinear mapping X × Y → X ⊗h Y , (x, y) 7→ x⊗ y
is a complete contraction.

Hence its amplification, the tensor matrix product

�h : lMn,l(X)× lMl,n(Y ) → lMn(X ⊗h Y )
(x, y) 7→ x� y,

also is a complete contraction. The linearization of the tensor matrix product
gives the complete contraction

lMn,l(X)⊗h lMl,n(Y )→ lMn(X ⊗h Y ).

9. The bilinear mapping44

⊗h : CB(X1, X2)× CB(Y1, Y2) → CB(X1 ⊗h Y1, X2 ⊗h Y2)
(S, T ) 7→ S ⊗h T

44The amplification of ⊗h is nothing but the tensor matrix multiplication �h of operator matrices.
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is completely contractive45and gives rise to a complete contraction

CB(X1, X2)⊗h CB(Y1, Y2)→ CB(X1 ⊗h Y1, X2 ⊗h Y2).

10. Let H and K be Hilbert spaces. Taking the Haagerup tensor product of the
column Hilbert space C and the row Hilbert space R one obtains completely iso-
metrically the space of compact operators K resp. of trace class46 operators T
[ER91, Cor. 4.4]:

RH ⊗h CK
cb= T (H,K),

CK ⊗h RH
cb= K(H,K).

This example also shows that the Haagerup tensor product is not symmetric.

6.5 Completely bounded bilinear mappings

In the case of bilinear mappings between operator spaces one has to distinguish between
two different notions of complete boundedness: on one hand we have the jointly com-
pletely bounded [BP91, Def. 5.3 (jointly completely bounded)] and, on the other
hand, the completely bounded bilinear mappings [CS87, Def. 1.1].

The class of completely bounded bilinear maps is is contained in the first one. These
notions are in perfect analogy to those of bounded bilinear forms on normed spaces. For
completely bounded bilinear mappings, we have at our disposal similar representation and
extension theorems47 as in the case of completely bounded linear maps. There are two
tensor products corresponding to the above two classes of bilinear mappings, namely
the projective and the Haagerup tensor product. Depending on the class of bilinear
maps, one uses different methods to define the amplification of a bilinear mapping
Φ : X × Y → Z.

45Let S ∈Mn(CB(X1, X2)), T ∈Mn(CB(Y1, Y2)). For x ∈Mp,q(X1), y ∈Mq,p(Y1) we have

(S � T )(p)(x� y) = (S(p,q)(x))� (T (q,p)(y)),

‖(S � T )(p)(x� y)‖Mpn(X2⊗hY2) ≤ ‖S(p,q)(x)‖‖T (q,p)(y)‖ ≤ ‖S‖cb‖T‖cb‖x‖‖y‖.

By the definition of the Haagerup norm (in X1 ⊗h Y1) we obtain

‖(S � T )(p)(x� y)‖Mpn(X2⊗Y2) ≤ ‖S‖cb‖T‖cb‖x� y‖Mp(X1⊗hY1),

‖S �h T‖cb ≤ ‖S‖cb‖T‖cb.

This means that ⊗h is completely contractive.
46T is endowed with its natural operator space structure T (H,K) :

cb
= K(K,H)∗.

47Extension theorems for completely bounded bilinear (and, more generally, multilinear) maps can be
derived from the injectivity of the Haagerup tensor product.
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Amplification

In the literature, there are two different notions of an amplification of a bilinear mapping.
We shall call the first kind 1 of amplification the joint amplification. This joint

amplification is needed to obtain a matrix duality – which is fundamental in the duality
theory of operator spaces –, starting from an ordinary duality 〈X,X∗〉.

The notion of joint amplification leads to the jointly completely bounded bilinear
maps as well as the projective operator space tensor product.

We will speak of the second kind 2 of an amplification as the amplification of a
bilinear mapping. This notion leads to the completely bounded bilinear maps and the
Haagerup tensor product.

In the sequel, we will use the notation Φ : X × Y → Z for a bilinear mapping and
Φ̃ : X ⊗ Y → Z for its linearization.

Both notions of an amplification of a bilinear map Φ are formulated in terms of the
amplification of its linearization:

Φ̃(n) : Mn(X ⊗ Y )→Mn(Z).

1. The joint amplification of Φ produces the bilinear mapping

Φ(p×q) : (x, y) 7→ Φ̃(pq)(x⊗ y) = [Φ(xij , ykl)] ∈Mp(Mq(Z)) = Mpq(Z).

of the operator matrices x = [xij ] ∈ Mp(X) and y = [ykl] ∈ Mq(Y ). Here, the
tensor product of operator matrices is defined via

x⊗ y = [xij ]⊗ [ykl] := [xij ⊗ ykl] ∈Mpq(X ⊗ Y ) = Mp(Mq(X ⊗ Y )).

2. In the case of completely bounded bilinear maps one deals with the tensor matrix
multiplication [Eff87]

x� y = [xij ]� [yjk] :=
[∑l

j=1 xij ⊗ yjk
]
∈Mn(X ⊗ Y )

of operator matrices x = [xij ] ∈Mn,l(X) and y = [yjk] ∈Ml,n(Y ).

For more formulae, see: tensor matrix multiplication.

The (n,l)-th amplification of a bilinear map Φ : X × Y → Z is defined by

Φ(n,l) : Mn,l(X)×Ml,n(Y ) → Mn(Z)

(x, y) 7→ Φ̃(n)(x� y) =
[∑l

j=1 Φ(xij , yjk)
]
∈Mn(Z)

for l, n ∈ IN, x = [xij ] ∈ Mn,l(X), y = [yjk] ∈ Ml,n(Y ). In case n = l, we shortly
write48

Φ(n) := Φ(n,n) : Mn(x)⊗Mn(Y ) → Mn(Z)
(x, y) 7→ Φ(n)(x, y) := Φ̃(n)(x� y).

48In the literature, the amplification of a bilinear map often is defined only for quadratic operator
matrices and is called the amplification Φ(n).

Nevertheless, we will also be dealing with the amplification for rectangular matrices since this permits
the formulation of statements where for fixed n ∈ IN all amplifications Φ(n,l), l ∈ IN, are considered.
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Jointly complete boundedness

Let X,Y, Z be operator spaces. A bilinear mapping Φ : X × Y → Z is called jointly
completely bounded [BP91, Def. 5.3 (jointly completely bounded)] if the norms
of the joint amplifications of Φ are uniformly bounded:

‖Φ‖jcb := sup ‖Φ(p×q)(x⊗ y)‖ <∞,

where p, q ∈ IN, x ∈ Ball(Mp(X)), y ∈ Ball(Mq(Y )) [BP91, Def. 5.3]. The norm ‖Φ‖jcb

equals the norm ‖Φ̃‖cb of the linearization

Φ̃ : X
∧
⊗ Y → Z

on the projective operator space tensor product.
JCB(X × Y ;Z) denotes the operator space consisting of the jointly completely

bounded bilinear maps. One obtains a norm on each matrix level by the identifica-
tion

Mn(JCB(X × Y ;Z)) = JCB(X × Y ; lMn(Z)).

We have

JCB(X × Y ;Z) cb= CB(X,CB(Y, Z)) cb= CB(Y,CB(X,Z)).

completely isometrically. By taking the transposition Φt(y, x) := Φ(x, y) we obtain a
complete isometry

JCB(X × Y ;Z) cb= JCB(Y ×X;Z).

Complete boundedness

For the definition of the completely bounded bilinear maps we need the amplification
Φ(n), the linearization Φ̃ : X ⊗ Y → Z. and the tensor matrix multiplication x � y of
operator matrices x, y.

A bilinear mapping Φ : X × Y → Z, n ∈ IN is called completely bounded if

‖Φ‖cb := sup ‖Φ(n)(x, y)‖ <∞

where n ∈ IN, x ∈ Ball(Mn(X)), y ∈ Ball(Mn(Y )).
The norm ‖Φ‖cb equals the norm ‖Φ̃‖cb of the linearization

Φ̃ : X ⊗h Y → Z

on the Haagerup tensor product.
Furthermore, the norms ‖Φ‖n are obtained using the tensor matrix products of all

49 rectangular matrices of n rows resp. n columns:

‖Φ‖n := sup ‖Φ(n,l)(x, y)‖
49Note that the norm of the bilinear map

Φ(n) : Mn(x)⊗Mn(Y )→Mn(Z)

in general is smaller than the norm ‖Φ‖n.
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where l ∈ IN, x ∈ Ball(Mn,l(X)), y ∈ Ball(Ml,n(Y )).
We have

‖Φ‖cb = sup {‖Φ‖n : n ∈ IN} .

The norm ‖Φ‖n equals the norm ‖Φ̃(n)‖ of the amplification of the linearization

Φ̃(n) : Mn(X ⊗h Y )→Mn(Z)

on the Haagerup tensor product.
A bilinear form Φ is already seen to be completely bounded if ‖Φ‖1 <∞. Then we

have ‖Φ‖cb = ‖Φ‖1.50

CB(X ×Y ;Z) denotes the operator space consisting of completely bounded bilinear
maps. One obtains a norm on each matrix level using the identification

Mn(CB(X × Y ;Z)) = CB(X × Y ; lMn(Z)).

Corresponding to the completely bounded bilinear maps we have the linear maps
which are completely bounded on the Haagerup tensor product. The identification

CB(X × Y ;Z) cb= CB(X ⊗h Y ;Z)

holds completely isometrically.
Completely bounded bilinear mappings are in particular jointly completely bounded.

The embedding CB(X × Y ;Z) ⊂ JCB(X × Y ;Z) is a complete contraction.
The transpose Φt(y, x) := Φ(x, y) of a completely bounded bilinear mapping Φ in

general is not completely bounded.51

For completely bounded bilinear (and, more generally, multilinear) maps Φ ∈
CB(A × B;B(H)) we have some generalizations of Stinespring’s representation theo-
rem.

