next up previous contents index
Next: The Haagerup tensor product Up: Projective operator space tensor Previous: Projective operator space tensor   Contents   Index


Some formulae for the projective operator space tensor product

  1. If $ E$ and $ F$ are normed spaces, we have [BP91, Prop. 4.1]
    $\displaystyle MAX(E) \stackrel{\scriptscriptstyle \wedge}{\otimes}MAX(F)$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle MAX(E \otimes_\gamma F)$  

    completely isometrically.
  2. Taking the projective operator space tensor product of various combinations of the column Hilbert spaces $ {\mathcal{C}}$, the row Hilbert spaces $ {\mathcal{R}}$ and an arbitrary operator space $ X$ one obtains the following completely isometric identifications: [ER91], [Ble92b, Prop. 2.3]
    1. $ X \stackrel{\scriptscriptstyle \wedge}{\otimes}{\mathcal{C}}_\H\stackrel{\mathrm{cb}}{=}X \otimes_{h}{\mathcal{C}}_\H$
    2. $ {\mathcal{R}}_\H\stackrel{\scriptscriptstyle \wedge}{\otimes}X \stackrel{\mathrm{cb}}{=}{\mathcal{R}}_\H\otimes_{h}X$
    3. $ {\mathcal{C}}_\H\stackrel{\scriptscriptstyle \wedge}{\otimes}{\mathcal{C}}_\ma...
...}}_\mathcal{K}\stackrel{\mathrm{cb}}{=}
{\mathcal{C}}_{\H\otimes_2 \mathcal{K}}$
    4. $ {\mathcal{R}}_\H\stackrel{\scriptscriptstyle \wedge}{\otimes}{\mathcal{R}}_\ma...
...}}_\mathcal{K}\stackrel{\mathrm{cb}}{=}
{\mathcal{R}}_{\H\otimes_2 \mathcal{K}}$
    5. $ {\mathcal{R}}_{\overline{\H}} \stackrel{\scriptscriptstyle \wedge}{\otimes}{\m...
...\otimes_{h}{\mathcal{C}}_\mathcal{K}\stackrel{\mathrm{cb}}{=}
T(\H,\mathcal{K})$
    6. $ X \stackrel{\scriptscriptstyle \wedge}{\otimes}T(\H,\mathcal{K}) \stackrel{\ma...
...{\mathcal{R}}_{\overline{\H}} \otimes_{h}X \otimes_{h}{\mathcal{C}}_\mathcal{K}$
    7. $ \mathit{CB}(X,B(\mathcal{K},\H)) \stackrel{\mathrm{cb}}{=}
({\mathcal{R}}_{\ov...
...thcal{R}}_{\overline{\H}} \otimes_{h}X \otimes_{h}{\mathcal{C}}_\mathcal{K})^* $,
    where the space of trace class operators $ T(\H,\mathcal{K})$ is endowed with its natural operator space structure: $ T({\H,\mathcal{K}}) :\stackrel{\mathrm{cb}}{=}K({\mathcal{K}, \H})^*$.
  3. Let $ M$ and $ N$ be von Neumann algebras and denote by $ M \overline{\otimes}N$ the von Neumann tensor product35. For the preduals one has

    $\displaystyle M_* \stackrel{\scriptscriptstyle \wedge}{\otimes}N_* \stackrel{\mathrm{cb}}{=}(M \overline{\otimes}N)_*
$

    completely isometrically [ER90a].

    Let $ G$ and $ \H$ be locally compact topological groups and denote by $ \mathit{VN}(G)$, $ \mathit{VN}(H)$ the corresponding group von Neumann algebras.36 It is well-known that $ \mathit{VN}(G)\, \overline{\otimes}\, \mathit{VN}(H) = \mathit \mathit{VN}(G \times H)$. Since the Fourier algebra37 $ A(G)$ can be identified with the predual of the group von Neumann algebra $ \mathit{VN}(G)$ [Eym64], this implies that

    $\displaystyle A(G) \stackrel{\scriptscriptstyle \wedge}{\otimes}A(H) \stackrel{\mathrm{cb}}{=}A(G \times H)
$

    holds completely isometrically38 [ER90a].



Footnotes

... pro\-duct35
If $ M \subset B(\H )$, $ N \subset B(\mathcal{K})$ are von Neumann algebras, $ M \overline{\otimes}N$ is defined to be the closure in the weak operator topology of the algebraic tensor product $ M \otimes N \subset B(\H \otimes_2 \mathcal{K})$.
... algebras.36
The group von Neumann algebra $ \mathit{VN}(G)$ of a locally compact group $ G$ is defined to be the von Neumann algebra generated by the left regular representation of $ G$ in $ B(L_2(G))$.
... algebra37
For a locally compact group $ G$, the set $ \{ f * {\check{g}} \vert f, g \in L_2(G) \} \subset {\mathrm{C}}_0(G)$ turns out to be a linear space and even an algebra (with pointwise multiplication). Its completion with respect to the norm $ \Vert u\Vert=\inf \{ \Vert f\Vert _2 \Vert g\Vert _2 ~\vert~ u = f * {\check{g}} \}$ is a Banach algebra and is called the Fourier algebra of $ G$.
... isometrically38
If $ G$ is a locally compact abelian group, then $ A(G)$ is identified - via the Fourier transform - with $ L_1({\widehat{G}})$, where $ {\widehat{G}}$ denotes the dual group of $ G$. Thus, for locally compact groups $ G$ and $ \H$, the identification $ A(G) \stackrel{\scriptscriptstyle \wedge}{\otimes}A(H) \stackrel{\mathrm{cb}}{=}A(G \times H)$ can be thought of as a non commutative analogue of the well-known classical identification $ L_1(G) \otimes_\gamma L_1(H)=L_1(G \times H)$.

next up previous contents index
Next: The Haagerup tensor product Up: Projective operator space tensor Previous: Projective operator space tensor   Contents   Index
Prof. Gerd Wittstock 2001-01-07