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Michael Bildhauer Martin Fuchs

Abstract

We establish several smoothness results for local minimizers of non-autonomous
variational integrals with anisotropic growth conditions.

1 Introduction

In a recent paper ([ELM]) Esposito, Leonetti and Mingione discuss higher integrability
theorems for minimizers of functionals of the form J[u] = [, f(-, Vu) dz, where the in-
tegrand f is of anisotropic (p, ¢)-growth with respect to the second argument. Let us
summarize some of their results: suppose that the function Dpf(z, P) is a-Hélder con-
tinuous with respect to the variable x and that certain natural growth and ellipticity
assumptions are satisfied. Then one is interested in the following question: do (local)
minimizers u actually belong to the space W, (2; RY)? As shown in Section 3 of [ELM]
one can only hope for a positive answer if (2 C R")

g 1

) < n(n—l—oz) (1.1)
is satisfied. Assuming (1.1) they then exhibit in Section 4 of their paper a sufficient
condition for higher integrability: if the Lavrentiev gap functional £ relative to the energy
J (see [ELM], Section 2.1) vanishes for all balls Bg € €2, then Theorem 4 of [ELM] gives
local integrability of Vu for exponents even bigger than q. However, it seems to be a very
delicate problem to decide in a general way if the Lavrentiev gap functional vanishes or
not. To overcome this difficulty, Esposito, Leonetti and Mingione present a list of explicit
examples and prove £ = 0 in these concrete cases. Here a possible occurence of a local
Lavrentiev phenomenon is excluded via a subtile study of the behavior of f w.r.t. the
z-dependence in comparison to the (p, ¢)-growth in Vu.

In [CGM] the authors follow a different approach and consider energy densities de-
pending on the modulus of the second argument. With this additional assumption it
is possible to introduce some kind of regularization from below in order to prove local
Lipschitz continuity of local minimizers.

The main purpose of our paper is to give a rather complete C*-regularity theory
provided that we have some starting qu integrability of the minimizer. This is discussed
in Section 2. In Section 3 we then adapt the two approaches given in [ELM] and [CGM]
to the situation at hand and obtain the right starting integrability under some particular
assumptions. It remains an open problem to remove these hypotheses.
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Let us give a detailed formulation:
Let 2 C R*, n > 2, denote a bounded domain and consider an energy density f =
f(z,P) >0, r€Q, PeR", which satisfies with exponents 1 < p < g < co

ASSUMPTION 1.1 There are positive constants \, A, ¢ such that for any x € Q and
dlU, PeRYW:

A1+ PR UP < Dif(z, P)(U,U) < A(L+[PP)S |UP, (1.2)
\D,Dpf(z,P)| < ci(1+|PP)= . (1.3)

Here f is assumed to be sufficiently smooth which means that we require the partial deriva-
tives D% f and D,Dpf to be at least continuous. Note that (1.2) implies the anisotropic
growth condition (a, A > 0, b € R)

al PP —b < f(z, P) < A(|P|"+1).

For open subsets ' of ) let us define the energy of a function u: Q' — RV via
Ju, = [ f(-,Vu)dz.
QI

The following definition is natural in our setting.

DEFINITION 1.1 A function u € Wi,,.(;RY) is termed a local J-minimizer iff

loc
i) J[u, Q] < oo for any domain ' € Q and
i) Ju, Y] < Jv, Q] for any Q' € Q and all v € W}, (G RY) with spt (u —v) C Q.

Now let us suppose that local J-minimizers are of class qu We then have the

Jloc®
following theorem on higher regularity.
THEOREM 1.1 Let Assumption 1.1 hold together with

_ n+1
g<p . (1.4)
n

(;RY). Then we

Suppose further that u is a local J-minimizer which is of class W,
have

i) There erists an open subset Qo C € such that |Q — Qo] = 0 and u € CH*(Qy; RY)
for any o € (0,1).

ii) If n =2, then Qy = Q.

iii) If N =1 or if f is of special structure, i.e. f(z,P) = g(z,|P?), and if in addition
for N > 1

D3 f(z, P) — D3f(2,Q)| < c(1+ P+ Q)7 |P - Q[ (1.5)

holds with some 0 < v < 1 and for all x € Q, P, Q € R*N, then u is of class C*
wn the intertor of €Q.



Our second theorem deals with locally bounded minimizers. As a consequence, condition
(1.4) can be weakend if p < n. Note that on account of Sobolev’s embedding theorem, we
cannot expect to improve (1.4) in the case p > n since then the boundedness of minimizers
is no additional assumption at all (compare Remark 5.5 of [Bi]).

THEOREM 1.2 Let u denote a local J-minimizer of class Wy (S5 RY) and let As-
sumption 1.1 hold. If N = 1 or if f is of special structure, i.e. f(x, P) = g(z,|P|?) and if
in addition in the case N > 1 we have (1.5), then u has Hélder continuous first derivatives
wn the intertor of ), provided we assume

ue Ly (9 RY) (1.6)

loc

together with
g<p+1. (1.7)

REMARK 1.1 i) The counterexamples of [ELM] and [FMM] satisfy G > p+1. Since
the solutions constructed there are locally bounded, we see that (1.7) is a rather
natural condition for reqularity.

ii) Due to the counterexamples of [ELM], [FMM], [Mi] we cannot expect to weaken the
conditions (1.4) and (1.7), respectively. On the other hand, in the autonomous case
the counterpart of (1.4) is ¢ < p(n + 2)/n, whereas (1.7) reads as ¢ < p + 2 in
the autonomous case. A first Ansatz to close this gap with some suitable additional
assumption on the energy density can be made analogous to Section 4.2.2.2 of [Bi]
which, in fact, leads to higher integrability results. We omit further details since
it 1s not clear, whether for instance DeGeorgi-type arguments can be improved with
this Ansatz, i.e. the gap to the autonomous case is not understood up to now.

Theorem 1.1 and Theorem 1.2 are established in Section 2. In Section 3 we will remove
the assumption u € Wal,loc(Q; RY) for some special cases. The results are summarized in
Lemma 3.1 and Lemma 3.2.

Throughout this paper summation w.r.t. repeated indices always is assumed. Moreover,
positive constants are usually just denoted by ¢, not necessarily being the same in different

occurrencies.

2 Smoothness properties of quloc-minimizers

In this section we are going to prove Theorem 1.1 and Theorem 1.2. Of course we mainly
follow the ideas used in the autonomous case (compare, for instance, [Se|, [Ma], [MS],
[BF1], [Bi] and the references quoted therein), thus we just give a short summary of
the known steps and emphasize the modifications which are needed to handle the non-
autonomous case.

2.1 Proof of Theorem 1.1

Step 1. Approximation.
We fix a ball Bogr = Bag(x) € Q and define for 0 < § < 1

fs(@,P)=6(1+|PP)? + f(z,P), z€Q, PeR™,
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where the exponent ¢ is chosen according to

§<q<p<1+%>. (2.1)

Note that f; still satisfies (1.3), whereas (1.2) holds with exponent g replaced by ¢. Define
ue as the mollification of v with parameter € > 0 and let v, s denote the unique solution
of the minimization problem

Js[w, Bag] := f5s(nVw)dz - min  in w4 W, (Bag; RY).
Bar
We have the following convergence results:

LEMMA 2.1 Suppose that the hypotheses of Theorem 1.1 hold. If € and § are related
via
1

_ 2
1+ e™ + [| Vel 7o s,

b = 0(e) =

and if we abbreviate v. = v, 5, fe = [5(), then we have as e — 0:

i) v — u in W (B, R"),

ii) 5(5)/3 (14 |Vo?)2dz — 0,
2R

i) F( Vo) dz — / (-, V) da,
Bog Bar
iv) fe(+, Vo )dz — / f(-,Vu)dzx.
Bag Bar
Proof. We have by the minimality of v,
f(,Vu)dz < fe(, Vo) dz < fe(-, Vue) dz
Bar Bar Bsgr
= () / 1+ Vu)de+ [ f(-Vu)de.  (22)
Bsr Bsr

Here the choice of §(¢) implies that the first term on the r.h.s. converges to 0 as ¢ — 0.

