next up previous contents index
Next: Completely bounded bilinear mappings Up: The Haagerup tensor product Previous: The Haagerup tensor product   Contents   Index


Some formulae for the Haagerup tensor product

  1. Let $ A$ and $ B$ be C$ ^*$-algebras in $ B(\H)$. Then on the algebraic tensor product $ A \otimes B$ the Haagerup tensor norm is explicitly given by

    $\displaystyle \mbox{$
\Vert u\Vert _h := \inf\left\{
\left\Vert \sum_{\nu=1}...
...\Vert
^\frac{1}{2}\
\ :\ u = \sum_{\nu=1}^n a_\nu \otimes b_\nu
\right \}$}$$\displaystyle ,
$

    where $ n\in{\mathbb{N}}$, $ a_\nu \in A$, $ b_\nu \in B$.

    The Haagerup norm of $ \sum_{\nu=1}^n a_\nu \otimes b_\nu \in A \otimes B$ equals the cb-norm of the elementary operator $ B(\H) \ni x \mapsto \sum_{\nu=1}^n a_\nu x b_\nu$. The Haagerup tensor product $ A \otimes_h B$ is the completion of the algebraic tensor product $ A \otimes B$ with respect to the above norm. The following more general definition in particular yields a completely isometric embedding $ A \otimes_h B \hookrightarrow \mathit{CB}(B(\H))$.

  2. We have

    $\displaystyle \mbox{$
\Vert u\Vert _h = \inf \{ \sum_{\kappa=1}^k \Vert x_\kap...
...t \Vert y_\kappa\Vert \ :
\ u = \sum_{\kappa=1}^k x_\kappa \odot y_\kappa \}$}$$\displaystyle $

    where $ k,l \in {\mathbb{N}}$, $ x_\kappa \in M_{n,l}(X)$, $ y_\kappa \in M_{l,n}(Y)$. In fact, one summand suffices [BP91, Lemma 3.2].
  3. For elements $ u \in M_n(X\otimes Y)$ in the algebraic tensor product there is an $ l \in {\mathbb{N}}$ and elements $ x \in M_{n,l}(X)$, $ y \in M_{l,n}(Y)$ such that
    $\displaystyle u$ $\displaystyle =$ $\displaystyle x \odot y$  
    $\displaystyle \Vert u\Vert _h$ $\displaystyle =$ $\displaystyle \Vert x\Vert \Vert y\Vert.$  

    The infimum occuring in the formula describing the norm in this case is actually a minimum [ER91, Prop. 3.5].

  4. The Haagerup norm of an element $ u \in M_n(X \otimes_h Y)$ can also be expressed using a supremum:40

    $\displaystyle \Vert u\Vert _h = \sup \Vert\langle u, \varphi \odot \psi \rangle\Vert _{M_{n^2}},
$

    where $ l \in {\mathbb{N}}$, $ \varphi \in M_{n,l}(X^ *)$, $ \psi \in M_{l,n}(Y^*)$, $ \Vert\varphi\Vert = \Vert\psi\Vert = 1$ [ER91, Prop. 3.4].
  5. From the definition of the Haagerup norm one easily deduces that the shuffle -map

    $\displaystyle {\mathbb{M}}_p(X) \otimes_h {\mathbb{M}}_q(Y)
\rightarrow
{\mathbb{M}}_{pq}(X \otimes_h Y)
$

    is a complete contraction. Hence the Haagerup tensor product enjoys property [*] of an operator space tensor product.

    But the shuffle-map is not an isometry in general as shown by the following example:41

    $\displaystyle {\mathbb{M}}_n(C_l) \otimes_h {\mathbb{M}}_n(R_l) \stackrel{\math...
...)) \stackrel{\mathrm{cb}}{=}{\mathbb{M}}_n({\mathbb{M}}_n(C_l \otimes_h R_l)).
$

    Since the bilinear mapping
    $\displaystyle \otimes_h : \mathit{CB}(X_1,X_2) \times \mathit{CB}(Y_1,Y_2)$ $\displaystyle \rightarrow$ $\displaystyle \mathit{CB}(X_1 \otimes_h X_2, Y_1 \otimes _h Y_2)$  
    $\displaystyle (S,T)$ $\displaystyle \mapsto$ $\displaystyle S \otimes_h T$  

    is contractive, it is jointly completely contractive.42

    In fact, using [*], we see that it is even completely contractive.

