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Abstract

In this paper we investigate the usefulness of confidence measures

for variational optic flow computation. To this end we discuss the

frequently used sparsification strategy based on the image gradient.

Its drawbacks motivate us to propose a novel, energy-based confidence

measure that is parameter-free and applicable to the entire class of en-

ergy minimising optic flow techniques. Experimental evaluations show

that this confidence measure leads to excellent results, independently

of the image sequence or the underlying variational approach.

AMS 2000 Subject Classification: 68T45, 49K20, 65K10, 35J60, 65N06
Key Words: optic flow, confidence measures, differential techniques, varia-
tional methods, partial differential equations, performance evaluation.
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1 Introduction

The recovery of motion fields from image sequences is one of the key problems
in computer vision. Given two consecutive frames of an image sequence, one
is interested in finding the projection of the 3-D motion onto the image plane:
the so-called optic flow field. In order to estimate this displacement field, optic
flow methods often use a constancy assumptions on image features such as
the grey value.
At that point, the handling of incomplete data plays a very important role:
In general, these constancy assumptions cannot provide sufficient data to
determine a unique solution of the optic flow problem. For instance, in the
case of the grey value constancy assumption this incompleteness manifests
itself in the aperture problem. In this case not more than the flow component
parallel to the image gradient can be calculated. At locations where the
gradient is zero, not even this component is computable and no estimation
is possible.
In order to cope with these situations, variational methods regularise the
problem by assuming smoothness or piecewise smoothness of the resulting
flow field. At locations, where the problem of incomplete data occurs, this
regularisation fills in information from the neighbourhood and thus allows
the estimation of a 100 % dense flow field.
However, it is clear that these estimates cannot have the same reliability at all
locations. It would therefore be interesting to find a confidence measure that
allows to assess the reliability of a dense optic flow field. In particular, such
a measure would allow to identify locations where the problem of incomplete
data has been solved successfully. Therefore, it is not surprising that [1] have
identified the absence of such a good measure as one of the main drawbacks
of variational optic flow techniques.
In our paper we address this problem. By discussing the frequently used
confidence measure based on the image gradient, we show why this method
is not appropriate for sparsifying dense flow fields from variational methods.
As a remedy, we propose a novel energy-based confidence measure that offers
several advantages and works well over a large range of densities.

Related work. In spite of the fact that there exists a very large number of
publications on variational optic flow methods (see e.g. [11, 15, 21, 3]) and on
confidence measures for local optic flow approaches (see e.g. [2, 19]), there has
been remarkably little work devoted to the application of confidence measures
in the context of variational optic flow computation. First approaches go
back to [1] who used the magnitude of the image gradient to decide on the
local reliability or a flow estimate. More recently, [10] proposed a general
classification of confidence measures. However, they did not introduce any
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novel confidence measure for variational methods.

Organisation of the paper. Our paper is organised as follows. In Section 2
we give a review on variational optic flow computation and discuss different
types of regularisation strategies. The gradient-based confidence measure by
[1] that is often used to sparsify the resulting flow fields is discussed in Section
3. Based on the results of this discussion we propose a novel energy-based
confidence measure in Section 4 and perform a systematic experimental eval-
uation in Section 5. Finally, Section 6 concludes this paper with a summary.

2 Variational Optic Flow Computation

Let us consider some image sequence f(x, y, t), where (x, y) denotes the lo-
cation within a rectangular image domain Ω, and t ∈ [0, T ] denotes time. In
order to retrieve objects in subsequent frames of this image sequence, many
optic flow methods assume that corresponding pixels have the same grey
value, i.e. that the grey value of objects remains constant over time. If we
denote the movement of such an object by (x(t), y(t)) this assumption can
be formulated as

0 =
df(x(t), y(t), t)

dt
. (1)

By applying the chain rule this leads to the following optic flow constraint
(OFC):

0 = fxu + fyv + ft, (2)

where subscripts denote partial derivatives and the optic flow field satisfies
(u, v)> = (∂tx, ∂ty)>.
Evidently, this single equation is not sufficient to uniquely determine the two
unknowns u and v. In particular at locations where the image gradient is
zero, no estimation of the optic flow is possible. In all other cases, only the
flow component parallel to ∇f := (fx, fy)

> can be computed, the so-called
normal flow:

wn = −
ft

|∇f |

∇f

|∇f |
. (3)

In the literature, this ambiguity is referred to as the aperture problem.