Next we recall that f is at most of growth order g, moreover we have that Vu is of class

quoc, hence

Vu. = Vu  in LY(Bop; RPN .
This in turn gives
/ G, Vu)dz 2 | f(, Vu)dz. (2.3)
Bsr Bsgr

In fact, to verify (2.3), we may consider the convex function

H: Wi (B, RY) 30— f(-,Vv)dz

Bsr



which is locally bounded from above, hence locally Lipschitz (compare, for instance, [Da),
Theorem 2.3, p. 29). This gives (2.3). Then we conclude from (2.2) that fBQR f(, V) de <
const, hence

e—0 .
Ve —:0U In Wpl(BgR;RN), v=u on 0Bsp.

The lower semicontinuity of J and the uniqueness of minimizers finally prove v = u on
Bsg, i.e. the lemma is established. O

Step 2. Caccioppoli-type inequalities and higher integrability.
In the following we use the notation from above and observe that v. solves the Euler
equation

Dpfe(-,Vv.) : Vodz =0 for all ¢ €W, (Bop;RY). (2.4)
Baor
Here and in the following “:” denotes the standard scalar product in R*V. We have

LEMMA 2.2 There is a real number ¢ > 0 such that for all n € Cy(Bag), 0 < n <1,
and for all Q@ € R™Y

022 o2 (2 2 32 2
n°C:? |V |*de < cl|||Vnlls .2 Vv, — Q| dx
Bogr spt Vn

+/ 7% dg | | (2.5)
sptn

where T := 1+ |v|%.

Proof. Using the method of difference quotients in equation (2.4) (see e.g. [AF], Proposi-
tion 2.4 and Lemma 2.5, [GM], [Ca] or [To] for further details in a related setting; note
that Lemma 4.1 of [To] works under our hypotheses) we obtain weak differentiability of
Vv, together with

—2
I.7 |9, V.| € L2, (Bag) .

loc

Then, as outlined in the proof of Lemma 3.1 in [BF1], we deduce from the above integra-
bility property (again using the method of difference quotients and passing to the limit)
the inequality

D% f.(-, Vv,) (0, Ve, 87Vv5)772 dz

Bar

) D% f.(-, Vv.) (0, Ve, 8, (v: — Qz) ® Vn)ndz

Bar

i / (0, Dpf) (- V. : 0, (v, — Qz) @ Vi dz
Bagr

—/ (0yDpfe)(, V) 87va772 dz , (2.6)
Bagr

being valid for any matrix Q@ € R™. With the help of Young’s inequality we get (2.5) by
absorbing terms after suitable application of (1.2) and (1.3). Note that (2.5) just follows
from our assumptions (1.2) and (1.3), the hypotheses (1.4) and (2.1) do not enter. [



REMARK 2.1 We can arrange that

g— =< (2.7)

N3
O |

In fact, up to now q was chosen according to ¢ > G and g < p(1 +2/n). Here we observe

that (1.4) gives
1 2
2(5—]—3) < 2(n+ p_]_)) :pn+
2 n 2 n
which means that it is possible to choose q in (2(q—p/2), p(n+2)/n) by the way satisfying
(2.7) which will be assumed from now on.

As already remarked local higher integrability of Vi up to a certain exponent is established
in Theorem 4 of [ELM]. We give a slight improvement which in particular is needed to
discuss the case n = 2.

LEMMA 2.3 (compare [BF1], Lemma 3.4) Let x :==n/(n —2), if n > 2, forn =2 let
X > 2p/(2p — q). Then we have

Vv, € LPX(Byg; R™)

loc

uniformly w.r.t. €, in particular we find

vy e d Tl (@R, if n>3,
any L (QRY™W), s<oo, if n=2.

loc

Proof of Lemma 2.3. We consider the case n > 3, the calculations for n = 2 have to be
adjusted according to [BF1] or [Bi]. Let

b n D
== ==
2 2

n—2 X

and observe that by (1.4) we have
q —

NS

<. (2.8)

Let us fix radii » and p such that R < r < %R and 0 < p < %. Moreover, let n €

Ci(Brtp2), n = 1 on By, |Vn| < ¢/p. Using (2.5), the calculations from the proof of
[BF1], Lemma 3.4, lead to the inequality (compare [Bi], second inequality on p. 60)

B
/ rede < cp™? / 2 / 7% dg
(4 B2R Br+p

with positive constants /3, 3, a positive constant ¢ and another constant ¥ < 1 being all
independent of €. The second term on the r.h.s. of (2.9) is new but can be handled via
interpolation: note that (2.8) implies that 2¢ — p < 2a = px, and since 2G — p > p we
have with p € (0,1)

X

+e +9 / redz (2.9)
Br+p

hence
IVl za-n < V0l Vel 7ot
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where the norms are taken w.r.t. B,;,. Recalling the boundedness of Vv, in L?(Bsg), we

get
[/ rz‘ﬁdx] §c[/ rede
Brip Brp

The definition of i together with (1.4) implies

] (1-4) 1 (27-p)

1 —u)%(%—p) <1,

thus Young’s inequality gives

[ / ngg dx
Br+tp

Inserting this into (2.9) and choosing 7 small enough we find
B

/ redz < cp™® / Fggd:v +1§/ I'*dz
[d B2R Br+p

with 9 € (0,1). Now the proof of Lemma 2.3 can be completed along well known lines
using Lemma 5.1, p. 81, from [Gi]. The last claim of Lemma 2.3 follows from Lemma 2.1
and a covering argument combined with the first part of Lemma 2.3. O

The next result can be established as in [BF1], Proposition 3.5, or as in [Bi], Proposition
3.29.

X

ST/ I'¢dz +¢(r).
Bryp

p
4

LEMMA 2.4 Let hi) =T,

where I := 1+ |Vu|?. Then we have
i) h € Wy,.(Bar);

i) he — hin W21,loc(B2R):'

iii) Vve — Vu a.e. on Byg as e — 0.

Together with the higher integrability result from Lemma 2.3, part iii) of Lemma 2.4 is
essential for proving a limit version of the e-Caccioppoli inequality stated in Lemma 2.2.

LEMMA 2.5 There ezists a constant (depending on R) such that for all balls Bs,(Z) C
Bgr we have

/ \Vh|?dz < c[rQ/ F(152|Vu—Q|2d:E+/ Fq];] :
B, (z) B3, (Z)—Br(Z) By, (Z)

where Q € R™Y is arbitrary.

REMARK 2.2 On the l.h.s. [Vh|? may be replaced by F%Q|V2u\2.



