next up previous contents index
Next: Notations Up: Basic facts Previous: The spaces   Contents   Index

The mappings

A linear mapping $ \Phi$ between vector spaces $ X$ and $ Y$ induces a linear mapping $ \Phi^{(n)}=\mathrm{id}_{M_n} \otimes \Phi$ ,
$\displaystyle \Phi^{(n)}:M_n(X)$ $\displaystyle \to$ $\displaystyle M_n(Y)$  
$\displaystyle \left[x_{ij}\right]$ $\displaystyle \mapsto$ $\displaystyle \left[\Phi(x_{ij})\right]$   ,  

the $ n$th amplification of $ \Phi$.

For matricially normed $ X$ and $ Y$, one defines

$\displaystyle \Vert\Phi\Vert _{\mathrm{cb}} :=\sup\left\{\left. \Vert\Phi^{(n)}\Vert \; \right\vert \; n\in
{\mathbb{N}}\right\}$   .

$ \Phi$ is called completely bounded if $ \Vert\Phi\Vert _{\mathrm{cb}}<\infty$ and completely contractive if $ \Vert\Phi\Vert _{\mathrm{cb}}\leqslant 1$.

Among the complete contractions, the complete isometries and the complete quotient mappings play a special role. $ \Phi$ is called completely isometric if all $ \Phi^{(n)}$ are isometric,5and a complete quotient mapping if all $ \Phi^{(n)}$ are quotient mappings.6

The set of all completely bounded mappings from $ X$ to $ Y$ is denoted by $ \mathit{CB}(X,Y)$ [Pau86, Chap. 7].

An operator space $ X$ is called homogeneous if each bounded operator $ \Phi \in B(M_1(X))$ is completely bounded with the same norm: $ \Phi\in CB(X)$, and $ \Vert\Phi\Vert _{\mathrm{cb}}=\Vert\Phi\Vert$ [Pis96].



Footnotes

... isometric,5
I. e.: $ \Vert x\Vert=\Vert\Phi^{(n)}(x)\Vert$ for all $ n\in{\mathbb{N}}$, $ x\in M_n(X)$.
... mappings.6
I. e.: $ \Vert y\Vert=\inf\{\Vert x\Vert\;\vert\;x\in {\Phi^{(n)}}^{-1}(y)\}$ for alle $ n\in{\mathbb{N}}$ and $ y\in M_n(Y)$, or equivalently $ \Phi^{(n)}(\mathrm{Ball}^\circ M_n(X))=\mathrm{Ball}^\circ M_n(Y)$ for all $ n\in{\mathbb{N}}$, where $ \mathrm{Ball}^\circ M_n(X) = \{x\in M_n(X)\;\vert\;\Vert x\Vert< 1\}$.

next up previous contents index
Next: Notations Up: Basic facts Previous: The spaces   Contents   Index
Prof. Gerd Wittstock 2001-01-07