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Version of 1 June 2006

THE NEW MAXIMAL MEASURES FOR STOCHASTIC

PROCESSES

HEINZ KÖNIG

Abstract. In recent work the author proposed a reformed notion of
stochastic processes, which in particular removes notorious problems
with uncountable time domains. In case of a Polish state space the new
stochastic processes are in one-to-one correspondence with the tradi-
tional ones. This implies for a stochastic process that the traditional
canonical measure on the path space receives a certain distinguished
maximal measure extension which has an immense domain. In the
present paper we prove, under a certain local compactness condition on
the Polish state space and for the time domain [0,∞[, that the maximal
domain in question has, for all stochastic processes, three distinguished
members: the set of all continuous paths, the set of all paths with one-
sided limits, and its subset of those paths which at each time are either
left or right continuous. In all these cases the maximal measure of the
set is equal to its outer canonical measure. However, the situation will
be seen to be different for the set of the càdlàg paths, for example in
the Poisson process.

1. Introduction and Basic Measure Theory

The present article continues the author’s contributions to the fundamen-
tals of stochastic processes [9][10][11]. These papers are based on his work
in measure and integration [6][8], the aim of which is to build adequate new
structures. This work inspired a reformed concept of stochastic processes,
which in particular removes notorious problems with uncountable time do-
mains. The new stochastic processes are in one-to-one correspondence with
the traditional ones whenever the state space is a Polish topological space.
It is in this situation that the present article wants to add further evidence
in favour of the reformed concept of stochastic processes.

We start with two sections of introduction. The present section 1 recalls
from the earlier survey article [8] the fundamentals of the author’s work
in measure and integration. The subsequent section 2 recalls from [10] the
fundamentals on the two notions of stochastic processes, the traditional and
the new one, and then formulates and discusses the new results of the present
paper.

The heart of the new measure theory are parallel outer and inner exten-
sion procedures for certain set functions. The outer versions are similar to
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60G17.

Key words and phrases. Traditional and new stochastic processes, their canonical mea-
sures and maximal measures, their essential subsets, the set of càdlàg paths, the Poisson
process, the Choquet capacitability theorem and its mirror theorem, inner premeasures
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the famous extension procedure due to Carathéodory 1914, and therefore
look more familiar than the inner ones. But in recent years the inner ver-
sions became more and more authoritative. In particular our treatment of
stochastic processes will be based on the so-called inner τ version, and hence
we shall restrict ourselves to the inner extension procedures.

Let X be a nonvoid set. We start to recall the famous extension procedure
of Carathéodory cited above. He defines on the one hand for a set function
Θ : P(X) → [0,∞] with Θ(∅) = 0 the set system

C(Θ) := {A ⊂ X : Θ(M) = Θ(M ∩A) + Θ(M ∩A′) ∀M ⊂ X},

the members of which are called measurable Θ. It turns out that Θ|C(Θ)
is a content on an algebra in X. On the other hand he defines for a set
function ϕ : S → [0,∞] on a set system S in X with ∅ ∈ S and ϕ(∅) = 0
the so-called outer measure ϕ◦ : P(X) → [0,∞] to be

ϕ◦(A) = inf{
∞
Σ

l=0
ϕ(Sl) : (Sl)l in S with

∞
∪

l=0
Sl ⊃ A}.

His main theorem then reads as follows. If ϕ : S → [0,∞] is a content on

a ring and upward σ continuous, then ϕ◦|C(ϕ◦) is a measure on a σ algebra

in X and an extension of ϕ.

In the traditional theory this theorem is the most fundamental tool in
order to produce nontrivial measures. However, it has been under quite some
criticism. In the traditional frame the attacks are towards the formation
C(·), as an unmotivated and artificial one, while as a rule no doubt falls
upon the outer measure formation ϕ 7→ ϕ◦. But the new structure to be
described below will disclose that the opposite is true: There are in fact
serious deficiencies around the Carathéodory theorem, but it is the particular
form of his outer measure which must be blamed for them, whereas the
formation C(·) remains the decisive methodical idea and even improves when
put into the adequate context. The main defects of the theorem are as
follows.

1) The measure extension it produces is of an obvious outer regular char-
acter, like ϕ◦ itself. It is mysterious how an inner regular counterpart could
look - while inner regular aspects become more and more important.