Proof of Lemma 2.5. In (2.5) we choose n € Cj(Ba,(z)) such that n = 1 on B,(z),
0 <np <1, and |Vn| < 2/r. Then, on the Lh.s. we use lower semicontinuity, the first
term on the r.h.s. is handled as in the proof of Lemma 3.6 in [BF1]. By (2.7), the second
term from the r.h.s. of (2.5) is dominated by wa(j) I'Y?dz and on account of I', — T
a.e. together with the higher integrability of I", we may pass to the limit as well. O

Step 8. Blow up and proof of Theorem 1.1 i).
Once having established Lemma 2.5, we can follow the arguments of [BF1], Section 4,
(compare also [Bi]) by introducing the excess function for balls B,(z) C Bg. With

E(z,r) = ][|Vu—(Vu)w|2dy+ ][ \Vu — (Vu)g,|?dy, if ¢>2,

B, (z)

B, (z)
Bor) == f V(Vo) - V((Vu)Pdy,  V(©= 0 +[61)Fe, it a<2,
Br(z)

we have to formulate the blow-up Lemma 4.1 from [BF1] in the following way:

LEMMA 2.6 Fiz L > 0. Then there ezists a constant C,(L) such that for every 0 <
T < 1/4 there is an € = (L, ) satisfying: if B,(x) € Bg and if we have

(V)es| <L, E(z,7r)+r" <e(L,7),
then
E(z,mr) < C(L)T*[E(z,7) + 7]
Here v* denotes some arbitrary number in (0,2).
Let us give a short comment: if we follow the arguments from [BF1], Section 4, and intro-

duce the function v, as done there, then we have to bound the quantity |’ B, |V, |? dz for

p < 1 which can be done with the scaled version of Lemma 2.5 leading to the inequality
(recall (2.7))

Veulas < 1o f r@—%dx]

- B’“m (wm)

B,

IA
o
~~

e
N—

1+ X2 ][ r%dx]. (2.10)

- By (Tm)

We now let for any 1 <t < oo

Vi€) := (1+[€) 7€,  H(E):= (14 €]

By Lemma 2.3 of [Ha] we then have

VH(E) ~ \JH() | < | Vi(©) - Vi(€)] . (2.11)



By assumption, |(Vu)y,, r.| < L, hence we obtain from (2.11)

][ ridr = ][ T ]de

By (Tm) By (Tm)

¢ ][ [|VAT) ~ SH(T ) ) |+ HA(T)a )]

By (zm)
c ][ ‘\/Hq(Vu) — \/Hq((vu)zm,rm)
Br, (zm)

¢ ][ IV, (V) = Vi (Va)a s )2 dz + (L) = ¢E(m, 1) + (L),

Brp (Tm)

B

IN

IN

2
dz + ¢(L)

IN

where the last identity follows from the definition of £ in the case ¢ < 2. If ¢ > 2, then
we simply estimate

Midz < ¢|l+ ][ |Vu|qu]

By, (Tm) - By, (Tm)

< c|l1+ ][ \Vu — (V) g, rm|?dz + (L)

- By, (Tm)
< cE(xm,m) +¢(L),

thus (2.10) gives in both cases

Vi [2dz < c(p) [1+ 72, + A, 2r (D)
By

Recalling the choice of v* we observe that as m — oo
A2 — 0,

hence the boundedness of f B, |Vp,|? dz follows, and the proof can be completed as in
[BF1].

Step 4. Proof of Theorem 1.1 ii).
If n = 2, then we know by Lemma 2.3 that Vv, € L} (Bag; R™) for any ¢ < oo uniform
w.r.t. e. Now we quote [BF2|, proof of Theorem 1: on the r.h.s. of (9) from [BF2] we have

to add
= /D%Dpfs(-, V.) 1 V(n?0s[v. — Qx]) dz

and by using the growth properties of D,Dpf together with Young’s inequality and the
higher integrability of Vv, it is easy to see that we have (14) of [BF2] with an extra
additive term of the form constr?, 0 < B8 < 1, on the r.h.s. But as outlined in [BF3] or
[ABF] this term does not affect the application of the Frehse-Seregin Lemma (see [FS])
and the claim follows as before with the help of Frehse’s variant of the Dirichlet-Growth



Theorem (see [Fr]).

Step 5. Proof of Theorem 1.1 iii).
We are first going to prove the following auxiliary lemma which gives good initial regularity
for our regularizing sequence in the vector case N > 1 together with the special structure

f=g(z,|PP?).

LEMMA 2.7 Assume that F(z, P) satisfies with some given 1 < t < oo for all z € Q,
P, U e R™ and with positive constants \, A, c

t—2 t—=2

M1+|PP)ZUP < DpF(e, P)U,U) < AQL+[PP)Z|UP;  (212)
D DpF(z,P)| < c(1+|P])F ; (2.13)
F(z,P) = G(x,|PP). (2.14)

Here G: Q x R — [0,00) is a function of class C?. Moreover we assume that for some
v>0
t—2—
|DLF (2, P) = DpF(z,Q)| < c(1+ PP+ Q%) > '[P - Q.
Then, if u € W}, (Q;RY) is a local minimizer of [ F(x, Vu)dz, u is of class C**(; RY)
forany 0 < k < 1.

REMARK 2.3 If N =1, then the statement of course holds without (2.14), see [LU].
Once having established the CY*-reqularity of the solution u studied in Lemma 2.7, we
immediately obtain u € Wiloc(Q;RN). Combining both facts and using potential theory

for linear elliptic systems with continuous coefficients we arrive at u € WEZ,zoc(Q; RY) for

any finite t.

Proof of Lemma 2.7. We concentrate on the case ¢ > 2. In the case 1 < ¢t < 2 the
following arguments have to be modified using Proposition 2.11 in [AF]. Note that for
both cases the above Holder condition for D2F(x,-) implies the corresponding ones in
[AF] and [GM], respectively, if = is considered as fixed. Let Bg(zo) € 2, R < Ry, where
Ry is fixed later on. We denote by v the unique solution of the variational problem

/ Fy(Vw)dz = min  in e+ W) (Br(zo);RY),
Br(zo)

where Fy := F(xg,-). Then inequality (3.1) of Theorem 3.1 in [GM] gives together with
the minimality of v and the growth of Fj:

IVollms, < ¢ £ 04907 do < e f (1 [VaP) da. (215)

Bpr Bpg

We define V(&) = Vi(€) as in the third step and recall Lemma 2.3 of [Ha] to obtain for
p<R/2

2
/(1+|vu|2)%dx < c[/ (1+|W|2)%da:+/ 1+ VU = (14 Vo] do
By By By

< c/ A+ |Vol2)sdz +c [ [V(Va) = V(V0)2dz.
BP

By

10



Hence, (2.15) implies

/(1+\Vu|2)%dxgc(ﬁ)"/ 1+ |[VuP)rdz+c [ |[V(Vu)—V(Vv)]ds. (2.16)
Bp R BR Bp

Then (2.3) of [Ha] and (2.1) of [GM] yield

V(Va) = V(Vo)Pde < c/ (1+ |Vul2 + [VoP) 2|V — Vo2 de
Bgr

By

1
< C/ /(1—’1-|VU+t(VU,—VU)‘2)%|VU—VU|2dtdx.
BR\O

S/

-~

=i(x)

Moreover, we have
(DFy(Vu) — DFy(Vv)) : (Vu — Vo)

1
= / D?Fy(Vv + t(Vu — Vv))(Vu — Vo, Vu — Vo) dt > \(%).
0

Putting together these two inequalities, using the equations for u, v and recalling the
growth condition (2.13) one has (again see [Gi], p. 151)

/B V(Vu) = V(Vo)Pdz < ¢ /B (DFy(Vu) — DFy(V0)) : (Vu — Vo) da

= c/ (DFy(Vu) — DpF(z,Vu)) : (Vu — Vo) dz

IN

CR/ (1+ |Vu\2)%\Vu—Vv\dx
Br

VAN

5/ (1+ ‘VU‘Q)%‘VU — Vo|*dz
Br

+c(5)R2/ (14 |VuP)} da
Br

VAN

cs/ V(Vu) = V(Vo) > d

Br

+c(5)R2/ (14 Vu?)? de.
Br

Now, if € > 0 is sufficiently small, then it is shown that

/ V(Vu) — V(Vv)[2dz < cR2/ 1+ |Vul?)? dz. (2.17)

Bg

Inserting this in (2.16) we arrive at

/B (1+|Vul?)2dz < c[(%)n + RQ] /B (1+|Vul?):dz. (2.18)

Note that (2.18) was just shown in case p < R/2, for R/2 < p < R the estimate is trivial.