Representation

Completely bounded bilinear forms were first studied on C∗-algebras A, B [EK87]. For
a bilinear form Φ : A×B → Cl the following properties are equivalent:

(1) Φ is completely bounded.

(2) There is a constant c such that

|
∑l

j=1 Φ(aj , bj)| ≤ c ‖
∑l

j=1 aja
∗
j‖

1
2 ‖
∑l

j=1 b
∗
jbj‖

1
2

for all l ∈ IN, aj ∈ A, bj ∈ B.
50More generally, the equation ‖Φ‖cb = ‖Φ‖1
holds for bilinear maps with values in a commutative C∗-algebra A since every bounded linear map

taking values in A is automatically completely bounded and ‖Φ‖cb = ‖Φ‖ [Loe75, Lemma 1]. For
bilinear maps Φ : X × Y →Mn(A) we have ‖Φ‖cb = ‖Φ‖n.

51To this corresponds the fact that the Haagerup tensor product is not symmetric.
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(3) There is a constant c and states ω ∈ S(A), ρ ∈ S(B) such that

|Φ(a, b)| ≤ c ω(aa∗)
1
2 ρ(b∗b)

1
2

for all a ∈ A, b ∈ B.

(4) There exist ∗-representations πω : A → B(Hω) and πρ : A → B(Hρ) with cyclic
vectors ξω ∈ Hω, ξρ ∈ Hρ and an operator T ∈ B(Hω,Hρ) such that Φ(a, b) =
〈Tπω(a)ξω, πρ(b)ξρ〉 for all a ∈ A, b ∈ B.

One can choose c = ‖T‖ = ‖Φ‖cb and ‖ξω‖ = ‖ξρ‖ = 1.52

6.6 Module tensor products

So far the only module tensor product of operator modules that has been studied is the
module Haagerup tensor product [Rua89] [BMP].

6.6.1 Module Haagerup tensor product

Let X be a right operator module over a C∗-algebra A, Y a left A-operator module, and
W an operator space. A bilinear mapping Ψ : X × Y → W is called balanced, if the
equation

Ψ(x · a, y) = Ψ(x, a · y)

obtains for all x ∈ X, y ∈ Y, a ∈ A.
The module Haagerup tensor product is defined to be the operator space

X⊗hAY (which is unique up to complete isometry) together with a bilinear, completely
contractive, balanced mapping

⊗hA : X × Y → X ⊗hA Y,

such that the following holds true: For each bilinear, completely bounded balanced map

Ψ : X × Y →W

there is a unique linear completely bounded map

Ψ̃ : X ⊗hA Y →W

satisfying Ψ̃ ◦ ⊗hA = Ψ and ‖Ψ̃‖cb = ‖Ψ‖cb.
The module Haagerup tensor product can be realized in different ways:

1. Let
N := lin{(x · a)⊗ y − x⊗ (a · y) | a ∈ A, x ∈ X, y ∈ Y }.

The quotient space (X ⊗h Y )
/
N with its canonical matrix norms is an operator

space which satisfies the defintion of X ⊗hA Y [BMP].
52For further references see [CS89, Sec. 4].



What are operator spaces ? January 7, 2001 http://www.math.uni-sb.de/∼wittck/ 43

2. Let us denote by X ⊗A Y the algebraic module tensor product, i.e. the quotient
space (X ⊗alg Y )

/
N . For n ∈ IN and u ∈Mn(X ⊗A Y ), by

pn(u) := inf

{
‖S‖‖T‖

∣∣∣∣∣u =

[
l∑

k=1

Sik ⊗A Tkj

]
, l ∈ IN, S ∈Mnl(X), T ∈Mln(Y )

}

we define a semi-norm on Mn(X ⊗A Y ). We obtain

Kern(pn) = Mn(Kern(p1)),

and the semi-norms pn give an operator space norm on (X⊗AY )/Kern(p1) [Rua89].
The completion of this space satisfies the definition of X ⊗hA Y [BMP].

Examples

Let X be an operator space. Then the space of completely bounded (A1, A2)-
module homomorphisms between X and B(H) can be identified with the dual of a
module Haagerup tensor product in the following way ([Pet97, p. 67], cf. also [ER91,
Cor. 4.6], [Ble92b, Prop. 2.3]):

CB (A1,A2)(X,B(H)) cb= (RH ⊗hA1 X ⊗hA2 CH)∗

completely isometrically.

7 Complete Local Reflexivity

An operator space X is called completely locally reflexive [EJR98, §1], if to each
finite dimensional subspace there is L ⊂ X∗∗ a net of completely contractive mappings
ϕα : L→ X that converges to the embedding L→ X∗∗ in the point weak∗ topology.53

This property is inherited by arbitrary subspaces. In general it is not preserved by
quotients. In the case that for example the kernel is an M-ideal (e.g. the twosided ideal
of a C∗-algebra) and that the original space is completely reflexive we have that the
quotient space is completely locally reflexive [ER94, Thm. 4.6].

Banach spaces are always locally reflexive (Principle of local reflexivity [Sch70]).
On the contrary, not all operator spaces are completely locally reflexive. For exam-

ple the full C∗-algebra of the free group on two generators C∗(F2) and B(`2) are not
completely locally reflexive [EH85, p. 124-125].

An operator space X is completely locally reflexive, if and only if one (and then
every) of the following conditions is satisfied for all finite dimensional operator spaces
L [EJR98, §1, 4.4, 5.8]:

1. L
∨
⊗ X∗∗

cb= (L
∨
⊗ X)∗∗, where

∨
⊗ denotes the injective operator space tensor

product,
53 The difference to the definition of local reflexivity is the fact that the ϕα are not only supposed to

be contractive, but even completely contractive.
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2. CB(L∗, X∗∗) cb= CB(L∗, X)∗∗,

3. L∗
∧
⊗ X∗

cb= (L
∨
⊗ X)∗, where

∧
⊗ denotes the projective operator space tensor

product and
∨
⊗ denotes the injective operator space tensor product,

4. CN (X,L∗) cb= CI (X,L∗), where CN (·, ·) denotes the completely nuclear and
CI (·, ·) the completely integral mappings,

5. ι(ϕ) = ι(ϕ∗) for all ϕ ∈ CI(X,L∗).

In the conditions 1), 2) and 3) it suffices to check the usual isometry to prove the
complete isometry.

Examples

The following classes of operator spaces are completely locally reflexive [EJR98, 6.1,
6.2], [EH85, Prop. 5.4]:

1. reflexive operator spaces (e.g. finite dimensional operator spaces L),

2. nuclear C∗- algebras (e.g. K(H) or commutative C∗- algebras),54

3. preduals of von Neumann algebras, especially duals of C∗-algebras (e.g. T (H) =
K(H)∗ = B(H)∗).

8 Completely Bounded Multilinear Mappings

Going beyond the linear case, one can introduce the concept of complete bound-
edness for multilinear maps. The motivation mainly lies in the study of higher
dimensional Hochschild cohomology over C∗- and von Neumann algebras55 [Chris-
tensen/Effros/Sinclair ’87].

As in the linear case, the most important properties of the completely bounded
multilinear maps make their appearance56 in representation, extension and decom-
position theorems.

Let X1, . . . , Xk, Y be operator spaces and Φ : X1 × · · · × Xk → Y a multilinear
mapping. We define [Christensen/Effros/Sinclair ’87, p. 281] a multilinear mapping

Φ(n) : Mn(X1)× · · · ×Mn(Xk) → Mn(Y )

(x1, . . . , xk) 7→

 n∑
j1,j2,...,jk−1=1

Φ(xl,j11 , xj1,j22 , . . . , x
jk−1,m
k )

 ,
54a survey of the theory of nuclear C∗-algebras is e.g. to be found in [Mur90] and [Pat88].
55There is a close connection to the long-standing still open derivation problem for C∗-algebras (or,

equivalently [Kirchberg ’96, Cor. 1], the similarity problem). One should note that in the framework
of operator spaces and completely bounded maps, considerable progress has been made in attacking
these problems. For instance, Christensen [Christensen ’82, Thm. 3.1] was able to show that the inner
derivations from a C∗-algebra into B(H) are precisely the completely bounded ones.

56possibly footnote!
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where n ∈ IN, the nth amplification of Φ.
Φ is called completely bounded if ‖Φ‖cb := supn‖Φ(n)‖ < ∞. It is called com-

pletely contractive if ‖Φ‖cb ≤ 1.
Also compare the chapter Completely bounded bilinear maps.
Example: For bilinear forms on commutative C∗-algebras we have the following

result on automatic complete boundedness [Christensen/Sinclair ’87, Cor. 5.6]:
Let A be a commutative C∗-algebra. Then each continuous bilinear form Φ : A×A→

Cl is automatically completely bounded and

‖Φ‖ ≤ ‖Φ‖cb ≤ KG‖Φ‖,

where KG denotes the Grothendieck constant. Furthermore, KG is the least such con-
stant.

One often studies completely bounded multilinear maps by considering the lineariza-
tion on the Haagerup tensor product, where the following relation holds [Paulsen/Smith
’87, Prop. 1.3; cf. also Sinclair/Smith ’95, Prop. 1.5.1]: If X1, . . . , Xn are operator spaces
and H is a Hilbert space, then a multilinear mapping Φ : X1 × · · · × Xn → B(H) is
completely bounded if and only if its linearization ϕ is a completely bounded mapping
on X1 ⊗h · · · ⊗h Xn. In this case, ‖Φ‖cb = ‖ϕ‖cb.