2) The measure extension it produces is of an obvious sequential char-
acter. It is mysterious how a nonsequential counterpart could look - while
nonsequential aspects become more and more important. Both times the
sum in the definition of ϕ◦ is a crucial obstacle.

3) The proof of the theorem suffers a complete breakdown as soon as one
attempts to pass from rings S to less restrictive set systems like lattices -
while lattices of subsets become more and more important.

All these defects will disappear under the new structure to which we
proceed now, as said above in its inner version. Let as beforeX be a nonvoid
set. We adopt a kind of shorthand notation, in that • = ⋆στ marks three
parallel theories, where ⋆ stands for finite, σ for sequential or countable, and
τ for nonsequential or arbitrary. As an example, for a nonvoid set system
S in X let S• denote the system of the intersections and S• the system of
the unions of the nonvoid • subsystems of S.
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In the sequel we assume that S is a lattice in X with ∅ ∈ S and that ϕ :
S → [0,∞[ is an isotone set function with ϕ(∅) = 0. Our basic definitions
are as follows. We define an inner • extension of ϕ to be an extension
α : A → [0,∞] of ϕ which is a content on a ring, and such that moreover
S• ⊂ A and

α|S• is downward • continuous (note that α|S• <∞), and
α is inner regular S•.

We define ϕ to be an inner • premeasure iff it admits inner • extensions. The
subsequent inner extension theorem characterizes those ϕ which are inner •
premeasures, and then describes all inner • extensions of ϕ. The theorem is
in terms of the inner • envelopes ϕ• : P(X) → [0,∞] of ϕ, defined to be

ϕ•(A) = sup{ inf
M∈M

ϕ(M) : M ⊂ S nonvoid • with M ↓⊂ A},

where M ↓⊂ A means that M is downward directed with intersection con-
tained in A. We also need their satellites ϕB

• : P(X) → [0,∞] with B ⊂ X,
defined to be

ϕB
• (A) = sup{ inf

M∈M

ϕ(M) : M ⊂ S nonvoid • with

M ↓⊂ A and M ⊂ B ∀M ∈ M}.

We note that ϕ• is inner regular S•. Moreover ϕ = ϕ•|S iff ϕ is downward
• continuous, and ϕ•(∅) = 0 iff ϕ is downward • continuous at ∅.

1.1 Inner Extension Theorem. Assume that ϕ : S → [0,∞[ is isotone

with ϕ(∅) = 0. Then ϕ is an inner • premeasure iff

ϕ is supermodular and downward • continuous, and

ϕ(B) ≦ ϕ(A) + ϕ•(B \A) for all A ⊂ B in S.

Equivalent is

ϕ is supermodular and downward • continuous at ∅, and

ϕ(B) ≦ ϕ(A) + ϕB
• (B \A) for all A ⊂ B in S.

In this case Φ := ϕ•|C(ϕ•) is an inner • extension of ϕ, and a measure on a

σ algebra when • = στ ; also Φ is complete. All inner • extensions of ϕ are

restrictions of Φ. Moreover we have the localization principle which reads

for A ⊂ X: S ∩A ∈ C(ϕ•) for all S ∈ S =⇒ A ∈ C(ϕ•).

Thus we have S ⊂ S• ⊂ C(ϕ•). It is plain that the members of S• are
the most basic measurable subsets.

The prominent rôle of ϕ•|C(ϕ•) as the unique maximal inner • extension

of ϕ emphasizes the fundamental nature of Carathéodory’s formation C(·).
There is no such fact in the traditional context: If ϕ : S → [0,∞] is an
upward σ continuous content on a ring S in X then ϕ◦|C(ϕ◦) need not be
a maximal measure extension of ϕ (for example for S = {∅,X} and ϕ 6= 0
one has ϕ◦|C(ϕ◦) = ϕ).