11



Next we choose 8 < n which may be arbitrarily close to n. With a suitable choice of R,
we may apply Lemma 2.1 from [Gi] to (2.18). As a consequence, for all radii p* < R* < Ry
which are sufficiently small we have

t * ﬂ t
2% de < o 2 2)3
/p*(l—i- |Vul?)2 do < C(R*) /BR*(l-i- |Vul?)2 dz

Choosing p* = R and R* = Ry it is shown in particular that

/B(kun dx<c(§0>ﬁ/3 (1+ |Vul)s do. (2.19)

Finally we make use of [GM], formula (3.2), i.e. for some exponent ¢ > 0 it holds

][ V(V0) = (V(V2)) sl da < e ][ V(V0) = (V(V0)agnlPdz.  (2:20)
By
Note that (2.20) implies as in [GM], (5.6),
][\V(Vu) — (V(V)) g’ dz < c ][\V (Vu) — (V(Vu)) g r|” dz

][\V (Vu) = V(Vv)|* dz,

hence (2.17) and (2.19) imply

V(Vu) = (V(Vt)ag,[*dz < e

(%)W /B [V (V) = (V(Vt))ao,r|* do

BP
+R2/ (14 [Vul?)? dx]
Br
n+o
s ¢ (ﬁ) / V(Vu) = (V(Vt)ag,r|* dz + B> .
R B
Now
T: p=Up) = [ |[V(Vu) = (V(Vt)),* dz

Bl’
clearly is an increasing function. From [Gi], p. 86, we infer (choosing n < 2+ 3 < n+ o)
that ¥ growth like p>*%. Since 2 + B > n, this gives Holder continuity of V(Vu), in
particular Vu is of class C°. We then let w = d,u and observe that w solves an elliptic
system with continuous coefficients. Theorem 3.1 of [Gi], p. 87, then proves our claim. [J

For the proof of Theorem 1.1 iii) we will now use DeGiorgi type arguments as done
in the proof of Theorem 3.16 in [Bi] which has to be adjusted to the situation at hand.
W.l.o.g. we may assume that n > 3, since by the second part of the theorem regularity
in the two-dimensional case holds without structure condition. We still work on the ball

12



Bsyr and choose B.(z) C Bg and n € C}(B,(),[0,1]). We further let w. = In(T.),

[. =1+ |Vuv.|? and consider the sets

A(h,r):={x € B,(Z): w. > h}.
Wi goc(Bar; R™Y))

2,loc

From Lemma, 2.7 we deduce v, € W, ,.(Bzr; RY) (and therefore Vv, €
which enables us to use the same test functions as in [Bi]. Thus we have (30), p. 62, of

[Bi], where on the r.h.s. we have to add the quantity

Fim [ 1DDRf (V0 IV T, = K] de
A(k,r)
I itself splits into a sum of three integrals, one of them being

/ DaDpful, Vo) (w. — k) V20| dz < 'y/ 27 02 V20, 2w, — k) da
A(k,r) A(k,r)
2—-p =
se) [ T 0 B,
A(k,r)

where we used condition (1.3) and Young’s inequality. If v is small enough, then the first
integral on the r.h.s. can be absorbed in the first integral on the Lh.s of (30), p. 62, in

[Bi]. Then (34), p. 63, of [Bi] reads:

/ F?nQ\VwE\Qd:E < c/ Fé%(ws )2
A(k,'l‘) A(kir)

£ = / Fggdx+/ I dx+/ 7% (w, — k) dz.
A(k,r) A(k,r) Alk,r)
In the same way we use (35), p. 63, of [Bi] with the extra term

/ D.Dp £, Vo) | [V (Vo (w. — k)?|da
A(k,r)

(2.21)

on the right-hand side, this time we get

-2
/ F:2 (we — k) |V *n’dzs < ¢
A(k,r)

£ = / Fg_gdx—i-/ 2 (w, — k)2 dz
Alk.r) Alkr)

/ D2 (w. — k)22 dz + €|, (2.22)

By combining (2.21) and (2.22) we obtain the following version of (27), p. 61, in [Bi]:

D202V, |2d
en ws‘ x +
A(k,T') A(IC,’I')
| (2.23)

< / T8 (V2 (w. — k)2 dz + £+ &
A(k,r)

F:T (we — k) 0|V, |* dz

13



For handling £ + £ we use (2.7). If we let

a(k,r) = / F§ dz,
Alk,r)

£+ & <calk,r). (2.24)

then we have

Let us further set
q
T(k,r) = / 2 (w. —k)*dz.
A(k,r)

Next we fix numbers A > k > 0 and radii r < 7 such that B;(z) C Bg. Then, as in [Bi],
we deduce from (2.21) — (2.24):

_2X_1 x—1

7(h,7) <c|(h— k)_2XT_1_2 +(h=k) 2% |(r=r) 21k, 7) T 5

provided we assume w.l.o.g. that R < 1. For the application of the Stamppachia Lemma
it is sufficient to study the case h — k < 1, thus we can replace the quantity [...]| by
(h — k)~272=D/X and argue as in [Bi] with the result that the functions v, are locally
Lipschitz on Bg uniform w.r.t. . As a consequence we get u € W ,,.(;RY). Let us fix
' € Q and a constant M > 0 s.t. |Vu(z)| < M for a.a. x € . Then, as outlined in
[MS], we can construct an integrand F on ' x R™Y satisfying (2.12)—(2.14) for a suitable
t and s.t.

F(z,P) = f(z, P)

for z € (¥ and P € R", |P| < 2M. But then u is a local minimizer of [, F(-, Vv)dz on
V', hence of class C1*® by Lemma 2.7. The reader should note that the Holder condition for
D%F(z,-) required for the application of Lemma, 2.7 is a consequence of the corresponding
condition for D% f(x,-) as stated in the hypotheses of Theorem 1.1 iii) if the vector case
is considered. O

2.2 Proof of Theorem 1.2

We use the same regularization as in Step 1 of Section 2.1 where the exponent ¢ is now
chosen in (g, p + 2) sufficiently close to p + 2 s.t.

