next up previous contents index
Next: Direct sums Up: The dual Previous: Some formulae   Contents   Index

The adjoint operator

For $ T\in\mathit{CB}(X,Y)$, the adjoint operator $ T^*$ is defined as usual. We have: $ T^*\in \mathit{CB}(Y^*,X^*)$, and $ \Vert T\Vert _{\mathrm{cb}}=\Vert T^*\Vert _{\mathrm{cb}}$. The mapping
$\displaystyle {}^*:\mathit{CB}(X,Y)$ $\displaystyle \to$ $\displaystyle \mathit{CB}(Y^*,X^*)$  
$\displaystyle T$ $\displaystyle \mapsto$ $\displaystyle T^*$  

even is completely isometric [Ble92b, Lemma 1.1].13

$ T^*$ is a complete quotient mapping if and only if $ T$ is completely isometric; $ T^*$ is completely isometric if $ T$ is a complete quotient mapping. Especially for a subspace $ X_0\subset X$ we have [Ble92a]:

$\displaystyle X_0^*\stackrel{\mathrm{cb}}{=}X^*/X_0^{\perp}$

and, if $ X_0$ is closed,

$\displaystyle (X/X_0)^*\stackrel{\mathrm{cb}}{=}X_0^{\perp}$   .



Footnotes

...Blecher92a.13
The isometry on the matrix levels follows from the isometry on the first matrix level using the above mentioned formula $ \mathit{CB}({\mathbb{M}}_n(X)^*,Y)\stackrel{\mathrm{cb}}{=}\mathit{CB}(X^*,{\mathbb{M}}_n(Y))$:
$\displaystyle M_n(\mathit{CB}(X,Y))$ $\displaystyle =$ $\displaystyle M_1(\mathit{CB}(X,{\mathbb{M}}_n(Y)))$  
  $\displaystyle \hookrightarrow$ $\displaystyle M_1(\mathit{CB}({\mathbb{M}}_n(Y)^*,X^*))$  
  $\displaystyle =$ $\displaystyle M_1(\mathit{CB}(Y^*,{\mathbb{M}}_n(X^*)))$  
  $\displaystyle =$ $\displaystyle M_n(\mathit{CB}(Y^*,X^*))$   .  


next up previous contents index
Next: Direct sums Up: The dual Previous: Some formulae   Contents   Index
Prof. Gerd Wittstock 2001-01-07