We also note a special case of particular importance: S is called • compact

(in the set theoretical sense in contrast to the topological one) iff each nonvoid
• subsystem M ⊂ S fulfils M ↓ ∅ ⇒ ∅ ∈ M. It is obvious that in this case
the above functions ϕ are all downward • continuous at ∅. Thus the second
equivalent condition in 1.1 becomes much simpler.
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The most natural example is that X is a Hausdorff topological space with
S = Comp(X). For an isotone set function ϕ : S → [0,∞[ with ϕ(∅) = 0
then the three conditions • = ⋆στ in 1.1 turn out to be identical, and if
fulfilled produce the same ϕ• and hence the same Φ = ϕ•|C(ϕ•). In this case
ϕ is called a Radon premeasure and Φ the maximal Radon measure which
results from ϕ. The localization principle implies that C(ϕ•) ⊃ Bor(X).

2. Stochastic Processes and the New Results

The present section assumes an infinite index set T called the time do-

main, and a nonvoid set Y called the state space. One forms the T -fold
product set X := Y T , called the path space, the members of which are the
paths x = (xt)t∈T : T → Y . For t ∈ T let Ht : X → Y be the canonical
projection x 7→ xt. Next let I = I(T ) consist of the nonvoid finite subsets
p, q, · · · of T . For p ∈ I one forms the product set Y p, with Hp : X → Y p the
canonical projection x 7→ (xt)t∈p, and for the pairs p ⊂ q in I the canonical
projections Hpq : Y q → Y p.

In the traditional situation one equips Y with a σ algebra B of subsets.
In X = Y T one forms the finite-based product set system

B[T ] := { Π
t∈T

Bt : Bt ∈ B ∀ t ∈ T with Bt = Y ∀∀ t ∈ T},

where ∀∀ means for all except for finitely many, and the generated σ alge-
bra A := Aσ(B[T ]), which is the smallest σ algebra A in X such that the
Ht ∀t ∈ T are measurable A → B. It is well known that for uncountable
T the formation A is too narrow, because its members A ∈ A are countably

determined in the sense that A = {x ∈ X : (xt)t∈D ∈ E} for some nonvoid
countable D ⊂ T and some E ⊂ Y D. In this frame a traditional stochastic

process with time domain T and state space (Y,B), for short for T and
(Y,B), can be defined as a probability measure (prob measure for short)
α : A → [0,∞[ on A. In view of the size of the measurable space (X,A)
it is a nontrivial problem how to produce such stochastic processes. The
standard method is via projective limits.

For this purpose one forms in Y p for p ∈ I the product set system Bp :=
B×· · ·×B and the generated σ algebra Bp := Aσ(Bp). Then one considers
the families (βp)p∈I of prob measures βp : Bp → [0,∞[ which are projective

in the sense that βp = βq(H
−1
pq (·))|Bp for all pairs p ⊂ q in I (which makes

sense because Hpq is measurable Bq → Bp). Each stochastic process α :
A → [0,∞[ produces such a projective family (βp)p∈I via βp = α(H−1

p (·))|Bp

(which as before makes sense because Hp is measurable A → Bp). One
notes that the correspondence α 7→ (βp)p∈I is injective, but it need not be
surjective. The projective family (βp)p∈I is called solvable iff it comes from
some and hence from a unique stochastic process α : A → [0,∞[, called the
projective limit of the family (βp)p∈I . Thus a stochastic process for T and
(Y,B) can also be defined as such a solvable projective family (βp)p∈I , called
the family of finite-dimensional distributions of the process.

There is a famous particular situation (Y,B) in which all projective fami-
lies (βp)p∈I for all T are solvable: this is the substance of the projective limit
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theorem due to Kolmogorov 1933. The fundamental fact behind the theo-
rem is that in a Polish topological space Y all finite (and all locally finite)
measures on Bor(Y ) are inner regular with respect to the lattice Comp(Y ).

2.1 Theorem. Assume that Y is a Polish space and B = Bor(Y ) its

Borel σ algebra. Then on (Y,B) all projective families (βp)p∈I for all T are

solvable.

However, the traditional theory remains burdened with the defect that
for uncountable time domain T the σ algebra A is much too small. For
example, in case T = [0,∞[ and Y = R the subset A = C(T,R) ⊂ X = R

T

of continuous paths is not countably determined and hence not in A. One of
the consequences is that in its more than fifty years the theory has not been
able to produce for its stochastic processes an adequate notion of essential

subsets in the path space. These problems will disappear under the reformed
concept of stochastic processes based on the author’s work in measure theory
described in the previous section, to which we proceed now.