  6. For the row and column structure the shuffle -map even is a complete isometry. We have the Lemma of Blecher and Paulsen [BP91, Prop. 3.5]:

    $\displaystyle C_n(X) \otimes_h R_n(Y) \stackrel{\mathrm{cb}}{=}{\mathbb{M}}_n(X \otimes_h Y).
$

    In many cases it suffices to prove a statement about the Haagerup tensor product on the first matrix level and then to deduce it for all matrix levels using the above formula.43

    Here we list some special cases of the Lemma of Blecher and Paulsen:

    $\displaystyle C_n \otimes_h R_n$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle {\mathbb{M}}_n,$  
    $\displaystyle C_n \otimes_h X$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle C_n(X),$  
    $\displaystyle X \otimes_h R_n$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle R_n(X),$  
    $\displaystyle C_n \otimes_h X \otimes_h R_n$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle {\mathbb{M}}_n(X)$   .  

  7. In contrast to [*], for $ R_n \otimes_h C_n$ one obtains the finer operator space structure of the trace class

    $\displaystyle T_n := {\mathbb{M}}_n^* \stackrel{\mathrm{cb}}{=}R_n \stackrel{\scriptscriptstyle \wedge}{\otimes}C_n \stackrel{\mathrm{cb}}{=}R_n \otimes_h C_n$   .

    For an operator space $ X$ we have [Ble92b, Prop. 2.3]:
    $\displaystyle R_n \otimes_h X$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle R_n \stackrel{\scriptscriptstyle \wedge}{\otimes}X ,$  
    $\displaystyle X \otimes_h C_n$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle C_n \stackrel{\scriptscriptstyle \wedge}{\otimes}X ,$  
    $\displaystyle R_n \otimes_h X \otimes_h C_n$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle T_n \stackrel{\scriptscriptstyle \wedge}{\otimes}X ,$  
    $\displaystyle %%\pu
R_n \otimes_h X^* \otimes_h C_n$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle {\mathbb{M}}_n(X)^*$   .  

  8. By the very construction the bilinear mapping $ X \times Y \rightarrow X \otimes_h Y$, $ (x,y) \mapsto x \otimes y$ is a complete contraction.

    Hence its amplification, the tensor matrix product

    $\displaystyle \odot_h: {\mathbb{M}}_{n,l}(X) \times {\mathbb{M}}_{l,n}(Y)$ $\displaystyle \rightarrow$ $\displaystyle {\mathbb{M}}_n(X \otimes_h Y)$  
    $\displaystyle (x, y)$ $\displaystyle \mapsto$ $\displaystyle x \odot y$   ,  

    also is a complete contraction . The linearization of the tensor matrix product gives the complete contraction

    $\displaystyle {\mathbb{M}}_{n,l}(X) \otimes_h {\mathbb{M}}_{l,n}(Y) \rightarrow {\mathbb{M}}_n(X \otimes_h Y)$.$\displaystyle $

  9. The bilinear mapping44
    $\displaystyle \otimes_h : \mathit{CB}(X_1,X_2) \times \mathit{CB}(Y_1,Y_2)$ $\displaystyle \rightarrow$ $\displaystyle \mathit{CB}(X_1 \otimes_h Y_1, X_2 \otimes_h Y_2)$  
    $\displaystyle (S,T)$ $\displaystyle \mapsto$ $\displaystyle S \otimes_h T$  

    is completely contractive 45and gives rise to a complete contraction

    $\displaystyle \mathit{CB}(X_1,X_2) \otimes_h \mathit{CB}(Y_1,Y_2)
\rightarrow
\mathit{CB}(X_1 \otimes_h Y_1, X_2 \otimes_h Y_2).
$

  10. Let $ \H$ and $ \mathcal{K}$ be Hilbert spaces. Taking the Haagerup tensor product of the column Hilbert space $ {\mathcal{C}}$ and the row Hilbert space $ {\mathcal{R}}$ one obtains completely isometrically the space of compact operators $ K$ resp. of trace class46operators $ T$ [ER91, Cor. 4.4]:


    $\displaystyle {\mathcal{R}}_{\overline{\H}} \otimes_h {\mathcal{C}}_{\mathcal{K}}$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle T({\H,\mathcal{K}}),$  
    $\displaystyle {\mathcal{C}}_{\mathcal{K}} \otimes_h {\mathcal{R}}_{\overline{\H}}$ $\displaystyle \stackrel{\mathrm{cb}}{=}$ $\displaystyle K({\H,\mathcal{K}}).$  

    This example also shows that the Haagerup tensor product is not symmetric.