Also compare the chapter: Completely bounded bilinear mappings.
Representation theorem [Paulsen/Smith ’87, Thm. 3.2, cf. also Thm. 2.9; Sin-

clair/Smith, Thm. 1.5.4]:
Let A1, . . . , Ak be C∗-algebras, X1 ⊂ A1, . . . , Xk ⊂ Ak operator spaces and H a Hilbert
space. Let further be Φ : X1 × · · · × Xk → B(H) a completely contractive multi-
linear mapping. Then there exist Hilbert spaces Ki (i = 1, . . . , k), ∗-representations
πi : Ai → B(Ki) (i = 1, . . . , k), contractions Ti : Ki+1 → Ki (i = 1, . . . , k − 1) and two
isometries Vi : H → Ki (i = 1, k) such that

Φ(x1, . . . , xk) = V ∗1 π1(x1)T1π2(x2)T2 · · ·Tk−1πk(xk)Vk.

Following [Ylinen ’90, p. 296; cf. also Christensen/Effros/Sinclair ’87] it is possible to
eliminate the “bridging maps” Ti. One obtains the following simpler form for the rep-
resentation theorem:

Let A1, . . . , Ak be C∗-algebras, X1 ⊂ A1, . . . , Xk ⊂ Ak operator spaces and H a
Hilbert space. Let further Φ : X1 × · · · × Xk → B(H) be a completely contractive
multilinear mapping. Then there exist a Hilbert space K, ∗-representations πi : Ai →
B(K) and two operators V1, Vk ∈ B(H,K) such that

Φ(x1, . . . , xk) = V ∗1 π1(x1)π2(x2) · · ·πk(xk)Vk.

From this result one can deduce the following:
Extension theorem [cf. Paulsen/Smith ’87, Cor. 3.3 and Sinclair/Smith ’95, Thm.

1.5.5]:
Let Xi ⊂ Yi (i = 1, . . . , k) be operator spaces and H a Hilbert space. Let further
Φ : X1 × . . . Xk → B(H) be a completely contractive multilinear mapping. Then there
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exists a multilinear mapping Φ̃ : Y1 × · · · × Yk → B(H) which extends Φ preserving the
cb-norm: ‖Φ‖cb = ‖Φ̃‖cb.

Let A and B be C∗-algebras. For a k-linear mapping Φ : Ak → B we define
[Christensen/Sinclair ’87, pp. 154-155] another k-linear mapping Φ∗ : Ak → B by

Φ∗(a1, . . . , ak) := Φ(a∗k, . . . , a
∗
2, a
∗
1)∗,

where a1, . . . , ak ∈ A. A k-linear map Φ : Ak → B is called symmetric if Φ = Φ∗. In
this case, Φ(n)∗ = Φ(n) (n ∈ IN).

A k-linear map Φ : Ak → B is called completely positive if

Φ(n)(A1, . . . Ak) ≥ 0

for all n ∈ IN and (A1, . . . , Ak) = (A∗k, . . . , A
∗
1) ∈Mn(A)k, where Ak+1

2
≥ 0 for odd k.

Caution is advised: In the multilinear case complete positivity does not necessar-
ily imply complete boundedness! For an example (or more precisely a general method
of constructing such), cf. Christensen/Sinclair ’87, p. 155.

There is a multilinear version of the decomposition theorem for completely bounded
symmetric multilinear mappings:

Decomposition theorem [Christensen/Sinclair ’87, Cor. 4.3]:
Let A and B be C∗-algebras, where B is injective, and let further Φ : Ak → B be a
completely bounded symmetric k-linear mapping. Then there exist completely bounded,
completely positive k-linear mappings Φ+,Φ− : Ak → B such that Φ = Φ+ − Φ− and
‖Φ‖cb = ‖Φ+ + Φ−‖cb.

9 Automatic Complete Boundedness

Completely bounded linear and multilinear mappings share strong structural proper-
ties. Thanks to the complete boundedness they have a very specific form (cf. the corre-
sponding representation theorems) whence they are much more accessible than arbitrary
bounded linear (or multilinear) mappings.57 Moreover, even in the multilinear case we
have at our disposal an extension theorem for completely bounded mappings – which
again is in striking contrast to the situation of arbitrary bounded (multi)linear mappings.

Because of the very nice structure theory of completely bounded linear and multi-
linear mappings, respectively, it is highly interesting to decide whether or not a given
bounded (multi)linear mapping actually is completely bounded. The most elegant way
to proceed is of course to check some simple conditions concerning the spaces involved
and/or some (purely) algebraic properties of the mapping which automatically imply
the complete boundedness of the latter.

In the following we shall collect various such criteria relying

(1) on the initial and/or target space
57For example, the representation theorems provide a very useful tool in calculating cohomology

groups (cf. for example the monograph [SS95]).
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(2) mainly on algebraic properties of the mapping (being, e.g., a ∗-homomorphism of
C∗-algebras or a module homomorphism).

(1) “Criterion: spaces”

(1.1) The linear case

∗ Smith’s lemma: If X is a matricially normed space and Φ : X → Mn,
where n ∈ IN, is a bounded linear operator, then we have ‖Φ‖cb = ‖Φ(n)‖.
In particular, Φ is completely bounded if and only if Φ(n) is bounded
[Smi83, Thm. 2.10].
∗ Let X be an operator space, A a commutative C∗-algebra and Φ : X → A

a bounded linear operator. Then Φ is completely bounded and ‖Φ‖cb =
‖Φ‖ ([Loe75, Lemma 1], cf. also [Arv69, Prop. 1.2.2]).
In particular, every bounded linear functional is automatically completely
bounded with the same cb-norm.
∗ The following theorem shows that, roughly speaking, the above situa-

tions are the only ones where every bounded linear operator between
(arbitrary) C∗-algebras is automatically completely bounded. More pre-
cisely:
Let A and B be C∗-algebras. In order to have the complete boundedness
of very bounded linear operator from A to B it is necessary and sufficient
that either A is finite dimensional or B is a subalgebra of Mn⊗C(Ω) for
a compact Hausdorff space Ω [HT83, Cor. 4], [Smi83, Thm. 2.8], cf. also
[Smi83, p. 163].

(1.2) The bilinear case

∗ Let A be a commutative C∗-algebra. Then every bounded bilinear form
Φ : A×A→ Cl is automatically completely bounded and

‖Φ‖ ≤ ‖Φ‖cb ≤ KG‖Φ‖,

where KG denotes the Grothendieck constant; furthermore, KG is the
least possible constant [CS87, Cor. 5.6]

(2) “Criterion: mappings”

(2.1) The linear case

∗ Every ∗-homomorphism between C∗-algebras is completely contractive.58

∗ Let A and B be C∗-subalgebras of B(H), where H is a Hilbert space. Let
further E ⊂ B(H) be an (A,B)-operator module and Φ : E → B(H) be a
bounded (A,B)-module homomorphism. Let A and B be quasi-cyclic59

, i.e., for every finite set of vectors ξi, ηj ∈ H, 1 ≤ i, j ≤ n, there exist
58This is evident because π(n) : Mn(A)→Mn(B) is a ∗-homomorphism for every n ∈ IN.
59For example, cyclic C∗-algebras are quasi-cyclic. A von Neumann algebra M is quasi-cyclic if every

normal state on the commutant M ′ is a vector state [Smi91, Lemma 2.3].
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ξ, η ∈ H such that ξi ∈ Aξ, ηj ∈ Bη, 1 ≤ i, j ≤ n. Then Φ is completely
bounded and ‖Φ‖cb = ‖Φ‖ ([SS95, Thm. 1.6.1]; cf. also [Smi91, Thm.
2.1] and [Smi91, Remark 2.2], [Sat82, Satz 4.16]). – For special cases of
this result obtained earlier see [Haa80], [EK87, Thm. 2.5], [PPS89, Cor.
3.3] and [DP91, Thm. 2.4].

(2.2) The bilinear case

∗ Let A ⊂ B(H) be a C∗-algebra and E ⊂ B(H) an A-operator bimodule.
A bilinear mapping Φ : E × E → B(H) is called A-multimodular if

Φ(aeb, fc) = aΦ(e, bf)c

holds for all a, b, c ∈ A and e, f ∈ E.
We have a bilinear analogue of the above theorem:
Let A ⊂ B(H) be a quasi-cyclic C∗-algebra and E ⊂ B(H) be an A-
operator bimodule. Let further Φ : E × E → B(H) be a bilinear, A-
multimodular mapping such that the corresponding linearization Φ̃ : E⊗
E → B(H) is bounded on E ⊗h E.
Then Φ is completely bounded and ‖Φ‖cb = ‖Φ̃‖ [SS95, Thm. 1.6.2].

10 Convexity

Since convex sets are important in the study of ordered or normed vector spaces, it
is only natural to ask for a non-commutative version of convexity that is more suited
for vector spaces of operators. Thus matrix convex sets were introduced, which play
the same role in operator space theory as ordinary convex sets in classical functional
analysis.

Some time earlier C∗-convex sets were defined for C∗-algebras. Both notions are
different but similar, so a section about C∗-convex sets is also included in this survey.

Some publications about non-commutative convexity are [EW97b], [WW99], [FZ98],
[Mor94], [Fuj94].