In the new situation one equips Y with a lattice K of subsets which contains
the finite subsets and is • compact, for the moment with • = ⋆στ . In
X = Y T one forms the finite-based product set system

(K ∪ {Y })[T ] := { Π
t∈T

St : St ∈ K ∪ {Y } ∀ t ∈ T with St = Y ∀∀ t ∈ T},

and S := ((K ∪ {Y })[T ])⋆. Thus S is a lattice in X with ∅,X ∈ S and is •
compact after [7] 2.6. This formation is the basic step in the new enterprise.
We also form in Y p for p ∈ I the usual product set system Kp := K×· · ·×K

and the generated lattice Kp = (Kp)⋆.

We turn to the relevant set functions. These are on the one hand on
X = Y T the inner • premeasures ϕ : S → [0,∞[ with ϕ(X) = 1, the
inner • prob premeasures for short, with their maximal inner • extensions
Φ = ϕ•|C(ϕ•) (thus with Φ(X) = 1). On the other hand we consider
the families (ϕp)p∈I of inner • prob premeasures ϕp : Kp → [0,∞[ with
their Φp (thus with Φp(Y

p) = 1), which are projective in the sense that
ϕp = (ϕq)•(H

−1
pq (·))|Kp for all p ⊂ q in I. These entities are connected via

the comprehensive counterpart [10] theorem 11 of the classical Kolmogorov
projective limit theorem 2.1 which follows.

2.2 Theorem. The family of the maps

ϕ 7→ ϕp := ϕ(H−1
p (·))|Kp for p ∈ I

defines a one-to-one correspondence between the inner • prob premeasures

ϕ : S → [0,∞[ and the projective families (ϕp)p∈I of inner • prob premea-

sures ϕp : Kp → [0,∞[. For B ⊂ Y p and p ∈ I we have

(ϕp)•(B) = ϕ•(H
−1
p (B)) and B ∈ C((ϕp)•) ⇔ H−1

p (B) ∈ C(ϕ•).

Moreover Φ(A) = inf
p∈I

Φp(Hp(A)) for A ∈ S•.

The present result appears to be more favourable than the traditional
one, because the relations between the families (ϕp)p∈I and their projective
limits ϕ look deeper than before. But the main benefit compared with the
traditional situation is that in case • = τ the resultant prob measure Φ =
ϕ•|C(ϕ•) on X has an immense domain: In fact, even the most prominent



6 HEINZ KÖNIG

subclass Sτ ⊂ C(ϕτ ) contains for example all A ⊂ X of the form A = Π
t∈T

Kt

with Kt ∈ K ∪ {Y } ∀ t ∈ T , and hence reaches far beyond the class of
countably determined subsets. On the other side it remains true that all
inner • prob premeasures ϕ : S → [0,∞[ are rooted in the finite subsets of
T .

Thus we are entitled to define a stochastic process with time domain T
and state space (Y,K), for T and (Y,K) for short, to be an inner τ prob
premeasure ϕ : S → [0,∞[. The maximal inner τ extension Φ = ϕτ |C(ϕτ )
of ϕ will be called its maximal measure.

We proceed to the comparison with the traditional situation in the most
fundamental particular case. The result is [10] theorem 13. Its proof com-
bines the above theorems 1.1 and 2.2 with the basic properties of Polish
spaces.

2.3 Theorem. Assume that Y is a Polish space with B = Bor(Y ) and

K = Comp(Y ). There is a one-to-one correspondence between

the traditional stochastic processes α : A → [0,∞[ for T and (Y,B), and

the new stochastic processes ϕ : S → [0,∞[ for T and (Y,K).

The correspondence rests upon S ⊂ A ⊂ C(ϕτ ) and reads ϕ = α|S and

α = Φ|A. Moreover ϕτ = (α⋆|Sτ )⋆ ≦ α⋆.

In the present particular case the decisive point is that the canonical

measure α with its inadequate domain A receives the maximal measure Φ as
a well-defined and highly distinguished measure extension with the immense
domain C(ϕτ ). In the traditional context there is no such extension of α like
Φ, at least beyond the case of compact Y to which we shall come back at
once. There were attempts to use the outer canonical measure α⋆ instead,
in particular via the idea of Doob [2] that the essential subsets A ⊂ X for a
stochastic process α be those with α⋆(A) = 1. But this idea is bound to fail
except in particular instances; there is a drastic illustration in [10] theorem
4. In the new context the natural notion of an essential subset A ⊂ X for a
stochastic process ϕ is that the maximal measure Φ lives on A. The sequel
will reveal a certain remarkable and pleasant partial coincidence between
the two notions.