7<s(p+q)- (2.25)

DN |

Note that such a choice is possible on account of (1.7). Note also that Lemma 2.1 continues
to hold since again we assume Vu € L (Q; R™"). From (1.6) together with the maximum
principle it follows that

Sup ||ve||Loe(Byr) < sup ful < oo. (2.26)
0<e<1

2R

Step 1. Higher integrability.
We follow [Bi], proof of Theorem 5.21, and show

14



LEMMA 2.8 There is a constant ¢ independent of € such that

/ Vue|* <e¢
B.(3)

for any ball B.(Z) € Bsg and any s € (1,00). The constant ¢ depends on the location of
the ball, the constants appearing in (1.2) and (1.3), on s and on supg,, |u|.

Proof. Let o > 0 denote a fixed real number and define the quantities 5 :=2 +p — g,
o q a p !
0 =—+-_-<l4+-4+Z=0.
<o 2 + 5 <1+ 5 + 9 o
For k£ € N large enough we have
2% < 2k—2.
O—I

Finally, we consider € C§°(Bsr), 0 < 1 < 1, and obtain with exactly the same arguments
as in [Bi], inequality (19) on p. 155 (by letting A = 1 during this calculation and by using
(2.26))

atp 4 q
/ 7)2’“F52+dx < ¢
Bar

= cl+I1+11]. (2.27)

If sptn C By = By(x9), n =1 on B, = B,(x) and |Vn| < ¢/(p) — p), then we can use
(20), p. 155 in [Bi] to handle I1, i.e. we have

atp atp
11 < 7'/ 772’“Fi+ 2 dx+c(p —p) 2t / I.2 p*2dz (2.28)
Bor Bapr

a+tp 1tatp
1+/ V20, |°T: 2 n%dx+/ | VpT. * dx
Bagr Bagr

valid for any 7 € (0, 1), where for 7 small enough the first term on the r.h.s. of (2.28) can
be absorbed on the Lh.s. of (2.27). For I we observe

p=2_ atB atq
T < 7_/ 772k+2F52 += ‘vQUE‘Q dz + 7_—1/ 77219—21-162 dz
Bar Bar
= th+711. (2.29)
As we shall prove below the quantity /; can be bounded in the following form:
2 ok T2 4
L <clp—p)~ / n*r:? T'2dx, (2.30)
Bygr

where c also depends on a. We insert (2.30) into (2.29) and replace 7 in (2.29) by /(o' —p)?

for some 7/ > 0. Since
a+pf ¢ _ a+p

2 2 2
we see that for 7/ < 1 the term corresponding to 7’ can be absorbed on the Lh.s. of (2.27).
Moreover, we have with Young’s inequality

a+q
= = (- [ P

+1,

_BZR
ataq? .
< (T/)fl(p/_p)72 7_/// |:n2k721152qi| da:+(7'”) ‘7'_‘7|BQR‘
Byr
atp+2 _
s(ﬂlw—m27ﬂ/vﬂn2 + ()77 | Ba |
Bsr
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If we let 7" = 7/(p' — p)*r* and if 7* is small enough, the first term on the r.h.s. of the
above inequality can be absorbed on the l.h.s. of (2.27). Putting together our results we

have inequality (23), p. 156, of [Bi], i.e.
a+p
1 -l—/ ?* 0.2 dx
Bar

a+p+2
/ anFE 2 dx<e
Bar
with ¢ also depending on «, p and p’ but independent of £. Now the same iteration as in
[Bi] gives

/ |V |°dz < const
BT(ZO)

for any s < oo and r < 2R. It remains to prove the inequality (2.30). But this follows
from an appropriate version of Lemma 5.20 i) of [Bi]. Note that (2.30) is the only place
where we use the fact that v, solves a variational problem. To be more precise, we take
p = n**?0,0.T?
as test function in
D%fa('a vv&)(a7vvaa V(p) dz = — Dz,,DPfe('a V’l)g) : V(P dz )
Bar Bar

where s is some exponent > 0 and k£ denotes some integer > 1. The admissibility of ¢
follows from Lemma 2.7 and Remark 2.3. We get

D?’ff('v VUE) (ayvvsa 87VUE)772]°+2F§ dzx

Bar
+ D3 f (-, Vve) (0, Ve, 0,0, ® VI )n* 2 dg
Bar
= —(2k+2) D% f.(-, Vv.) (0, Vve, V) ® 0,0, )n** T8 dx
Bar
- D, Dpf.(-,Vv,) : V(n**?0,0.I%) dz. (2.31)
Bar

To the first integral on the r.h.s. we apply the Cauchy-Schwarz inequality (for the bilinear
form D%(x, Vv.(z))) and then use Young’s inequality to get the bound

T D% f.(+, Vv.) (0, Ve, 0, Vv )n* 12T dz

Bagr

t+e(r) /B V202 DA f (-, Vo) | TH da (2.32)
2R

and for 7 small the first term can be absorbed on the lLh.s. of (2.31). For the second
integral on the r.h.s. of (2.31) we use (1.3), thus

g—1 a1
Lhs. of (2.31) < ¢ / [.2 T¢|Vn|n* Vo, |dz + / [.2 T2V, | dz
Bar B

2R

q—1
+ / T2 T8 1?2 |V, ||V, | dx
Bagr
= C[Jl + J2 + Jg] .
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We have (since 0 < n <1, |Vy| < (' —p) )
S < elp—p) / n2’“F§+S dz
Bsr

BzR

which means that we obtain the same bound as for the second term in (2.32). With x > 0
arbitrary we have

;2 —_ 00—
Jo < ,{/ F:2 an2k+2‘v2vs|2 dz + C(/ﬁ) / FS_HFE ER 1,,72/€-|-2 dz.
Bar B

2R

By (1.2) and by choosing x small enough the first term can be absorbed in the first
integral on the lh s. of (2.31). For the second term we use n***2 < n?* and observe
—2 43— 1 < £2 which is a consequence of (2.25). In order to handle J; we observe that
the second 1ntegral on the Lh.s. of (2.31) can be written as

1
5 [ Dife( Vue)(ey ® VL ey @ VI da

Bsgr

which is obvious if N = 1, whereas in the vector-case we use the special structure. By
ellipticity we therefore obtain the lower bound

-2
Ju ::c/ DLy 7 | V| Vo, 2] de
Bsr
for this term. On the other hand
Jy < c/ PRIV Vo ?| da
Bsr

p—2
< ;@/ 0 | VIV P de
Bsr

_14gy2=p
+c(k) / e T gy
Bsr

and for all k small enough the first term is absorbed in J;. For the second one we use
n**+2 < n* and observe that by (2.25)

2 -2
s—1+q+Tp—s+1+q—g—1< +1+q?

Altogether we have shown that
p—2 q=2
/ P2 V2 PTE T de < e(p = p) / [.> Tn?* dy
Bsr
= c(p'=p) / LT da,
and (2.30) is established by choosing s = £ (a + ). O
Step 2. Uniform local gradient bounds
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LEMMA 2.9 There is a finite local constant independent of € s.t.

|Vv.| <c¢ on B, € Bapg.

Proof. We modify the proof of Theorem 5.22 in [Bi]. To this purpose let us fix radii
0 <7 <7 < 2R and consider n € C§°(B;) with the usual properties where all balls are

centered at zy. Moreover, for k£ > 0 we let
Alk,r)={z € B, : T. > k}.