10.1 Matrix convexity

Let V be a complex vector space. A set K of matrices over V consists of subsets
Kn ⊂Mn(V ) for all n ∈ IN. Subsets K1 ⊂ V can be considered as sets of matrices over
V by putting Kn = ∅ for n ≥ 2. More generally, if for some n ∈ N the corresponding
set Kn is not given a priori, put this Kn as the empty set. For sets of matrices, we have
the following notions of convexity:60

60With the notation M(V ) =
⋃
{Mn(V ) | n ∈ IN}, a set K of matrices over V is simply a subset of

M(V ). The sets Kn can be regained as Kn = K ∩Mn(V ).
Then the definitions have the following form:
Let K ⊂M(V ). K is called matrix convex if

K ⊕K ⊂ K and α∗Kα ⊂ K for all matrices α with α∗α = 1l.
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A set K of matrices over V is called matrix convex or a matrix convex set
[Wit84b] if for all x ∈ Kn and y ∈ Km

x⊕ y ∈ Kn+m,

and for all x ∈ Kn and α ∈Mn,m with α∗α = 1lm

α∗xα ∈ Km.

A set K of matrices over V is called absolutely matrix convex [EW97a] if for all
x ∈ Kn and y ∈ Km

x⊕ y ∈ Kn+m,

and for all x ∈ Kn, α ∈Mn,m and β ∈Mm,n with ‖α‖, ‖β‖ ≤ 1

αxβ ∈ Km.

A set K of matrices over V is called a matrix cone [Pow74] if for all x ∈ Kn and
y ∈ Km

x⊕ y ∈ Kn+m,

and for all x ∈ Kn and α ∈Mn,m

α∗xα ∈ Km.

A set K of matrices over V is matrix convex if and only if all matrix convex combi-
nations of elements of K are again in K. K is absolutely matrix convex if and only if all
absolutely matrix convex combinations of elements of K are again in K. Here, a ma-
trix convex combination of x1, . . . , xn (xi ∈ Kki) is a sum of the form

∑n
i=1 α

∗
i xiαi

with matrices αi ∈ Mki,j such that
∑n

i=1 α
∗
iαi = 1lj . An absolutely matrix convex

combination of x1, . . . , xn is a sum of the form
∑n

i=1 αixiβi with matrices αi ∈Mj,ki

and βi ∈Mki,j such that
∑n

i=1 αiα
∗
i ≤ 1lj and

∑n
i=1 β

∗
i βi ≤ 1lj .

If V is a topological vector space, topological terminology is to be considered at all
matrix levels: For instance, a set K of matrices over V is called closed if all Kn are
closed.

K is called absolutely matrix convex if

K ⊕K ⊂ K and αKβ ⊂ K for all matrices α, β with ‖α‖, ‖β‖ ≤ 1.

K is called a matrix cone if

K ⊕K ⊂ K and α∗Kα ⊂ K for all matrices α.
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Examples

matrix convexity

1. The unit ball of an operator space X, given by the family Ball(X)n = {x ∈
Mn(X) | ‖x‖ ≤ 1} for all n ∈ IN,61 is absolutely matrix convex and closed.

2. The set of matrix states of a unital C∗-algebra A, given by the family CS(A)n =
{ϕ : A → Mn | ϕ completely positive and unital} for all n ∈ IN, is matrix convex
and weak-∗-compact.

3. If A is a C∗-algebra, the positive cones Mn(A)+ for all n ∈ IN form a closed matrix
cone.

10.1.1 Separation theorems

An important tool in the theory are the following separation theorems.
Let 〈V,W 〉 be a (non degenerate) duality of complex vector spaces. Thus V and

W have weak topologies, and the matrix levels have the corresponding product topol-
ogy. For v = [vi,j ] ∈ Mn(V ) and w = [wk,l] ∈ Mm(W ), 〈v, w〉 is defined by the joint
amplifications of the duality:

〈v, w〉 = [〈vi,j , wk,l〉](i,k),(j,l).

Note that the matrices, ordered by the cone of the positive semidefinite matrices,
are not totally ordered; 6≤ does not imply ≥.

Theorem:62 Let 〈V,W 〉 be a duality of complex vector spaces, K a closed set of
matrices over V and v0 ∈Mn(V ) \Kn for some n.

a) [WW99, Thm. 1.6] If K is matrix convex, then there are w ∈ Mn(W ) and α ∈
(Mn)sa such that for all m ∈ IN and v ∈ Km

Re〈v, w〉 ≤ 1lm ⊗ α, but Re〈v0, w〉 6≤ 1ln ⊗ α.
61 Also Ball = {x ∈M(X) | ‖x‖ ≤ 1}.
62 From this theorem one can easily get the following sharper version of the parts a), b) and d):

a) If K is matrix convex, then there are w ∈Mn(W ), α ∈ (Mn)sa and ε > 0 such that for all m ∈ IN
and v ∈ Km

Re〈v, w〉 ≤ 1lm ⊗ (α− ε1ln), but Re〈v0, w〉 6≤ 1ln ⊗ α.

b) If K is matrix convex and 0 ∈ K1, then there are w ∈Mn(W ) and ε > 0 such that for all m ∈ IN
and v ∈ Km

Re〈v, w〉 ≤ (1− ε)1lnm, but Re〈v0, w〉 6≤ 1ln2 .

d) If K is absolutely matrix convex, then there are w ∈Mn(W ) and ε > 0 such that for all m ∈ IN
and v ∈ Km

‖〈v, w〉‖ ≤ 1− ε, but ‖〈v0, w〉‖ > 1.



What are operator spaces ? January 7, 2001 http://www.math.uni-sb.de/∼wittck/ 51

b) [EW97b, Thm. 5.4] If K is matrix convex and 0 ∈ K1, then there is w ∈ Mn(W )
such that for all m ∈ IN and v ∈ Km

Re〈v, w〉 ≤ 1lnm, but Re〈v0, w〉 6≤ 1ln2 .

c) [Bet97, p. 57] If K is a matrix cone, then there is w ∈ Mn(W ) sucht that for all
m ∈ IN and v ∈ Km

Re〈v, w〉 ≤ 0, but Re〈v0, w〉 6≤ 0.

d) [EW97a, Thm. 4.1] If K is absolutely matrix convex, then tere is w ∈ Mn(W )
such that for all m ∈ IN and v ∈ Km

‖〈v, w〉‖ ≤ 1, but ‖〈v0, w〉‖ > 1.

One can prove Ruan’s theorem using the separation theorem for absolutely matrix con-
vex sets, applied to the unit ball of a matricially normed space [].

If V is a complex involutive vector space, one can find selfadjoint separating func-
tionals:

Theorem: 63 Let 〈V,W 〉 be a duality of complex involutive vector spaces, K a
closed set of selfadjoint matrices over V and v0 ∈Mn(V ) \Kn for some n.

b) If K is matrix convex and 0 ∈ K1, then there is a w ∈Mn(W )sa such that for all
m ∈ IN and v ∈ Km

〈v, w〉 ≤ 1lnm, but Re〈v0, w〉 6≤ 1ln2 .

10.1.2 Bipolar theorems

Let 〈V,W 〉 be a duality of complex vector spaces and K a set of matrices over V .
The matrix polar of K is a set D of matrices over W , given by64

Dn = {w ∈Mn(W ) | Re〈v, w〉 ≤ 1lnm for all m ∈ IN, v ∈ Km}.

The absolute matrix polar of K is a set D of matrices over W , given by65

Dn = {w ∈Mn(W ) | ‖〈v, w〉‖ ≤ 1 for all m ∈ IN, v ∈ Km}.

Polars of sets of matrices over W are defined analogously.
We have the bipolar theorems: Let 〈V,W 〉 be a duality of complex vector spaces

and K a set of matrices over V .
63 This theorem can be obtained from the above separation theorem, part a) and b). Note that for

selfadjoint v, the mapping w 7→ 〈v, w〉 is selfadjoint.
64 D = {w ∈M(W ) | Re〈v, w〉 ≤ 1l for all v ∈ K}.
65 D = {w ∈M(W ) | ‖〈v, w〉‖ ≤ 1 for all v ∈ K}.
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a) [EW97b] K equals its matrix bipolar if and only if K is closed and matrix convex
and 0 ∈ K1.

b) [EW97a] K equals its absolute matrix bipolar if and only if K is closed and abso-
lutely matrix convex.

The matrix bipolar of a set K of matrices over V is therefore the smallest closed and
matrix convex set which contains K and 0.

The absolute matrix bipolar of a set K of matrices over V is therefore the smallest
closed and absolutely matrix convex set which contains K.

So we get a characterization of the unit balls of MIN (E) and MAX (E) for a normed
space E.

10.2 Matrix extreme points

A part of convexity theory studies the possibility of representing all points of a convex
set as convex combinations of special points, the so called extreme points. The
well-known results about this are the Krein-Milman theorem and its sharpenings, the
Choquet representation theorems. The question arises whether there are analogous
results for non-commutative convexity. The sections Matrix extreme points and
C∗-extreme points give partial answers to this question.

Let V be a vector space. A matrix convex set of matrices over V is called matrix
convex set in V for short. Let A be a set of matrices over V . The matrix convex hull
of A is the smallest matrix convex set in V containing A. Its closure is the smallest
closed matrix convex set containing A because the closure of matrix convex sets is
matrix convex. Two elements x, y ∈ Mn(V ) are unitarily equivalent, if there is a
unitary u ∈ Mn such that x = u∗yu. Let U(S) be the set of all elements, that are
unitarily equivalent to elements of S ⊂Mn(V ). x ∈Mn(V ) is called reducible, if it is
unitarily equivalent to some block matrix

(
y 0
0 z

)
∈Mn(V ). A matrix convex combination∑k

i=1 α
∗
i xiαi is called proper, if all αi are square matrices different from 0.

Let K be a matrix convex set in V . Then x ∈ Kn is a structural element66 of
Kn, if whenever x =

∑k
i=1 α

∗
i xiαi is a proper matrix convex combination of xi ∈ Kn,

then every xi is unitarily equivalent to x. The set of all structural elements of Kn is
denoted by str(Kn). The set of structural elements of K is the set of matrices over V
consisting of str(Kn) for all n ∈ IN.

