next up previous contents index
Next: The adjoint operator Up: The dual Previous: The dual   Contents   Index

Some formulae

For matricially normed spaces $ X$ and $ Y$, $ m\in{\mathbb{N}}$, $ y\in M_m(Y)$ and $ T\in\mathit{CB}(X,Y)$ we have

$\displaystyle \Vert y\Vert=\sup\left\{\Vert\Phi(y)\Vert\;\vert\;n\in{\mathbb{N}...
...athit{CB}(Y,{\mathbb{M}}_n),\;\Vert\Phi\Vert _{\mathrm{cb}}
\leqslant 1\right\}$

and

$\displaystyle \Vert T\Vert _{\mathrm{cb}}=\sup\{\Vert\Phi^{(n)}\circ T\Vert _{\...
...i\in\mathit{CB}(Y,{\mathbb{M}}_n),\;
\Vert\Phi\Vert _{\mathrm{cb}}\leqslant 1\}$   .

A matrix $ [T_{ij}]\in M_n(X^*)$ defines an operator

$\displaystyle T:M_n(X)$ $\displaystyle \to$ $\displaystyle {\mathbb{C}}$  
$\displaystyle \left[x_{ij}\right]$ $\displaystyle \mapsto$ $\displaystyle \sum_{i,j}T_{ij}x_{ij}$   .  

Thus we have an algebraic identification of $ M_n(X^*)$ and $ M_n(X)^*$ and further of $ M_n(X^{**})$ and $ M_n(X)^{**}$. The latter even is a complete isometry ([Ble92b, Cor. 2.14]):

$\displaystyle {\mathbb{M}}_n(X^{**})\stackrel{\mathrm{cb}}{=}{\mathbb{M}}_n(X)^{**}$   .

The isometry on the first matrix level is shown in [Ble92a, Thm. 2.5]. This already implies11the complete isometry. More generally we have12

$\displaystyle \mathit{CB}(X^*,{\mathbb{M}}_n(Y))\stackrel{\mathrm{cb}}{=}\mathit{CB}({\mathbb{M}}_n(X)^*,Y)$   .

$ X$ is called reflexive, if $ X \stackrel{\mathrm{cb}}{=}X^{**}$. An operator space $ X$ is reflexive if and only if its first matrix level $ M_1(X)$ is a reflexive Banach space.



Footnotes

... implies11

$\displaystyle M_k({\mathbb{M}}_n(X)^{**})=M_k(M_n(X))^{**}=M_{kn}(X)^{**}=M_{kn}(X^{**})=M_k({\mathbb{M}}_n(X^{**}))$   .

... have12
This follows from $ {\mathbb{M}}_n(X^{**})\stackrel{\mathrm{cb}}{=}{\mathbb{M}}_n(X)^{**}$ and the above mentioned formula

$\displaystyle \Vert T\Vert _{\mathrm{cb}}=\sup\{\Vert\Phi^{(n)}\circ T\Vert _{\...
...i\in\mathit{CB}(Y,{\mathbb{M}}_n),\;
\Vert\Phi\Vert _{\mathrm{cb}}\leqslant 1\}$   .


next up previous contents index
Next: The adjoint operator Up: The dual Previous: The dual   Contents   Index
Prof. Gerd Wittstock 2001-01-07