By elementary calculations (see [Bi], p. 157) we obtain
/ (T — k)i de < [Ij " + I,
A(k,r)

where

[ !/ |V77|(F5—k)dx]
A(k,7)

IN
o
—
>
|
<
N—
|
3
i
1
;>\
=
>
)1
™
| |
M)
—_
!
™
™
~—
[\
o
8
| I |

. / F? dx ,
A(k,7)

We claim the validity of

p—2
/ [.? |VI**dz < ¢
Ak,7)

/ IVn2re? (. — k)2 dz
A(k,7)

+/ F?%Hnde :
A(k,7)

Accepting (2.36) for the moment, we get by combining (2.33)—(2.36)

/ (Ce —k)m=rdz < c(f —r)7o / F:%(Fg — k)*dz + / Fg_%ﬂ dz
A(k,r) AkA) Ao

(2.33)

(2.34)

(2.35)

(2.36)



which corresponds to the inequality (24) on p. 157 of [Bi]. Let s and ¢ denote real numbers
> 1. With Hélder’s inequality we deduce from Lemma 2.8

a=2 n
/ I.” (. — k)2dz < ¢ / (T. — k)1 da
A(k,r) A(k,r)

2—p q—2 %
/ .2 dz<c / r.? dz| |,
A(k,7) A(k,7)

where ¢ now is a local constant and we assume 7 < Ry for some Ry < R. Inserting the
above inequalities into (2.37) we end up with

/ I (I, — k)2 dz
A(k,r)

1

8

and

m

g—2 %n—li
. / e ds . (2.38)
A(k,7)

Let A > k and define

T(k,r) = /A(k )F:Q(Fg—k)de,

alk,r) := /A(k )FEZ dz.

Clearly a(h,r) < (h — k)727(k,r) and from (2.38) (with k replaced by h) it follows

1 _n

. 25 n-1
r(h,r) < c(f—r)"[T(h,f)—i— / F§_5+1dx] a(h, )
A(h,F)

1

o(f — )7 (h — k)~ (k, )2

|~

_n_
n—1s

D=
By

IN

1 _n

r(h,7) + / it dg (2.39)
A(h,7)

[N

with positive exponents v and a. By (2.25) we have g < 2(p+q),ie. g—2+1 < (g+2).
If we choose m > 1, quote Lemma 2.8 and use Holder’s inequality we therefore get

F_P q+2
/ | R / r.2 dz
A(h,7) A(h,7)

INA IA
o o
=
o
> &
N—r <>
P2
3 =
3 (“w|‘i
—~ (V)
& o
> &
N— L 1
3= 3
I
o
)
—~~
a2
>
N—r
3|~



W.l.o.g. we may assume h — k < 1. Then, with some suitable new positive exponent «
(depending on the parameters!) we obtain from (2.39)

Let us finally assume that Ry is chosen in such a way that

/ ritae <1
Bg,

which is possible by Lemma 2.8. Then 7(k,7) < 1 and therefore
) < e 1) (b= R () (2.40)

Obviously

_1lmnm 1 11 mn _ 1 m 1l 17
ﬁ._Qn—lst+m2sn—1_2n—1s[ }>
if the parameters m, s and ¢ are close to 1. Thus we may apply a lemma of Stampacchia
[St] to inequality (2.40) to get the claim of Lemma 2.9 (see also [Bi], p. 122, for further
details).

It remains to prove (2.36) which means that we have to give a variant of Lemma
5.20 ii) of [Bi]. This time we test the differentiated Euler equation valid for v. with
n*0,v. max[['. — k, 0] being admissible on account of Lemma 2.7. We get

t m

/ P (T. = k)DL (-, Vo) (8, Vo, 0, V. da
A(k.F)
+ o9 / n(Ts = kYDA . (-, Vo) (8, Vo, Vi ® 80,) da
A(k,7)

+ / n’ D% f-(+, V) (8, Ve, 0,0, ® VI,) dx
A(k,7)
= T1 + 2T2 + T3
S / Dy Dpf(-,V0.) : V(P00 (T. — k) dz. (2.41)
A(k,7)

If N > 1 we make use of the special structure and of (1.2) to see

1
T3 = 3 / ’ D3 f-(+, Vv.) (e, ® VI, e, ® VI,)dx
Alk,7)

p—2
> c/ [.? |Vl [*’n*dz. (2.42)
A(k,#)

Also by the special structure we find

1

1= / (L. = k)D3 (-, Vu.)(ey ® Vi, e, @ VI,) da,
A(k,7)
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hence

T, <7 / D3 f.(-, Vv.)(e, ® VI, e, @ VI,) da
A(k,7)

() / V(L. — k)T de,
A(k,7)
where we used the Cauchy-Schwarz inequality for D% f.(z, Vv.), Young’s inequality and
(1.2). Note that the “r-term” can be absorbed in 73. Using the ellipticity for 7, we
deduce from (2.41), (2.42) and the latter estimates:

=2 P2
/ [.? |VL.|*n*dx + / (T, — k)[e? |V, |* dx
A(k,r) Alk,7)

q—2
< ¢ / [.2 |[Vn*(T. — k)?dx + |r.has. of (2.41)]] . (2.43)
Ak,#)
On account of (1.3) we have

lr.hs. of (2.41)] < ¢

-1
/ 7 (T, — k)| V20, | dz
A(k,7)
q—1
+/ re2 V.|| VT | do
A(k,7)

+/ V|| Vo (T. — k)Te? dx]
A(k,7)
= C[Sl + 52 + S3] s

and with Young’s inequality we get (0 < 7 < 1)

S; < 7'/ F:%HQ(FE — k) |V 2 dz + 0(7')/ r
A(k,7) A(k,7)

g-1-232
€

TT’Q(FE - k) dz ;

and for 7 small the first integral on the r.h.s. can be absorbed in the second integral on
the Lh.s. of (2.43). In the same way we handle S, i.e.

S<r [ rEPVLAdesen [ TRVl
Ak,7) Ak,
Finally we have
=2 g—1—9-2
S5 < c/ \VnA(T, — k)*T.” dx +c/ n?|Vv.|*T¢ T g
A7) Ah,7)

Collecting terms and dropping the second term on the Lh.s. of (2.43) we end up with

p=2 G_1_2=2
/ .7 |VI%ds < ¢ / n?(Ts — k)I¢ T g
Ak,7) A(k,7)
2 oa—1-%452
+/ n°|Vue|Te 2 dx
A(k,7)
q—2
+/ |Vn[*(T. — k)*T.? dx| .
A(k,7)
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Observing
(T, — k)T < pr it

and
Py

Vo TS < TR < r
inequality (2.36) is established. O
From Lemma 2.9 the claim of Theorem 1.1 follows as outlined at the end of Step 5 of
Section 2.1.

141

3 Some remarks on W., -regularity

q,loc
Here we are going to sketch two different ways to establish local qu—regularity of local
minimizers under some particular assumptions. The first lemma is very much in the spirit
of [ELM], Lemma 13, and the proof follows the ideas given there.

Lemma 3.2 is based on a regularization from below, the main idea is closely related to
Lemma 4.1 of [CGM]. However, in [CGM] the energy density f is not supposed to be a
smooth function. This is why the assumptions of [CGM], Lemma 4.1 and Lemma 4.2, are
quite involved in comparison to Assumption 3.1 below. On the other hand, our explicit
construction (see the proof of Proposition 3.1) is more technical in order to end up with
a regularization of class C?.

We finally remark that it remains on open problem to find a general approach to W1
regularity.

Joc™

LEMMA 3.1 Suppose that we have in addition to the assumptions of Theorem 1.1
i) |Dyf(z, P)| < ca(14|P2)3 for all (z, P) € Q x RN with some positive number cs;

ii) for alle > 0 and for all x € Q such that B.(z) € 2 there exits T = T(x,€) such that
with some function c(e) > 1, c(e) > 1 ase — 0,

f(z, P) <ce)f(y,P) forall (y,P) € B.(x) x R"V .