Example: Let L be an operator system. The generalized state space of L is the
matrix convex set CS(L) in the dual L∗, which consists of the matrix states

CS(L)n = {ψ | ψ : L→Mn completely positive and unital}.

The generalized state space is weak*-compact. It follows from [CE77, Lemma 2.2] that
the structural elements of CS(L)n are exactly those completely positive and unital

66The term structural element is defined by Morenz [Mor94]. Another equivalent definition is given
in [WW99]. There the structural elements are called matrix extreme points.
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mappings which are pure. To every compact and matrix convex set K there is an
operator system which has K as its generalized state space [WW99, Prop. 3.5].

Let V be a locally convex space and induce the product topology on Mn(V ). The
matrix convex Krein-Milman Theorem is: Let K be a compact matrix convex set
in V . Then K is equal to the closed matrix convex hull of the structural elements of K.
If V has finite dimension, then K is the matrix convex hull of its structural elements.

The converse result is: Let K be a compact matrix convex set in V . Let S be a
closed set of matrices, such that Sn ⊂ Kn and v∗Slv ⊂ Sm for all partial isometries
v ∈Mlm and for all n,m, l ∈ IN, l ≥ m. If the closed matrix convex hull of S equals K,
then all structural elements of K are in S.([WW99], [Fis96]).

It is possible to sharpen these results for more special matrix convex sets. A matrix
convex set K is called simple, if there are n ∈ IN and A ⊂Mn(V ), such that K is equal
to the matrix convex hull of A. K is a simple matrix convex set, if and only if there is
n ∈ IN such that str(Km) = ∅ for all m > n.

Suppose that K is a matrix convex set in V . Then x ∈ Km is a matrix extreme
point, if x ∈ str(Km) and

x /∈ ∪m<l1l∗lmstr(Kl)1llm.

Let mext(K) be the set of matrices consisting of all matrix extreme points of K.
Suppose that K is a simple compact matrix convex set in V . Then K is equal to

the closed matrix convex hull of mext(K). If V has finite dimension, then the closure
is not needed, that means K is the matrix convex hull of mext(K). In this case the
following result also holds: Let S be a set of matrices over V not containing reducible
elements such that the matrix convex hull of S equals K, then mext(K)m ⊂ U(Sm) for
all m ∈ IN ([Mor94], [Fis96]).

If K is compact and not simple, mext(K) may be empty. As an example take the
generalized state space CS(A) of a C∗-algebra A. Its matrix extreme points are exactly
the irreducible finite dimensional representations of A. These need not exist in general.

10.3 C∗-convexity

Let A be a unital C∗-algebra. A subset K ⊂ A is a C∗-convex set, if

n∑
i=1

a∗ixiai ∈ K

for all xi ∈ K and ai ∈ A such that
∑n

i=1 a
∗
i ai = 1l. The sum

∑n
i=1 a

∗
ixiai is called a

C∗-convex combination.
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A subset K ⊂ A is a C∗-absolutely convex set, if

n∑
i=1

a∗ixibi ∈ K

for all xi ∈ K and ai, bi ∈ A such that
∑n

i=1 a
∗
i ai,

∑n
i=1 b

∗
i bi ≤ 1l.

In particular C∗-convex sets are convex and C∗-absolutely convex sets are absolutely
convex.

Example: Let H be a Hilbert space and T ∈ B(H). The n-th matrix range of T is
the set

W (T )n := {ϕ(T )|ϕ : B(H)→Mn completely positive and unital}.

W (T )n is a compact and C∗-convex subset of Mn and to every compact and C∗-convex
subset K ⊂ Mn there exist a separable Hilbert space H and S ∈ B(H) such that
K = W (S)n ([LP81, Prop. 31]).

The sets

Ball(B(H)) = {x ∈ B(H)|‖x‖ ≤ 1} and P = {x ∈ B(H)|0 ≤ x ≤ 1l}

are C∗-convex und wot-compact subsets of B(H). Ball(B(H)) is also C∗-absolutely
convex.

Loebl and Paulsen introduced C∗-convex sets in [LP81]. At the beginning of the
nineties Farenick and Morenz studied C∗-convex subsets of Mn ([Far92],[FM93]). Even-
tually Morenz succeeded in proving an analogue of the Krein-Milman theorem for a
compact C∗-convex subset of Mn ([Mor94]). At the end of the nineties Magajna gen-
eralized the notion of C∗-convex sets to the setting of operator modules and proved
some separation theorems [Mag00, Th. 1.1] and also an analogue of the Krein-Milman
theorem [Mag98, Th. 1.1].

10.3.1 Separation theorems

Suppose that A,B ⊂ B(H) are unital C∗-algebras and Y ⊂ B(H) is a (A,B)-bimodul.
Then K ⊂ Y is (A,B)-absolutely convex, if

n∑
i=1

a∗ixibi ∈ K

for all xi ∈ K and ai ∈ A, bi ∈ B such that
∑n

i=1 a
∗
i ai,

∑n
i=1 b

∗
i bi ≤ 1l. Let Y be a

A-bimodul. Then K is A-convex, if

n∑
i=1

a∗ixiai ∈ K
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for all xi ∈ K and ai ∈ A such that
∑n

i=1 a
∗
i ai = 1l. In the case Y = A this definition is

equivalent to the definition of C∗-convex sets.

There are following separation theorems: Let A,B ⊂ B(H) be unital C∗-algebras
and Y ⊂ B(H) a A,B-bimodul. Let K ⊂ Y be norm closed and y0 ∈ Y \K.

1) If A = B, 0 ∈ K and K is A-convex, then there is a Hilbert space Hπ, a cyclic
representation π : A → B(Hπ) and a completely bounded A-bimodul-homomorphism,
such that for all y ∈ K

Reφ(y) ≤ 1l, but Reφ(y0) 6≤ 1l.

2)If K is (A,B)-absolutely convex, then there is a Hilbert space Hπ, representations
π : A → B(Hπ) and σ : B → B(Hπ) and a completely bounded (A,B)-bimodul-
homomorphism φ : Y → B(Hπ), such that for all y ∈ K

‖φ(y)‖ ≤ 1, but ‖φ(y0)‖ > 1.

10.4 C∗-extreme points

Let A be an unital C∗-algebra and Y ⊂ A. The C∗-convex hull of Y is the smallest
C∗-convex set that contains Y .

Suppose K ⊂ A is C∗-convex. Then x ∈ K is a C∗-extreme point, if whenever
x =

∑n
i=1 a

∗
ixiai is a C∗-convex combination of xi ∈ K with invertible ai ∈ A, then

there are unitaries ui ∈ A such that x = u∗ixiui for i = 1, . . . , n.

Suppose now A = Mn and let K ⊂ Mn be compact and C∗-convex. Let K̃ be the
matrix convex hull of K. Then K̃ is a simple compact and matrix convex set in Cl , such
that K̃n = K ([Fis96]). Thus it is possible to conceive a C∗-convex subset of Mn as a
matrix convex set in Cl . Now the matrix convex Krein-Milman theorem can be used.
Moreover, it follows from the work of Farenick and Morenz that the structural elements
of K̃n are exactly the not reducible C∗-extreme points of K. So following theorem
holds: Let K ⊂ Mn be compact and C∗-convex, then K is equal to the C∗-convex hull
of its C∗-extreme points.

In order to get a somewhat more general result, the definition of the extreme points
can be changed. Suppose that R is a hyperfinite factor and that K ⊂ R is C∗-convex.
Then x ∈ K is a R-extreme point, if whenever x =

∑n
i=1 aixiai is a C∗-convex

combination of xi ∈ K such that all ai ∈ A are positive and invertible, then it follows
that x = xi and aix = xai forr i = 1, . . . , n.67

With this definition following theorem hold: Let K ⊂ R be C∗-convex and weak*
compact. Then K is equal to the weak* closure of the C∗-convex hull of its R-extreme
points.

67If R = Mn the R-extreme points are exactly the C∗-extreme points. In general every R-extreme
point is also C∗-extreme, but not vice versa.
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11 Mapping Spaces

Let E, F be Banach spaces. We consider a linear subspace A(E,F ) of the space B(E,F )
of the continuous operators between E and F which contains all finite rank maps and is
a Banach space with respect to a given norm. Furthermore, it is usually required that
A(E,F ) be defined for all pairs of Banach spaces E and F . Such a space is called –
according to A. Grothendieck – a mapping space .

Analogously, we call an operator space A(X,Y ) which is a linear subspace of
CB(X,Y ) a CB-mapping space. Note that generally the algebraic identification
of Mn(A(X,Y )) with A(X,Mn(Y )) fails to be isometric and that the norms on
A(X,Mn(Y )) do not generate an operator space structure for A(X,Y ).

There is a close relationship between mapping spaces and tensor products: The space
F (X,Y ) of all finite rank maps between X and Y and the algebraic tensor product of
X∗ with Y are isomorphic:

X∗ ⊗alg Y ∼= F (X,Y ).

This identification enables us to transfer norms from one space to the other one. To this
end, we consider the extension of the mapping X∗ ⊗ Y → F (X,Y ) to the completion
with respect to an operator space tensor norm X∗⊗̃Y :

Φ : X∗⊗̃Y → CB(X,Y ).

Φ is in general neither injective nor surjective. As a CB-mapping space one obtains

Im(Φ) ⊂ CB(X,Y )

with the operator space norm of

(X∗⊗̃Y )/Ker(Φ).

