next up previous contents index
Next: -extreme points Up: -convexity Previous: -convexity   Contents   Index

Separation theorems

Suppose that $ A,B\subset B(\H)$ are unital $ C^*$-algebras and $ Y\subset B(\H)$ is a $ (A,B)$-bimodul. Then $ K\subset Y$ is $ (A,B)$-absolutely convex, if

$\displaystyle \sum_{i=1}^{n} a_i^*x_ib_i \in K
$

for all $ x_i\in K$ and $ a_i\in A$, $ b_i \in B$ such that $ \sum_{i=1}^{n} a_i^*a_i$, $ \sum_{i=1}^n b_i^*b_i \leq \mathrm{1\!\!\!\:l}$. Let $ Y$ be a $ A$-bimodul. Then $ K$ is $ A$-convex, if

$\displaystyle \sum_{i=1}^{n} a_i^*x_ia_i \in K
$

for all $ x_i\in K$ and $ a_i\in A$ such that $ \sum_{i=1}^{n} a_i^*a_i = \mathrm{1\!\!\!\:l}$. In the case $ Y=A$ this definition is equivalent to the definition of $ C^*$-convex sets.

There are following separation theorems: Let $ A,B\subset B(\H)$ be unital $ C^*$-algebras and $ Y\subset B(\H)$ a $ A,B$-bimodul. Let $ K\subset Y$ be norm closed and $ y_0\in Y\setminus K$.

1) If $ A=B$, $ 0\in K$ and $ K$ is $ A$-convex, then there is a Hilbert space $ H_\pi$, a cyclic representation $ \pi:A\rightarrow B(H_\pi)$ and a completely bounded $ A$-bimodul-homomorphism, such that for all $ y\in K$

$\displaystyle \mathrm{Re}\,\phi(y)\leq\mathrm{1\!\!\!\:l}$, but $\displaystyle \mathrm{Re}\,\phi(y_0)\not\leq\mathrm{1\!\!\!\:l}.
$

2)If $ K$ is $ (A,B)$-absolutely convex, then there is a Hilbert space $ H_\pi$, representations $ \pi:A\rightarrow B(H_\pi)$ and $ \sigma:B\rightarrow B(\H_\pi)$ and a completely bounded $ (A,B)$-bimodul-homomorphism $ \phi:Y\rightarrow B(\H_\pi)$, such that for all $ y\in K$

$\displaystyle \Vert\phi(y)\Vert\leq 1$, but $\displaystyle \Vert\phi(y_0)\Vert>1.
$



Prof. Gerd Wittstock 2001-01-07