Footnotes

... supremum:40
For $ x \in X$, $ y \in Y $, we have:

$\displaystyle (\varphi \odot \psi)(x \otimes y)=
\langle x \otimes y, \varphi \...
...y , \varphi_{ij} \otimes \psi_{jk} \rangle\right]
= \varphi(x)\psi(y)
\in M_n.
$

Here, we used the definitions of two fundamental notions in operator space theory: the tensor matrix multiplication $ \varphi \odot \psi$ of mappings $ \varphi$, $ \psi$ and the joint amplification of the duality of tensor products.
... example:41
Algebraically, we have on both sides the same spaces of matrices. But on the left side one obtains the finer operator space structure $ T_n := {\mathbb{M}}_n^*$ of the trace class:
$\displaystyle {{\mathbb{M}}_n(C_l) \otimes_h {\mathbb{M}}_n(R_l) \stackrel{\mat...
...ackrel{\mathrm{cb}}{=}
{\mathbb{M}}_l({\mathbb{M}}_n \otimes_h {\mathbb{M}}_n)}$
  $\displaystyle =$ $\displaystyle {\mathbb{M}}_l(C_n \otimes_h R_n \otimes_h C_n \otimes_h R_n) =
{...
...otimes_h T_n \otimes_h R_n) \stackrel{\mathrm{cb}}{=}
{\mathbb{M}}_l(M_n(T_n)).$  

On the right side, we get the coarser operator space structure of the matrices $ M_n$:

$\displaystyle {\mathbb{M}}_n({\mathbb{M}}_n(C_l \otimes_h R_l) =
{\mathbb{M}}_n...
...}_l)) \stackrel{\mathrm{cb}}{=}{\mathbb{M}}_l({\mathbb{M}}_n({\mathbb{M}}_n)).
$

... contractive.42
This follows from the of the property itemnr:ORTPaxiom2 and the properties [*] and [*] of operator space tensor products.
... formula.43
This method can be applied to obtain this complete isometry itself. It is easy to see that on the first matrix level we have

$\displaystyle M_1(C_n(X) \otimes_h R_n(Y)) = M_n(X \otimes_h Y)$

isometrically. From this the complete isometry follows - for all $ p \in {\mathbb{N}}$ we have:
$\displaystyle M_p(C_n(X) \otimes_h R_n(Y))$ $\displaystyle =$ $\displaystyle M_1(C_p(C_n(X)) \otimes_h R_p(R_n(Y))) =
M_1(C_{pn}(X) \otimes_h R_{pn}(Y))$  
  $\displaystyle =$ $\displaystyle M_{pn}(X \otimes_h Y) = M_p({\mathbb{M}}_n(X \otimes_h Y))$  

isometrically .
... mapping44
The amplification of $ \otimes_h $ is nothing but the tensor matrix multiplication $ \odot_h$ of operator matrices.
...sec:cb-bilinear 45
Let $ S \in M_n(\mathit{CB}(X_1,X_2))$, $ T \in M_n(\mathit{CB}(Y_1,Y_2))$. For $ x \in M_{p,q}(X_1)$, $ y \in M_{q,p}(Y_1)$ we have
$\displaystyle (S \odot T)^{(p)}(x \odot y)$ $\displaystyle =$ $\displaystyle (S^{(p,q)}(x)) \odot (T^{(q,p)}(y)),$  
$\displaystyle \Vert (S \odot T)^{(p)}(x \odot y) \Vert _{M_{pn}(X_2 \otimes_h Y_2)}$ $\displaystyle \leq$ $\displaystyle \Vert S^{(p,q)}(x) \Vert \Vert T^{(q,p)}(y) \Vert
\leq
\Vert S\Vert _\mathrm{cb}\Vert T\Vert _\mathrm{cb}\Vert x\Vert \Vert y\Vert.$  

By the definition of the Haagerup norm (in $ X_1 \otimes_h Y_1$) we obtain
$\displaystyle \Vert (S \odot T)^{(p)}(x \odot y) \Vert _{M_{pn}(X_2 \otimes Y_2)}$ $\displaystyle \leq$ $\displaystyle \Vert S\Vert _\mathrm{cb}\Vert T\Vert _\mathrm{cb}\Vert x \odot y \Vert _{M_{p}(X_1 \otimes_h Y_1)},$  
$\displaystyle \Vert S \odot_h T \Vert _\mathrm{cb}$ $\displaystyle \leq$ $\displaystyle \Vert S\Vert _\mathrm{cb}\Vert T\Vert _\mathrm{cb}.$  

This means that $ \otimes_h $ is completely contractive.
... class46
$ T$ is endowed with its natural operator space structure $ T({\H,\mathcal{K}}) :\stackrel{\mathrm{cb}}{=}K({\mathcal{K}, \H})^*$.

next up previous contents index
Next: Completely bounded bilinear mappings Up: The Haagerup tensor product Previous: The Haagerup tensor product   Contents   Index
Prof. Gerd Wittstock 2001-01-07