We consider now assignments that assign a mapping space A(·, ·) with operator space
norm α(·) to every pair of operator spaces. In the Banach space theory A. Pietsch inten-
sified the notion of mapping spaces to that of the operator ideals [Pie78]. Analogously,
we consider operator ideals which are mapping spaces with the CB-ideal property
[ER94], i.e , the composition

CB(X1, X2)×A(X2, Y2)× CB(Y2, Y1) → A(X1, Y1)
(Ψ1,Φ,Ψ2) 7→ Ψ2 ◦ Φ ◦Ψ1

is for all operator spaces X1, X2, Y1, Y2 defined and jointly completely contractive.
A CB -ideal is called local [EJR98], if its norm satisfies:

α(ϕ) = sup{α(ϕ|L) : L ⊂ X, dimL <∞}.
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11.1 Completely nuclear mappings

Let X and Y be operator spaces. The completely nuclear mappings from X to Y
[ER94, §2], [EJR98, §3] are defined by the projective operator space tensor norm. We
consider the extension of the canonical identity X∗ ⊗ Y = F (X,Y ):

Φ : X∗
∧
⊗ Y → X∗

∨
⊗ Y ⊂ CB(X,Y ).

∨
⊗ is the injective tensor product and

∧
⊗ the projective tensor product.

A mapping in the range of Φ is called completely nuclear. One denotes by

CN (X,Y ) := (X∗
∧
⊗ Y )/Ker(Φ)

the space of the completely nuclear mappings and endows it with the quotient operator
space structure. The operator space norm is denoted by ν(·). Mn(CN (X,Y )) and
CN (X,Mn(Y )) are in general not isometric.

Nuclear 68 mappings are completely nuclear. [ER94, 3.10]
In general, the projective tensor norm does not respect complete isometries.

Hence,even for subspaces Y0 ⊂ Y the canonical embedding CN (X,Y0) → CN (X,Y )
is generally only completely contractive and not isometric. Since the projective tensor
norm respects quotient mappings, every nuclear map ϕ : X0 → Y on a subspace X0 ⊂ X
with ν(ϕ) < 1 has an extension ϕ̃ to the whole of X satisfying ν(ϕ̃) < 1.

The completely nuclear mappings enjoy the CB -ideal property. Furthermore, the
adjoint ϕ∗ is completely nuclear if ϕ is, and the inequality: ν(ϕ∗) ≤ ν(ϕ) [EJR98,
Lemma 3.2] holds.

A mapping ϕ is completely nuclear, if and only if there is a factorization of the form

B(`2)
M(a,b)→ T (`2)

↑ r ↓ s
X

ϕ→ Y

Here a, b are Hilbert-Schmidt operators defining the mapping M(a, b) : x 7→ axb. For
the completely nuclear norm we have: ν(ϕ) = 1 precisely if for all ε > 0 there exists a
factorization with ‖r‖cb‖a‖2‖b‖2‖s‖cb ≤ 1 + ε 69 [ER94, Thm. 2.1].

68The completely nuclear mappings owe their definition to the one of the nuclear mappings of the
Banach space theory. There, one considers a corresponding mapping ΦB : E∗ ⊗γ F → B(E,F ) for two
Banach spaces E and F .

69In the Banach space theory one has an analogous statement: A mapping ϕ is nuclear, if and only if
there’s a diagram

`∞
d→ `1

r ↑ ↓ s
E

ϕ→ F,

where d is a diagonal operator, i.e. , there is a (di) ∈ `1, such that d((ai)) = (di ·ai) for all (ai) ∈ `∞. The
nuclear norm is then computed as: νB(ϕ) = inf ‖r‖‖d‖`1‖s‖, where the infimum runs over all possible
factorizations.
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The completely nuclear mappings are not local.

11.2 Completely integral mappings

Completely integral mappings are defined by the aid of completely nuclear mappings.
A mapping ϕ : X → Y is said to be completely integral, if there are a constant c > 0
and a net of finite rank maps ϕα ∈ CN (X,Y ) with ν(ϕα) ≤ c converging to ϕ in the
point norm topology 70.

The set of all these mappings forms the space CI (X,Y ) of the completely integral
mappings.

The infimum of all those constants c satisfying the above condition is actually at-
tained and denoted by ι(ϕ). ι(·) is a norm turning CI (X,Y ) into a Banach space. The
unit sphere of CI (X,Y ) is merely the point norm closure of the unit sphere of CN (X,Y ).

One obtains the canonical operator space structure by defining the unit sphere of
Mn(CI (X,Y )) as the point norm closure of unit sphere of Mn(CN (X,Y )).

By definition we have ι(ϕ) ≤ ν(ϕ); for finite dimensional X we have moreover
[EJR98, Lemma 4.1]

CI (X,Y ) cb= CN (X,Y ).

Integral 71 mappings are completely integral [ER94, 3.10].
The canonical embedding

CI (X,Y ) ↪→ (X
∨
⊗ Y ∗)∗

is a complete isometry [EJR98, Cor. 4.3]. One has moreover that [EJR98, Cor. 4.6] ϕ is
completely integral, if and only if there is a factorization of the form:

B(H)
M(ω)→ B(K)∗

↑ r ↓ s
X

ϕ→ Y ↪→ Y ∗∗

with weak∗-continuous s . The mapping M(ω) : B(H) → B(K)∗ is for two elements
a ∈ B(H), b ∈ B(K) given by (M(ω)(a))(b) = ω(a⊗ b). We have for the norm ι(ϕ) = 1,
if there is a factorization with ‖r‖cb‖ω‖‖s‖cb = 1 (note that generally ‖M(ω)‖cb 6= ‖ω‖).

The completely integral mappings enjoy also the CB -ideal property. Contrasting
the situation of completely nuclear mappings they are local. In general one only has
ι(ϕ) ≤ ι(ϕ∗) [EJR98].

70 ϕα → ϕ in the point norm topology, if ‖ϕα(x)− ϕ(x)‖ → 0 for all x ∈ X.
71 The unit ball of the integral mappings of the Banach space theory is just the point norm closure

of the unit ball of the nuclear mappings. One should note that the formulas ιB(ϕ) = ιB(ϕ∗) and
IB(E,F ∗) = (E ⊗λ F )∗ have no counterparts for completely integral mappings.
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12 Appendix

12.1 Tensor products

12.1.1 Tensor products of operator matrices

As usual we define the algebraic tensor product of operator matrices x = [xij ] ∈Mp(X),
y = [ykl] ∈Mq(Y ) by setting

x⊗ y := [xij ⊗ [ykl]k,l]i,j ∈Mp(X ⊗Mq(Y )).

Here we have used the definition Mp(X) = Mp ⊗X and the associative law

Mp(X)⊗Mq(Y ) = Mp ⊗ (X ⊗Mq(Y )) = Mp(X ⊗Mq(Y )). (5)

In view of the next identification one should note that the shuffle-map is an algebraic
isomorphism:

X ⊗ (Mq ⊗ Y )→Mq ⊗ (X ⊗ Y ), (6)

x⊗ (β ⊗ y) 7→ β ⊗ (x⊗ y),

for β ∈Mq, x ∈ X, y ∈ Y . The shuffle-isomorphism at hand we obtain the identification:

x⊗ y = [xij ⊗ [ykl]k,l]i,j = [[xij ⊗ ykl]k,l]i,j ∈Mp(Mq(X ⊗ Y )).

Finally we use the usual72 identification Mp(Mq) = Mpq

[[xij ⊗ ykl]k,l]i,j = [xij ⊗ ykl](i,k),(j,l)

to obtain

Mp(X)⊗Mq(Y ) = Mpq(X ⊗ Y ). (7)

We call this algebraic isomorphism the shuffle-isomorphism.
One should note that for operator space tensor products the algebraic identifications

(5) and (6) are only complete contractions:

lMp(X)⊗α Y → lMp(X ⊗α Y ), (8)
X ⊗α lMq(Y ) → lMq(X ⊗α Y ). (9)

In general these are not isometries even for p = 1 resp. q = 1.
For an operator space tensor product the shuffle-map

lMp(X)⊗α lMq(Y )→ lMpq(X ⊗α Y ) (10)

72In the matrix so obtained (i, k) are the row indices and (j, l) are the column indices, where i, j =
1, . . . , p and k, l = 1, . . . , q. The indices (i, k) resp. (j, l) are ordered lexicographically.
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in general is only completely contractive.
In the case of the injective operator space tensor product this is of course a complete

isometry.
More generally, one considers the shuffle–map for rectangular matrices73:

lMm,n(X)⊗α lMp,q(Y )→ lMmp,nq(X ⊗α Y ).

Another example is provided by the Blecher-Paulsen equation.

12.1.2 Joint amplification of a duality

The matrix dualitywhich is fundamental in the duality theory of operator spaces, is a
special case of the joint amplification of a bilinear mapping.

The joint amplification of a duality 〈X,X∗〉 of vector spaces is defined by

〈x, ϕ〉p×q = 〈[xij ], [ϕκλ]〉p×q := [〈xij , ϕκλ〉] ∈Mp(Mq) = Mpq

for x = [xij ] ∈Mp(X), ϕ = [ϕκλ] ∈Mq(X∗).
Interpreting ϕ as a mapping ϕ : X →Mq we have

ϕ(p)(x) = 〈x, ϕ〉p×q.

Associated to the duality of tensor products74 〈X ⊗ Y,X∗ ⊗ Y ∗〉 is the joint
amplification

〈Mp(X ⊗ Y ),Mq(X∗ ⊗ Y ∗)〉.

Especially, the equation

〈x⊗ y, ϕ⊗ ψ〉 = 〈[xij ]⊗ [ykl], [ϕκλ]⊗ [ψµν ]〉
:= [〈xij , ϕκλ〉〈ykl, ψµν〉](ikκµ),(jlλν) ∈Mp1(Mp2(Mq1(Mq2))) = Mp1p2q1q2

obtains, where x = [xij ] ∈ Mp1(X), y = [ykl] ∈ Mp2(Y ), ϕ = [ϕκλ] ∈ Mq1(X∗),
ψ = [ψµν ] ∈Mq2(Y ∗).