2.1 General Structure

Variational methods overcome the aperture problem by imposing an addi-
tional constraint on the solution: They assume that the resulting flow field is
smooth or piecewise smooth. Then the optic flow can be computed as min-
imiser of a global energy functional, where both deviations from the data
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and deviations from the smoothness constraint are penalised. Let ∇3 :=
(∂x, ∂y, ∂t)

> denote the spatiotemporal gradient, let D (u, v,∇3f) stand for a
data term (e.g. the squared OFC) and let S (∇3u,∇3v,∇3f) represent a con-
straint on the smoothness of the resulting flow field. Then the corresponding
energy functional is given by

E(u, v) =

∫

Ω×[0,T ]

(

D (u, v,∇3f)
︸ ︷︷ ︸

Data term

+α S (∇3u,∇3v,∇3f)
︸ ︷︷ ︸

Smoothness term

)

dx dy dt, (4)

where α serves as regularisation parameter that steers the smoothness of the
estimated flow field.

2.2 Prototypes for Variational Methods

Let us now take a closer look at the different regularisation strategies that
may serve as smoothness constraints. As classified in [21] there are basi-
cally three different types of regularisation: Homogeneous regularisation that
assumes overall smoothness, image-driven regularisation that assumes piece-
wise smoothness and respects discontinuities in the image data, and flow-
driven regularisation that assumes piecewise smoothness and respects dis-
continuities in the flow field. Moreover, when considering image and flow-
driven regularisation, one can distinguish between isotropic and anisotropic
smoothness terms. While isotropic regularisers do not impose any smoothness
at discontinuities, anisotropic ones permit smoothing along the discontinuity
but not across it.
In order to demonstrate the different regularisation concepts and to allow
for a systematic experimental evaluation, we have chosen three prototypes of
variational methods that cover all types of regularisation.

2.2.1 The Combined Local–Global Method

As prototype for the class of optic flow techniques with homogeneous regular-
isation we consider the so-called combined local-global (CLG) method [4, 5].
This technique combines the dense flow fields of the global approach of [11]
with the high noise robustness of the local method of [13].
Let w = (u, v, 1)> denote the spatiotemporal extended flow vector. Then the
energy functional of the CLG method is given by

E(u, v) =

∫

Ω×[0,T ]

(
w>Jρ(∇3f)w + α (|∇3u|

2 + |∇3v|
2)
)

dx dy dt. (5)
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where the matrix Jρ(∇3f) is the so-called structure tensor [2, 8, 17] given
by Kρ ∗ (∇3f ∇3f

>), the symbol ∗ denotes convolution in each matrix com-
ponent, and Kρ is a Gaussian with standard deviation ρ. One should note
that for ρ → 0 the spatial variant of the CLG approach comes down to the
Horn and Schunck method, and for α → 0 it becomes the Lucas–Kanade
algorithm.

2.2.2 The Method of Nagel and Enkelmann

For the class of optic flow methods with image-driven regularisation we con-
sider the anisotropic technique of [15]. This method assumes the flow field to
be smooth everywhere except across discontinuities in the image data. This
can be realised by penalising only the projection of the flow on the plane or-
thogonal to the image gradient. The corresponding energy functional for the
spatiotemporal variant of the Nagel-Enkelmann algorithm is given by [14]

E(u, v) =

∫

Ω×[0,T ]

(
(fxu + fyv + ft)

2 + α (∇3u
>D(∇3f)∇3u)

+α (∇3v
>D(∇3f)∇3v)

)
dx dy dt, (6)

with the regularised projection matrix

D(∇3f) =
1

2|∇3f |2 + 3ε2





f 2
y + f 2

z + ε2 −fxfy −fxfz

−fxfy f 2
x + f 2

z + ε2 −fyfz

−fxfz −fyfz f 2
x + f 2

y + ε2



 (7)

perpendicular to ∇3f , where ε serves as regularisation parameter.

2.2.3 The TV-based Regularisation Method

In contrast to image-driven regularisation methods, flow-driven techniques
preserve discontinuities at those locations where edges in the flow field occur
during computation. Our representative for this third class of variational
optic flow techniques is an isotropic method that penalises deviations from
the smoothness assumption with the L1 norm of the flow gradient. This
corresponds to total variation (TV) regularisation [18]. The associated energy
functional is given by

E(u, v) =

∫

Ω×[0,T ]

(

(fxu + fyv + ft)
2

+ α
√

|∇3u|2 + |∇3v|2 + ε2
)

dx dy dt, (8)
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where ε serves as small regularisation parameter. Related spatial energy func-
tionals have been proposed by [6, 7, 12], and similar spatiotemporal function-
als have been investigated in [22].