At this point we turn to the present new results. For the first result we
introduce for Hausdorff topological spaces Y the condition

(COMP) There exists an isotone sequence (K(n))n of com-
pact subsets K(n) ⊂ Y such that each compact K ⊂ Y
satisfies K ⊂ K(n) for some n ∈ N.

Note that (COMP) is fulfilled when Y is locally compact and second count-
able.

Now assume that T = [0,∞[ and let Y be a Polish space. We then define
the subsets C ⊂ D ⊂ E ⊂ F ⊂ X as follows: C consists of the continuous

paths x : T → Y , and F of the paths x : T → Y which possess all one-sided
limits x±t ∈ Y for t ∈ T , with the convention x−0 := x0. Then E consists of
the paths x ∈ F which at each t ∈ T are either left or right continuous, and
D of the paths x ∈ F which are right continuous at all t ∈ T , the so-called
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càdlàg ones. Note that none of these subsets is countably determined, and
hence not a member of A.

2.4 Theorem. Assume that T = [0,∞[ and that the Polish space Y fulfils

(COMP). For each couple α and ϕ of stochastic processes then C,E,F are

members of C(ϕτ ) and fulfil α⋆(·) = Φ(·).

Theorem 2.4 had certain partial predecessors in the 1959 paper of Nelson
[13] and in the 1972 and 1980 books of Tjur [14][15]. Its proof owes basic
methodical ideas to [13] theorem 3.4 in case F and to [15] proposition 10.5.1
in case E. The former one is close to the approach via numbers of upcrossings

due to Doob [3] chapter VII section 3, which reappears in [14][15]. The result
[13] 3.4 has been reproduced in the 1989 textbook of Dudley [4] theorem E.6
p.426.

In all these sources the adequate treatment was restricted to the case of
compact Polish spaces Y (and compact intervals T ), and in place of Φ to the
Radon measure on the compact product spaceX = Y T which results from an
appropriate Radon measure version of the Kolmogorov theorem 2.1, or from
the so-called regularity extension of Baire probability measures for which
we refer to [4] theorem 7.3.1 and [6] 8.14. The step beyond compact Polish
state spaces could not be done in natural manner before the new measure-
theoretical foundations in [6][8] had been laid down. The reason is that
the proper kind of compactness required in the procedure is not topological

compactness but the more flexible set-theoretical τ compactness, manifested
in the formation of the lattice S in [9][10]. Before this achievement, a
typical severe consequence was that the case of the state space R could not
be treated right away, but required the problematic detour via R. For this
point see for example Bourbaki [1] p.120.

On the other side the new maximal measure Φ = ϕτ |C(ϕτ ) is able to
illuminate the rôle of the set D of the càdlàg paths. Our subsequent second
main result is for the most relevant Poisson process, in the sense of [10]
section 5. The result is somewhat weaker than the full truth which is still
in the dark, but it suffices to raise the suspicion that the actual importance
of the class D could be inferior to the one attributed to it in the traditional
view of our days. In this connection the author is indebted to [15] section
10.1.2 and to the 1990 paper of Dudley [5].

2.5 Theorem. Assume that Y = R and T = [0,∞[. Then for the Pois-

son process α and ϕ the set D ⊂ X has ϕτ (D) = 0, and hence is either

nonmeasurable C(ϕτ ) or is in C(ϕτ ) with Φ(D) = 0. Note that α⋆(D) = 1,
for example from [10] remark 8.

The subsequent sections 3 and 4 will be devoted to the proof of theorem
2.4. In section 3 we prove a certain consequence of the Choquet capac-
itability theorem - or rather of its mirror assertion with co-Suslin in place of
Suslin - on which our theorem is based. We also include the respective con-
sequence of the actual Choquet theorem in view of its proper interest. The
final theorem 3.3 in section 3 can be expected to form the basis for future
relatives of the present theorem 2.4. Then sections 5 and 6 will present the
proof of theorem 2.5, and in fact of a much more comprehensive result.
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3. Consequences of the Choquet Capacitability Theorems

Our treatement of the Choquet theorem and its mirror theorem will be
based on [6] section 10, where these theorems found substantial extensions.
For the theorems 3.1 and 3.2 below we assume a nonvoid set X and a lattice
S with ∅ ∈ S in X. Let S# and S# denote the Suslin and co-Suslin set
systems for such an S as defined in [6] section 10.