73The shuffle-map

(U ⊗X)⊗ (V ⊗ Y )→ (U ⊗ V )⊗ (X ⊗ Y ),

(u⊗ x)⊗ (v ⊗ y) 7→ (u⊗ v)⊗ (x⊗ y),

U ,V ,X,Y operator spaces, has been studied for various combinations of operator space tensor products
[EKR93, Chap. 4].

74The duality 〈X ⊗Y,X∗⊗Y ∗〉 is defined by 〈x⊗ y, ϕ⊗ψ〉 := 〈x, ϕ〉〈y, ψ〉 for x ∈ X, y ∈ Y , ϕ ∈ X∗,
ψ ∈ Y ∗.
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12.1.3 Tensor matrix multiplication

The definition of the completely bounded bilinear maps as well as the
Haagerup tensor product relies on the tensor matrix multiplication [Eff87]

x� y = [xij ]� [yjk] :=
[∑l

j=1 xij ⊗ yjk
]
∈Mn(X ⊗ Y )

of operator matrices x = [xij ] ∈Mn,l(X), y = [yjk] ∈Ml,n(Y ).
The amplification of the bilinear mapping ⊗ : X × Y → X ⊗ Y is given by

⊗(n,l) = � : Mn,l(X)×Ml,n(Y )→Mn(X ⊗ Y ).

For scalar matrices α, γ ∈Mn, β ∈Ml we have

(αxβ)� (yγ) = α(x� (βy))γ.

We use the short hand notation αxβ � yγ.
For linear maps

Φ = [Φij ] : x → Mn,l(V ),
Ψ = [Φjk] : x → Ml,n(W )

we denote by Φ�Ψ the mapping

Φ�Ψ =

 l∑
j=1

Φij ⊗Ψjk

 : X ⊗ Y →Mn(V ⊗W ),

Φ�Ψ : x⊗ y 7→

 l∑
j=1

Φij(x)⊗Ψjk(y)

 .
We then have

(Φ�Ψ)(p)(x� y) = (Φ(p,q)(x))� (Ψ(q,p)(y))

for x ∈Mp,q(X), y ∈Mq,p(Y ).
Let ⊗α be an operator space tensor product. We define the tensor matrix mul-

tiplication �α of operator matrices S = [Si,j ] ∈ Mn,l(CB(X1, X2)), T = [Tk,l] ∈
Ml,n(CB(Y1, Y2)) of completely bounded maps by setting

S �α T =

 l∑
j=1

Sij ⊗α Tjk

 ∈Mn(CB(X1 ⊗α Y1, X2 ⊗α Y2)).
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12.2 Interpolation

Intersection and sum

Let X and Y be operator spaces such that M1(X) and M1(Y ) are embedded in a
Hausdorff topological vector space. Mn(X ∩ Y ) is given a norm via Mn(X ∩ Y ) :=
Mn(X) ∩Mn(Y ). So we have:

‖[xij ]‖Mn(X∩Y ) = max
{
‖[xij ]‖Mn(X), ‖[xij ]‖Mn(Y )

}
.

The operator space X ∩ Y is called the intersection of X and Y .
For operator spaces75 X and Y , by embedding X ⊕ Y in (X∗ ⊕∞ Y ∗)∗ we obtain an
operator space structure X ⊕1 Y . We write ♦ := {(x,−x)} ⊂ X ⊕1 Y . The quotient
operator space (X ⊕1 Y ) /♦ is called the sum of X and Y and is denoted by X + Y .
We have

‖[xij ]‖Mn(X+Y ) = inf
[xij ]=[xij ]X+[xij ]Y

‖[(xijX , xijY )]‖Mn(X⊕1Y ).

Interpolation

Let E0, E1 be Banach spaces continuously embedded in a Hausdorff topological vector
space. The pair (E0, E1) is called a compatiple couple in the sense of interpolation theory
[BL76]. Then we can define the interpolation space Eθ := (E0, E1)θ for 0 < θ < 1.

Pisier introduced the analogous construction for operator spaces [Pis96, §2]: Let Xi

(i = 0, 1) be operator spaces continuously embedded in a Hausdorff topological vector
space V . Then we have specific norms on Mn(Xi) and continuous linear inclusions
Mn(Xi) ↪→ Mn(V ) for all n ∈ IN.76 The interpolated operator space Xθ is defined
via Mn(Xθ) := (Mn(X0),Mn(X1))θ.
Let X be an operator space, H a Hilbert space and V : H → X a bounded linear and
injective mapping with dense range such that the mapping77 V V ∗ : X∗ → X also is
bounded, linear and injective with dense range. Then we have completely isometrically
[Pis96, Cor. 2.4]:

(X∗, X) 1
2

cb= OHH.

Examples

1. (RH, CH) 1
2

cb= OHH
cb= (MINH,MAXH) 1

2

75 Let E, F be Banach spaces. Then we have their 1-direct sum E ⊕1 F with the norm

‖(xE , xF )‖ = ‖xE‖ + ‖xF ‖

and their sum E + F with the quotient norm

‖x‖E+F = inf
x=xE+xF

(
‖xE‖E + ‖xF ‖F

)
.

76We identify Mn(V ) with V n
2
.

77As usual we identify H with its dual.
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2. (CH ⊗h RH,RH ⊗h CH) 1
2

cb= OHH ⊗h OHH
cb= OHH⊗H

In this manner one also obtains operator space structures on the Schatten ideals Sp =
(S∞, S1) 1

p
for 1 ≤ p ≤ ∞.

13 Symbols

Sets

IN the set of natural numbers
ZZ the set of integers
Ql the set of rational numbers
lR the set of real numbers
Cl the set of complex numbers

Banach spaces

E, F Banach spaces
H, K Hilbert spaces⊕

2 Hilbert space direct sum
Hn

⊕n
i=1H

`n2 the n-dimensional Hilbert space

Algebras

B(H) the algebra of bounded linear operators on H
A, B C∗-algebras
Aop the opposite algebra of an algebra A
1lA the identity in A
M , N von Neumann algebras

Ideals

Sp the Schatten-p-classes
K(·, ·) the ideal of compact operators
K(·, ·) the closed linear span of the elementary operators; ideal in Bad(·, ·)
N(·, ·) the ideal of nuclear operators
HS (·, ·) the ideal of Hilbert-Schmidt operators (S2)
Π2(·, ·) the ideal of absolutely 2-summing operators
π2(·) the absolutely 2-summing norm
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Mapping spaces

Γ2(·, ·) operators factorizing through the column Hilbert space
γ2(·) the norm on Γ2

CN (·, ·) completely nuclear operators
ν(·) the norm on CN
CI (·, ·) completely integral operators
ι(·) the norm on CI

Operator spaces

X, Y operator spaces
B(H) aqlgebra of bounded linear operators on H
Mn(X) Mn ⊗X matrices with entries from X (algebraically)
M1(X) first level of the operator space X
CB(X,Y ) the operator space of completely bounded mappings
CB(X,Y )A the operator space of completely bounded right A-module homomor-

phisms
CB(X × Y ;Z) the operator space of completely bounded bilinear mappings
JCB(X × Y ;Z) the operator space of jointly completely bounded bilinear mappings
‖ · ‖jcb norm of a jointly completely bounded bilinear mapping
X0, Y0 operator subspace of the corresponding operator spaces
X∗ dual of the operator space X

Special operator spaces

MIN (E) the minimal operator space on E
MAX (E) the maximal operator space on E
MINH the minimal operator space on H
MAXH the maximal operator space on H
RH the row Hilbert space
Rn R`n2
CH the column Hilbert space
Cn C`n2
OHH the operator Hilbert space

Norms

‖ · ‖cb completely bounded norm
‖ · ‖row row norm
‖ · ‖col column norm
‖ · ‖n norm on Mn(X)
‖ · ‖m,n norm on Mm,n(X)
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Matrices

Mn,m(X) n×m-matrices over X
Mn(X) Mn,n(X)
Mn,m Mn,m(Cl )
Mn Mn,n

lMn,m(X) the operator space of n×m-matrices over X
lMn(X) lMn,n(X)
lMn,m lMn,m(Cl )
lMn lMn,n

Cn(X) lMn,1(X), the columns of an operator space
Rn(X) lM1,n(X), the rows of an operator space

Tensor products

� tensor matrix product
⊗ algebraic tensor product
⊗A algebraic module tensor product
⊗̃ completion of the algebraic tensor product
⊗α operator space tensor product
⊗α∗ dual operator space tensor product
⊗h the Haagerup tensor product
⊗hA the module Haagerup tensor product
∨
⊗ the injective tensor product
∧
⊗ the projective tensor product
⊗λ the injective Banach space tensor product
⊗γ the projective Banach space tensor product
⊗ext the external tensor product
⊗Θ the internal tensor product
S ⊗α T α-tensor product of the completely bounded operators S, T

Tensor norms

‖ · ‖α α-operator space tensor norm
‖ · ‖α,n α-operator space tensor norm on the nth level
‖ · ‖α∗ dual operator space tensor norm of ‖ · ‖α
‖ · ‖∨ injective operator space tensor norm
‖ · ‖∧ projective operator space tensor norm
‖ · ‖h Haagerup operator space tensor norm
‖ · ‖λ injective Banach space tensor norm
‖ · ‖γ projective Banach space tensor norm
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Operator modules

A1, A2 C∗-algebras
M , N von Neumann algebras
Aut(M) the set of ∗-automorphisms of M
CB (A1,A2)(X,Y ) the operator space of completely bounded left A1- right A2-module

homomorphisms between X and Y
CBσ

(A1,A2)(X,Y ) the operator space of normal completely bounded left A1- right A2-
module homomorphisms between X and Y