Then any local J-minimizer is of class Wy ..

Proof. The proof follows [ELM], Lemma 13, however, the setting is a little bit different: we
are interested in the smooth case (see i) of Lemma 3.1) and we use argue via the uniqueness
of minimizers instead of showing that the gap functional vanishes for all candidates of the
energy class.

If u. denotes the mollification of a local J-minimizer u, then (as in [ELM]) we observe
that the a priori W, bounds give

|Vu,| < ce v .

Moreover, by the minimality of the functions v, introduced in Lemma 2.1 we have

f(',VUE) dz S fs('avvs) dz S fs( VUE) (31)

Bar Bagr Bar
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Now, for fixed z € Byr we choose some x according to the second assumption of Lemma
3.1. Linearization and the first assumption of Lemma 3.1 give

f(@, Vo) < £(7, Vue) + (1 + [Vu ) 2e < (7, Vo) + cle| 57

If ¢. denotes the smoothing kernel, then Jensen’s inequality and ii) of Lemma 3.1 imply

/
Bsr

( Vue)dz < 0(5)/3 /| | F(y, Vu())d-(z — y) dy da + [>T
2R Y |T—Y|<e

Finally, passing to the limit ¢ — 0 and recalling (3.1), the uniqueness of minimizers and
condition (1.4) prove the lemma. O

Let us now discuss the regularization from below, where the main idea is the following:
instead of adding a leading part of order ¢, which makes the energy larger, we consider
a sequence of energy densities approximating f from below. This means that we assume
(an explicit construction is discussed in Proposition 3.1)

ASSUMPTION 3.1 For any fized M > 1 there is an energy density fu(x, P) of class
C? s.t. all the partial derivatives occurring below are continuous functions and s.t. for any
x €

i) fulz, P) < f(x, P) for all P € R™Y;
ii) fu(z, P)= f(z,P) if |P| < M;
iii) fa(z, P) is of isotropic p-growth in the sense that
alP? —b < fyu(z, P) < Ay|P|P + By

holds for all P € R™ , with universal constants @ > 0, b € R and with constants
Ay > 0, By € R depending on M.

iv) fu(z, P) is (p,q)-elliptic uniform w.r.t. p and q, i.e.

\D,Dpf(z,P)] < el+|P)F

M1+ PR [UP < D%fu(z, P)U,U) < A(l+ PP [UP,

holds for all U, P € R™ and with universal positive constants X, A, €.
Here the constants occurring in ii), iii) and iv) are supposed to be uniform in x € Q.

Next we fix a local J-minimizer u € W ,,.(; R") and a smooth domain €' € 2. Given
Assumption 3.1 we let uj, denote the unique solution of the regularized problem

Juw, Q= [ fu(, Vw)dzr - min  in u+ I/f/pl(Q’;RN) :
QI

Note that this problem clearly is well posed because f; is of isotropic p-growth and
because u € W, (RY). Then, since uy is minimal w.r.t. Jy[-, '], since u is an
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Ju |-, V']-admissible comparison function and since fy(z, P) < f(z,P) one gets with a
universal constant K

Ju(, Vuy)de < fu (s, Vu)dz
(94 Q/
< [ f(,Vuds < K. (3.2)
QI

Now let us assume that except for the Wal—regularity of u we have the assumptions of

Theorem 1.1 or of Theorem 1.2. Then we construct an wu,,-regularizing sequence {Uf\/’f}
in the same way as discussed in Section 2.1. This means that for a fixed ball Byp =
Byr(zg) € Q' we define uj, as the mollification of u, with parameter € > 0 and let va’[‘s

denote the unique solution of the minimization problem

Jailw, Bog) := /

Bagr

(£, V) + 601 + [Vwf?)?) dz — min

in uy, + W, (Bar,RY), 0 < § < 1. Here ¢ is chosen as discussed in (2.1) or (2.25),
respectively.

Now, on one hand, for fixed M, fu(x,P) is of isotropic p-growth which is due to
Assumption 3.1, iii). In particular we have Lemma 2.1 where

f is replaced by fas;

u is replaced by uyy, ie. () =6(e, M) = (1+e ' + ||Vu§v1||i‘fl(BZR;RnN))’1;

. ,8(e,M
v, is replaced by v§; = v} (& );

q replaced by p.

In fact, with these changes we can follow the proof of Lemma 2.1 line by line and obtain
the corresponding convergence results of v, to uyy.

On the other hand, as in Section 2 we obtain a priori bounds for v3, which are uniform
w.r.t. ¢ and M. To be more precise: of course the data A\, A, ¢;, p and g of Assumption
1.1 enter the a priori bounds derived in Section 2 (see in particular Lemma 2.2 and 2.3).
Here we observe that fy/(z, P) is supposed to satisfy a (p,g)-ellipticity condition which
is uniform w.r.t. p and g (see Assumption 3.1, iv)), i.e. these data do not depend on M.
Moreover, the a priori bounds of Section 2 depend on the LP-norm of the gradient of the
regularization, i.e. in order to apply the arguments of Section 2 to v5, we need to know
that

sup sup ||Vvillepryy < L, (3.3)
M e<e(M)
which means that for any M > 1 we have to find a small number (M) such that for all
e < e(M) ||Vl Le(Bypsrny)y can be bounded independent of M with a universal constant
L. For proving (3.3) we make use of the variant of Lemma 2.1, iii). This, together with
the uniform left-hand side estimate of Assumption 3.1, iii), yields as € | 0

||VU]E\4||€IJ(BZR;RN) S C(1+ fM(avUil)dx>
Bar
— c|l1+ fu(,Vuy)de | < @,
Bagr
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where the universal constant ¢ can be found on account of (3.2). Thus we have (3.3) if ¢
is chosen sufficiently small depending on M.

We proceed by fixing a ball B @ By and a number 1 < t < 2. As discussed above,
Lemma 2.2 and Lemma 2.3 remain valid, thus we obtain (I, := (1 + |Vv5,|?))

/I;|V2'U§M|tdx < /1§(F§\4)])2;2%|V21}i/[ t(F,;V[)Q—TP%dx
/(F%)'T|V2v;4|2dx+/(r34)¥ﬁ dz
B

< C(B), ’

IN

provided that ¢ is sufficiently close to 1. As a result, we have uniform local W bounds for
vy, thus together with Lemma 2.1 local W7 bounds for uy, which are uniform w.r.t. M.
That is, for any Q2 € Byg there is a local constant ¢(€2) s.t. for some suitable 1 < ¢

sup sl ez, < (). (3.4)

Note that condition (1.5) is not needed to obtain this bound.
With (3.4) we now may pass to the limit M — oo and define by considering a suitable
subsequence
up = in WP, (5 RY)
as M — oo. In particular we may assume w.l.o.g.

Vuy — Vi almost everywhere on €)' .