2.3 The Filling-In Effect

The strategy of regularising the solution by a smoothness assumption has a
useful side-effect: Variational methods always yield 100 % dense flow fields. At
locations with ∇3f ≈ 0, the data term does not allow a reliable computation
of a local flow estimate. However, the smoothness term fills in information
from the neighbourhood. This can be explained as follows: Since the contribu-
tion of the data term to the energy functional is very small at these locations,
the smoothness term becomes relatively more important. As a consequence,
the local flow estimate is adjusted to its neighbourhood in accordance with
the smoothness constraint. This propagation of neighbourhood information
is the so called filling-in effect.

3 The Gradient-Based Confidence Measure

As we have seen in the previous section, the aperture problem does only allow
the direct computation of the normal flow. Since this requires the gradient
at the corresponding pixel to be different from zero, [1] proposed to connect
the reliability of a flow estimate to the magnitude of the underlying image
gradient. Thus, the following confidence measure is obtained:

cgrad = |∇f |. (9)

However, this ad-hoc criterion suffers from two drawbacks. Large gradients
often result from noise and occlusions. Therefore, evaluating the magnitude
of the gradient rewards exactly those locations, where the estimation of the
optic flow is particularly problematic. It is not surprising, that the application
of such a measure can only be of limited success. Moreover, it is clear that ”a-
priori” measures that only judge the initial situation before the computation,
are not in the best position to decide on the reliability of a local flow estimate.
They are simply not capable of considering the propagation of neighbourhood
information for solving the aperture problem. In particular with regard to
variational optic flow methods that rely on the global filling-in effect of the
regulariser. This constitutes another drawback.
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4 A Novel Energy-Based Confidence Measure

In order to capture the filling-in effect of the regulariser in a better way,
one should think of involving the computed flow in the decision process. Let
us now demonstrate how this can be accomplished in a natural way. As we
know from Section 2, variational methods are based on the minimisation of
an energy functional. This energy functional penalises deviations from model
assumptions by summing up the local deviations from the image domain.
At locations where this deviation is small, the computed flow respects the
underlying model. At locations where the deviation is large, on the other
hand, the model assumptions are violated severely. In this context it appears
very natural to use this indicator for assessing the local reliability of the
computation. Thus, we propose a confidence measure where the reliability is
inversely proportional to the local energy contribution:

cener =
1

D (u, v,∇3f) + α S (∇3u,∇3v,∇3f) + ε2
, (10)

where ε serves as small regularisation parameter that prevents the denomi-
nator from becoming singular. Its actual value is not important since we are
only interested in a ranking of the confidence at different locations.
Apart from its simplicity, this confidence measure has several additional ad-
vantages. Firstly, it is a consequent continuation of the concept of variational
methods: The confidence measure is based on exactly the same assumptions
as the underlying energy functional. There is no reason, why other constraints
should be used for evaluating the reliability of the estimated flow field: If other
constraints are considered important, they should have been taken into ac-
count earlier by incorporating them in the variational model for computing
the flow field. Secondly, the energy-based confidence measure allows to con-
sider the filling-in effect of the regulariser: In contrast to the image gradient
it is based on the evaluation of the flow field. This is the only data where the
filling-in effect is present. Thirdly, it allows to detect noise and occlusions
to a certain degree. At those locations contradictory information does either
allow to fulfill the smoothness or the data term. As a consequence, these
locations have a relatively high local energy contribution and thus can be
identified easily. Fourthly, the proposed confidence measure can be derived
in a straightforward way from any energy functional. This makes it applicable
to the entire class of energy minimising optic flow techniques. And finally,
it is parameter-free. Since the parameter have already been set before the
computation of the flow field there is no need to readjust them afterwards.
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5 Results

In order to be able to quantify the reliability of confidence measures in the
experimental section we restrict ourselves to image sequences for which the
ground truth is available. In particular, this allows us to compute error mea-
sures such as the frequently used average angular error. It is defined as the
arithmetic mean of

arccos

(

ucue + vcve + 1
√

(u2
c + v2

c + 1)(u2
e + v2

e + 1)