CBs
(A1,A2)(X,Y ) the operator space of singular completely bounded left A1- right A2-

module homomorphisms between X and Y

Hilbert-C∗-modules

X conjugate Hilbert-C∗-module
B(·, ·)A the space of bounded right A-module homomorphisms
〈·, ·〉A inner product of a right Hilbert-A-module
A〈·, ·〉 inner product of a left Hilbert-A-module
〈·, ·〉 inner product of a Hilbert space
Bad(X,Y ) the operator space of adjointable A-module homomorphisms between

Hilbert-C∗-modules X and Y

Mappings

1lB(H) the identity of B(H)
1ln the identity of Mn

π representations
Φ(n) nth amplification of a linear mapping Φ
Φ(n,l) (n, l)th amplification of a bilinear mapping Φ
Φ(n) Φ(n,n), nth amplification of a bilinear mapping Φ
Φ(n) nth amplification of a multilinear mapping Φ
Φ(p×q) joint amplification of a bilinear mapping Φ
Φ̃ linearization of a bilinear mapping Φ
Φσ the normal (=w∗-w∗-continuous) part of a mapping Φ between dual

spaces
Φs the singular part of a mapping Φ between dual spaces
Θ faithful non-degenerate ∗-representation of a C∗-algebra

Isomorphisms

cb= completely isometrically isomorphic
cb' completely isomorphic
' isomorphic
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Miscellanea

Ball unit ball⊕n
i=1Xi nth direct sum⊕
n∈INXn countable direct sum

T ∗ the adjoint of the operator T
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completely bounded mapping , 9
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matrix convex combination, 48
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C∗-algebra, 5, 19, 23, commutative, 5,

11, 43
injective, 22
nuclear, 43
quasi-cyclic, 46

decomposition theorem
for completely bounded symmetric

multilinear mappings, 45
for self-adjoint completely bounded

bimodule homomorphisms, 22
of Tomiyama-Takesaki, 22

derivations
completely bounded, 43
inner, 43

dominate, 4, 24
dual

of an operator space, see
operator space

operator space tensor norm, see
operator space tensor norm

operator space tensor product, see
operator space tensor product

embedding
canonical, 8, 57

examples, 48, Haagerup tensor product,
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hilbertian operator spaces, 15
injective op. space tensor product,
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module Haagerup tensor product,

42
of operator modules, 20
operator algebra, 23, 24

operator space, 5, 7
operator spaces

completely locally reflexive, 43
projective op. space tensor product,
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extension theorem

for completely bounded module ho-
momorphisms, 21
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mappings, 44

factorization
through a column Hilbert space, see

hilbertian operator space
finite dimensional mappings, 54

Grothendieck
H-tensor product, 34

H-tensor product, 34
Haagerup tensor, norm, 33

infimum formula, 33
minimum formula, 34
sum formula, 34
supremum formula, 35

product, 33
H-tensor product, 34
interpolation, 34
involving column Hilbert space,

36, 37
involving row Hilbert space, 36, 37
lemma of Blecher and Paulsen, 36
shuffle map, 35
tensor matrix product �h, 36

hilbertian operator space, 15
column Hilbert space C, 15, 17

as an operator algebra, 24
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factorization through a, 18

homogeneous, 15
completely self dual, 15

maximal, 15
minimal, 15
morphisms, 16
operator Hilbert space OH , 15, 61
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as an operator algebra, 24
row Hilbert space R, 15

as an operator algebra, 24
Hochschild cohomology, 43

ICM 1986, 3
ideal

of an operator algebra, see
operator algebra

Schatten class, 16
symmetrically normed, 16

ideal property, 55
injective operator space, tensor norm, 29

tensor product, 29
and λ-tensor product, 30

interpolation of operator spaces, 61
interpolation space, 61
intersection of operator spaces, 60

joint
amplification, see

bilinear mapping

lemma of, see
theorem of

Blecher and Paulsen, 36
Smith, 5, 46

locally reflexive, 42
completely, 42

M-ideal, 42
mapping, complete quotient mapping, 9

completely bounded, 3, see
completely bounded mapping

completely integral, 56
characterization, 57

completely nuclear, 55
characterization, 56

completely positive, 3
Hilbert-Schmidt, 16
integral, 57
nuclear, 16, 56
shuffle, see

operator space tensor product ,
27

mapping space, 54, see
Abbildungsraum, completely in-
tegral mappings, 56

completely nuclear mappings, 55
matricially normed space, 4, see

space
matrix

set of matrices, 47
matrix cone, 48
matrix convex, 48

absolutely, 48
matrix convex combination, 48
matrix duality, see

bilinear mapping
matrix multiplication, 23
matrix polar, 50

absolute, 50
module homomorphism, 22

completely bounded
decomposition theorem, 22
extension theorem, 21
module Haagerup tensor product,

23, 42
representation (K;π; v∗;w), 21
representation theorem for, 20

normal, 22
self-adjoint, 21
singular, 22

multilinear mapping, amplification, 44
completely bounded, 44

extension theorem, 44
representation theorem, 44

completely bounded symmetric
decomposition theorem, 45

linearization, 44
Haagerup tensor product, 44

multimodular, 47

normal
module homomorphism, see

module homomorphism

operator
2-summing, 16
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adjoint, 9
operator algebra, 23

abstract, 23
concrete, 23
ideal in an, 24
Ruan’s theorem, 23

operator ideal, 55
operator module, see

module homomorphisms,
(A1, A2)-, 20

abstract, 20
concrete, 20
examples, 20
operator bimodule
A-, 20

representation theorem, 20
operator space, 3, 4, abstract, 5

completely locally reflexive, 42
concrete, 5
dual, 8
finite dimensional, 42
hilbertian, 15, see

hilbertian operator space
homogeneous, 4

completely self dual, see
hilbertian operator space

injective, 17
interpolated, 61
matrix level, 4, 6
maximal, 10, 50
minimal, 10, 50
operator space norm, 3
quotient of, 6
reflexive, 8
subspace of, 6

operator space tensor, norm, 26
Haagerup, see

Haagerup tensor norm
injective, see

injective
maximal, see

projective
minimal, see

injective

projective, see
projective

spatial, see
injective

product, 25
associativity of, 28
axioms, 26
cross norm, 28
Haagerup, see

Haagerup tensor product
injective, see

injective
injectivity of, 28
maximal, see

projective
minimal, see

injective
projective, see

projective
projectivity of, 28
self-duality of, 28
shuffle mapping, 27
spatial, see

injective
symmetry of, 28

operator space tensor norm
projective, 55

operator systems, 3

Paulsen
conjecture of, 16

projective operator space, tensor norm,
31

tensor product, 31
and γ-tensor product, 32
column Hilbert space, 32
Fourier algebra, 32
predual of a von Neumann alge-

bra, 32
row Hilbert space, 32

quasi-cyclic, 46
quotient
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of an operator space, see
operator space

quotient mapping
complete, see

mapping

representation theorem
for completely bounded module ho-

momorphisms, 20
for completely bounded multilinear

mappings, 44
operator modules, 20

row Hilbert space, see
hilbertian operator space

row norm, 17
row space Rp, 7
Ruan

axioms
operator modules, 20
operator space, 3

theorem of, 5

Schatten ideals Sp, 16, 24
operator space structure, 61

Schur product, 24
self-adjoint

algebra in B(H), 23
separation theorem, 49
set of matrices, 47
shuffle mapping, see

operator space tensor product ,
27

similarity problem, 43
singular

module homomorphism, see
module homomorphism

singular values, 16
special operator spaces, CB(X,Y ), 7

intersection of operator spaces X ∩
Y , 60

operator Hilbert space OH , 61
sum of op. spaces X + Y , 61

standard dual, 8
∗-representation, 20

state space
generalized, 51

structural element, 51
subspace

of an operator space, see
operator space

sum of operator spaces, 60, 61

tensor norm
of operator spaces, see

operator space tensor norm
tensor product

of operator spaces, see
operator space tensor product

cross norm, 28
Haagerup, see

Haagerup
theorem

bipolar theorem, 50
separation theorem, 49

theorem of, see
lemma of

Christensen, 43
Ruan, 5

for operator algebras, 23
topology

non commutative, 3


	Short History
	Operator Spaces and Completely Bounded Maps
	Basic facts
	Ruan's theorem
	Elementary constructions
	The space CB(X,Y)
	The dual
	Direct sums
	MIN and MAX
	Injective operator spaces
	Definition
	Examples and elementary constructions
	Characterizations


	Operator Systems and Completely Positive Maps
	Definitions
	Characterization
	Matrix order unit norm
	Injective operator systems

	Hilbertian Operator Spaces
	The spaces
	The morphisms
	The column Hilbert space CH
	Characterizations

	Column Hilbert space factorization

	Multiplicative Structures
	Operator modules
	Completely bounded module homomorphisms
	Operator algebras

	Tensor Products
	Operator space tensor products
	Injective operator space tensor product
	Exact operator spaces

	Projective operator space tensor product
	The Haagerup tensor product
	Completely bounded bilinear mappings
	Module tensor products
	Module Haagerup tensor product


	Complete Local Reflexivity
	Completely Bounded Multilinear Mappings
	Automatic Complete Boundedness
	Convexity
	Matrix convexity
	Separation theorems
	Bipolar theorems

	Matrix extreme points
	C*-convexity
	Separation theorems

	C*-extreme points

	Mapping Spaces
	Completely nuclear mappings
	Completely integral mappings

	Appendix
	Tensor products
	Tensor products of operator matrices
	Joint amplification of a duality
	Tensor matrix multiplication

	Interpolation

	Symbols