This finally implies by Fatou’s lemma (we just need lower semicontinuity) and by recalling
(3.2)

f(z,Va)ydz < liminf | fuy(z,Vuy)de

Q M — 00 o

< f(z,Vu)dz.
QI
(For applying Fatou’s lemma we note: almost everywhere convergence of Vu,, together
with ii) of Assumption 3.1 in fact gives almost everywhere convergence of fus(z, Vup).)
Moreover, iii) of Assumption 3.1 and (3.2) yield

uaellwyrny < e,

i.e. u takes the boundary datum u s in the trace sense of a Wpl—function. Thus, v = u by
the strict convexity of f(z,-) and the minimizing property of u. Summing up and once
more emphasizing that the variant of Lemma 2.3 gives a priori estimates for v3, which
are uniform w.r.t. € and M, we have proved

LEMMA 3.2 Suppose that except for the qu,loc—regulam’ty hypothesis we either have the
assumptions of Theorem 1.1 or of Theorem 1.2. Suppose further that we have Assumption

3.1. Then any local J-minimizer u satisfies

vue { " (R, if n>3,
any L (Q;R™), s<oo, if n=2.

loc
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Now the main question of course deals with the existence of the regularization introduced
in Assumption 3.1. As in [CGM] we consider energy densities of special structure. Note
that even the counterexamples given in [ELM] and [FMM] satisfy this assumption.

PROPOSITION 3.1 There exists a sequence of energy densities fy as described in
Assumption 3.1 provided that f is of special structure, i.e.

f(z,P) = g(,|P|) (3-5)

for some suitable function g: 0 x [0,00) — [0,00), and provided that we suppose
1D,g"(2,1)] < co(1 + )T for all (z,t) € Q x [0,00). (3.6)
Here and in the following ¢' and ¢" denote the derivatives of g w.r.t. the second argument.

Proof. We first note that (3.5) gives

|P:U|2 + g,(xa‘PD ‘ |2 _ ‘P : Uv|2

Dif(a, P)U.V) = 9" (x, |P) =5 P e

(3.7)

in particular the choice U = P and U L P, respectively, in (3.7) implies recalling As-
sumption 1.1

! g—2
Aa+¢%%gg9%¢)gAa+ﬁfr, (3.8)
A1+8)" < g"(z,t) <A1 +2)"2 . (3.9)

As a consequence ¢'(z,-) is an increasing function. From

DyDpf(z, P) = D, [gl(x’ ‘PD] %

we obtain again using Assumption 1.1
1D,d'(z,1)| < ci(1+2) = . (3.10)

With these preliminaries we now fix M > 1 and choose n € C'([0,00)) such that 7 = 1
on [0,3M/2], n = 0 on 2M, ), 0 < n < 1, |Vn| < ¢/M. We then let on Q X [0,00)
(recall g” > 0)

(1+)"
h(t) :=n(t 1—nt)A\————
()= n(0)+ (1 = nON
in particular A is a continuous function with the following properties.

i) h(z,M)=n(M)=1forall z € Q.

ii) 0 < h(z,t) <1 for all (z,t) € Q x [0,00). In fact, the left-hand side is trivial, the
inequality on the right-hand side follows from the left-hand side of (3.9).

iii) We have

g"(x, Oh(z,t) = ¢"(z,)n(t) + A1 —n(t)(1 + )T
> A1 +2) 7 ) + M1 — )1+ )7
A1+
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iv) ¢"(z,t)h(z,t) < ¢(M)(1 + t2)®2", which is obvious by the choice of 7. Here c¢(M)
denotes a positive constant depending on the data and on M.

Next we let

(2,8) = { 9®Y, if0<t<M,
GMT,t) = g(:v,M)+g'(x,M)(t—M)+f]\tJfA’j[g"(x,T)h(x,T)dep, if t>M.

and finally fu(z, P) = gum(z,|P|). Property i) of h in particular implies that fy, is of
class C?, the second one yields fiy < f, fu(z,P) = f(z,P) if |P| < M is trivial by
construction.

The third claim of Assumption 3.1, i.e. the p-growth condition for f,; follows from the
properties iii) and iv) of the function A which in fact imply that g}, is of growth order
p — 1, where the upper bounds may depend on M. Note that the lower growth rate of f
also is an immediate consequence of the ellipticity condition in Assumption 3.1, iv).

Let us proceed with the discussion of this ellipticity condition. We have

\ _ [ Dif(z, P)U,U), if |[P|<M,
DPfM(x’P)(U’U)_{T1+T2+T3a if |P|>M,
where
q'(z, M) , |P:U?
_ g, M) _ >
= P g T2k | >0

|P| L TTI2
T, = / g"(z,7)h(z, T)dT—[|U|2 P : Ul > 0,

M |P| [Pzt
" [P U

To establish the ellipticity condition it is of course sufficient to consider |P| > M. For
the estimate from below we distinguish two cases.

Case 1. Suppose that
\P:U|?

2>2
U= e

Then, if M < |P| < 2M, (3.8) gives

gz, M) _ g, M)
UP=Z—= > (U]
1P| | M|

> o1+ |PP)T UL

T >

> o1+ |MP)=|U2

In order to dicuss the case 2M < |P|, we rely on the third property of h. Thus, if
2M < |P|, we have

T, > c(1+ PP |U|2

and it remains to discuss

Case 2. Suppose that
|\P:U|?
|P[?

U2 <2
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We then have once more recalling property iii)
U

Ty > o2, |P)h(r, [P) G- > o1 + P22 U7
and our claim is proved.

Next we are going to establish the ellipticity bound from above. With (3.8) and the
monotonicity of ¢'(z,-) we immediately get a suitable bound for 77. Discussing T» and
T3 we just have to recall (3.9) together with 0 < h < 1. Altogether the first claim of
Assumption 3.1, iv), is verified.

It remains to prove the Lipschitz condition for Dp f;, which of course is satisfied if
|P| < M. Thus we assume that |P| > M. This gives
P

\D;Dpfr(z, P)| < |Dyg'(z, M)| + D,(¢"(z,7)h(z,7))dr| = I, + L.

M
hence we obtain from (3.10)

L<a(l+M)% <a(1+|PP)% .
Estimating I, we observe

| De(g" (@, 7)(z, 7)) = |n(7) Dag" (2, 7)1,
and last claim of the proposition follows from the assumption (3.6). O

REMARK 3.1 Since we do not have global higher integrability results, it is not clear
whether we can exclude

inf /f(-,Vu)dx< inf /f(-,Vu)dx
u€ug+W3 Q u€uo+W} Q

for the Dirichlet boundary value problem with data ug. Instead of the formulation as
an enerqgy-class problem as discussed above one may also consider a relaxed problem in
this case. For the definition and further details we refer to [ELM] and the references
quoted therein. Here we just like to mention that it 1s not hard to show that the global
reqularization {us} defined w.r.t. fs and boundary values uy forms a minimizing sequence
for the relaxed problem and that the limit is the unique minimizer of this relaxed problem.
As a consequence, the higher reqularity results of Section 2 apply to the relaxed problem.
Moreover, the limit function solves the Fuler-Lagrange equation

/Dpf(-,Vu):Vgodxzo for all ¢ € C&(LRY),
0

U — U EVf/pl(Q; RY).

We leave the details to the reader (in fact they can be found in a preliminary version of
this paper ([BF4])).

The reader should also note that Marcellini (see [Ma]) investigates the exisitence and
the regularity of solutions of elliptic equations under a (p, q)-growth condition. If a weak
solution is in the space qu,loc(Q) and if ¢ < pn/(n — 2), then Marcellini proves Lipschitz
reqularity (and even higher reqularity), whereas the existence of a weak solution of class
W, 10.(2) is established under the restriction that ¢ < p(n +2)/n.

Here it is not possible to arque with the same relations between p and q as done in [Ma]
since our hypothesis on D,Dpf are weaker.
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