)

(11)

where (uc, vc) denotes the correct flow, and (ue, ve) is the estimated flow (cf.
also [1]).
In our first experiment we compare the performance of the gradient and the
energy based confidence measures. To this end we use the spatiotemporal
approach with locally integrated data term and homogeneous regularisation
(CLG) and compute the flow field between frame 8 and 9 of the famous
Yosemite sequence with clouds (ftp://csd.uwo.ca under /pub/vision/).
Then, we successively sparsify the estimated flow field by applying the confi-
dence measures independently, and calculate the corresponding average an-
gular errors within a density range from 100 % to 1 %.
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Figure 1: Comparison of the gradient, eigenvalue and energy-based confidence
measures for the Yosemite sequence with clouds using the 3-D approach with
locally integrated data term and homogeneous regularisation (CLG).
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Figure 2: From left to right, and from top to bottom: (a) Frame 8 of the
Yosemite sequence with clouds (316 × 256 pixels). (b) Magnitude of the
ground truth. Brighter structures indicate larger values. (c) Magnitude of
the computed field for a spatiotemporal approach with locally integrated
data term and homogeneous regularisation (CLG). (d) 25 % quantile sparsi-
fied using the optimal confidence measure. (e) Ditto for the gradient-based
confidence measure. (f) Ditto for the energy-based confidence measure.
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The resulting graphs for both confidence measures are depicted in Figure 1.
Moreover, a third graph is shown that illustrates the optimal sparsification
performance with respect to the average angular error. It serves as theoretical
bound for all other confidence measures. As one can see, the proposed energy
based criterion performs very favourably. It outperforms the gradient based
confidence measure by far. One can also observe that the angular error de-
creases monotonically under sparsification over the entire range from 100 %
down to 1 %. This is a clear indication for an interesting finding that may
seem counterintuitive at first glance: Regions in which the filling-in effect
dominates give particularly small angular errors. At such regions the data
term vanishes and only the smoothness term contributes to the local energy.
However, this contribution is often very small, since the regulariser allows a
smooth extension of the flow field in most cases.
The results also confirm our expectation that |∇f | is not necessarily a good
confidence measure: Areas with large gradients may represent noise or oc-
clusions, where reliable flow information is difficult to obtain. The filling-in
effect, however, may create more reliable information in flat regions by aver-
aging less reliable information from all the surrounding high-gradient regions.
The corresponding flow fields with a density of 25 % shown in Figure 2 con-
firm these considerations. Obviously, only the energy-based criterion allows a
realistic sparsification of the computed flow field. The result of the gradient
based confidence measure, however, does not coincide very well with the flow
field obtained from the optimal sparsification criterion.
Our second experiment investigates the performance of the energy-based con-
fidence measure for a variety of image sequences. To this end we used the
spatiotemporal approach with isotropic flow-driven regularisation (TV) and
computed flow fields for the following image sequences:

• The Marble sequence by Otte and Nagel shown in Figure 3(a)-(b)
(http://i21www.ira.uka.de/image sequences/)

• The Office sequence by [9] shown in Figure 3(c)-(d)
(http://www.cs.otago.ac/nz/research/vision/)

• The Diverging Trees sequence by Fleet shown in Figure 3(e)-(f)

Figure 4 shows that the application of the energy-based confidence measure
improves the estimation significantly in all three cases. In particular at the
beginning of the sparsification process a fast decay of the average angular
error can be observed. The reason for this behaviour lies in the removal of
wrong flow estimates caused by areas with high noise or occlusions. Due to

10



Figure 3: From left to right, and from top to bottom: (a) Frame 16 of the
512 × 512 Marble sequence. (b) Magnitude of the ground truth. (c) Frame
10 of the 200 × 200 Office sequence. (d) Magnitude of the ground truth. (e)
Frame 20 of the 150× 150 Translating Trees sequence. (f) Magnitude of the
ground truth.
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Figure 4: Performance of the energy-based confidence measures for different
sequences using the 3-D approach with isotropic flow-driven regularisation
(TV).

the massive occurrence of contradictory information in these areas, either
the smoothness term or the data term are large. As a consequence, these
locations are considered very unreliable by the confidence measure and are
already removed at an early stage of the sparsification.
We have seen that the proposed confidence measure based on the evaluation
of the local energy contribution performs well for a variety of sequences. Since
it is applicable to the entire class of energy minimising optical flow methods,
let us now investigate its performance for different variational techniques. To
this end we considered all three global approaches introduced in Subsection
2.2 and used our energy-based confidence measure to sparsify the computed
flow fields for the Yosemite sequence with clouds. The corresponding graphs
are presented in Figure 4. As one can see, they show once more an almost
monotonic decay of the average angular error under sparsification. In par-
ticular, the observed behaviour is independent of the underlying variational
approach. This is another confirmation of our findings that the evaluation of
the local energy contribution is a simple confidence indicator that is efficient
and widely applicable at the same time.
In our final experiment we compare our sparsified flow fields to the best
non-dense results from the literature (see also [5]). To this end we use the
spatiotemporal approach with locally integrated data term and homogeneous
regularisation (CLG) and compute the flow field for the Yosemite sequence
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Figure 5: Performance of the energy-based confidence measure for the
Yosemite sequence with clouds using different variational approaches.

with clouds. Using the energy-based confidence measure, the obtained flow
field is then sparsified in such a way that the reduced densities coincide
with the densities of other optic flow methods from the literature. The corre-
sponding average angular errors are presented in Table 1. As one can see, our
sparsified flow fields have a significantly lower angular error than all other
methods with the same density. In this case errors down to 0.76 ◦ are reached
for a flow density of 2.4 %. To our knowledge, these are the best values that
have been obtained by non-dense methods for this sequence in the entire
literature.

6 Summary and Conclusion

The absence of good confidence measures is regarded as one of the main
drawbacks of variational optic flow methods. The goal of the present paper
was to address this problem.
We have seen why the popular gradient-based measure fails: Its rewards
high-gradient regions where noise and occlusions dominate, and it ignores
the filling-in effect of the regulariser, since it is an ”a-priori” measure that
does not take into account the estimated flow field.
As a remedy we have proposed a novel energy-based alternative that is both
natural and simple: The confidence is chosen to be inversely proportional to

13



Table 1: Comparison between the “non-dense” results from [1], [20], [16]
and our results for the Yosemite sequence with cloudy sky (adapted from
[5]). AAE = average angular error. CLG = average angular error of the
spatiotemporal approach with locally integrated data term an homogeneous
regularisation (CLG) with the same density. The sparse flow field has been
created using our energy-based confidence criterion. The table shows that
using this criterion clearly outperforms all results of non-dense methods.

Technique Density AAE CLG
Singh, step 2, λ1 ≤ 0.1 97.7 % 10.03◦ 6.04◦

Ong/Spann 89.9 % 5.76◦ 5.26◦

Heeger, level 0 64.2 % 22.82◦ 3.00◦

Weber/Malik 64.2 % 4.31◦ 3.00◦

Horn/Schunck, original, |∇f | ≥ 5 59.6 % 25.33◦ 2.72◦

Ong/Spann, tresholded 58.4 % 4.16◦ 2.66◦

Heeger, combined 44.8 % 15.93◦ 2.07◦

Lucas/Kanade, λ2 ≥ 1.0 35.1 % 4.28◦ 1.71◦

Fleet/Jepson, τ = 2.5 34.1 % 4.63◦ 1.67◦

Horn/Schunck, modified, |∇f | ≥ 5 32.9 % 5.59◦ 1.63◦

Nagel, |∇f | ≥ 5 32.9 % 6.06◦ 1.63◦

Fleet/Jepson, τ = 1.25 30.6 % 5.28◦ 1.55◦

Heeger, level 1 15.2 % 9.87◦ 1.15◦

Uras et al., det(H) ≥ 1 14.7 % 7.55◦ 1.14◦

Singh, step 1, λ1 ≤ 6.5 11.3 % 12.01◦ 1.07◦

Waxman et al., σf = 2.0 7.4 % 20.05◦ 0.95◦

Heeger, level 2 2.4 % 12.93◦ 0.76◦

the local energy contribution. This measure is applicable to the entire class
of energy minimising optic flow techniques and it does not require additional
parameters. It puts highest confidence to those locations where the model
assumptions are satisfied most.
Our experiments have shown that the energy-based confidence measure per-
forms significantly better than the gradient-based one. It may lead to excel-
lent sparsification results, independently of the image sequence or the under-
lying variational approach. This is also confirmed by a final comparison to
results from the literature, in which our sparsified flow fields proved to be
more accurate than those of all other non-dense methods.
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