3.1 Theorem. Let ϕ : S → [0,∞] be an outer • premeasure with Φ =
ϕ•|C(ϕ•) (• = στ). Assume that A ∈ (S•)#, and either Φ|S• < ∞ or

(Φ|S•)σ(A) <∞. Then A ∈ C(ϕ•) and Φ(A) = (Φ|Sσ)⋆(A).

We note that the final assertion looks like in the Choquet theorem [8] 2.4
itself. However, in the present situation that theorem, applied to ϕ• and
S• under the assumption ϕ•|S• = Φ|S• < ∞, furnishes but the weaker
assertion ϕ•(A) =

(

ϕ•|(S•)σ
)

⋆
(A). Thus it is clear that some more work is

required.

Proof. 1) From [6] theorem 10.12 with 10.14 applied to Φ = ϕ•|C(ϕ•) and
S• ⊂ C(ϕ•) we obtain A ∈ C(ϕ•) and Φ(A) = (Φ|S•)σ(A). To be shown is

Φ(A) = sup{Φ(D) : D ∈ Sσ with D ⊂ A},

where ≧ is obvious. Fix a real c < Φ(A), and then an ε > 0 with c + ε <
Φ(A). Then take a sequence (An)n in S• with

An ↓⊂ A and c+ ε < lim
n→∞

Φ(An) ≦ (Φ|S•)σ(A).

From both assumptions it follows that c+ ε < Φ(An) <∞ for n ∈ N.
2) Since Φ|S• is upward • continuous, there are Sn ∈ S with Sn ⊂ An

and Φ(Sn) > Φ(An) − ε/2n for n ∈ N. We form Dn := S1 ∩ · · · ∩ Sn ∈ S,
so that Dn ⊂ Sn ⊂ An and Dn ↓ D ∈ Sσ with D ⊂ A. We claim that
Φ(Dn) > Φ(An)− ε(1− 1/2n) for n ∈ N; from this we obtain Φ(D) ≧ c and
hence the assertion.

3) The case n = 1 is clear. For the induction step 1 ≦ n⇒ n+ 1 we note
that Dn+1 = Dn ∩ Sn+1 and An ⊃ Dn ∪ Sn+1, and hence

Φ(Dn+1) + Φ(An) ≧ Φ(Dn) + Φ(Sn+1)

> Φ(An) − ε(1 − 1/2n) + Φ(An+1) − ε/2n+1.

It follows that Φ(Dn+1) > Φ(An+1) − ε(1 − 1/2n+1). �

3.2 Theorem. Let ϕ : S → [0,∞[ be an inner • premeasure with Φ =
ϕ•|C(ϕ•) (• = στ) and Φ(X) = ϕ•(X) <∞. For A ∈ (S•)# then A ∈ C(ϕ•)
and Φ(A) = (Φ|Sσ)⋆(A).

Proof. 1) From the counterpart [6] 10.13 with 10.16 applied to Φ =
ϕ•|C(ϕ•) and S• ⊂ C(ϕ•) we obtain A ∈ C(ϕ•) and Φ(A) = (Φ|S•)

σ(A).
To be shown is

Φ(A) = inf{Φ(V ) : V ∈ Sσ with V ⊃ A},

where ≦ is obvious. Fix a real c > Φ(A), and then an ε > 0 with c > Φ(A)+
ε. Then take a sequence (An)n in S• with An ↑⊃ A and c−ε > lim

n→∞
Φ(An).

Thus Φ(An) < c− ε for n ∈ N.
2) Since Φ|S• is downward • continuous, there are Sn ∈ S with Sn ⊃ An

and Φ(Sn) < Φ(An) + ε/2n for n ∈ N. We form Vn := S1 ∪ · · · ∪ Sn ∈ S,
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so that Vn ⊃ Sn ⊃ An and Vn ↑ V ∈ Sσ with V ⊃ A. We claim that
Φ(Vn) < Φ(An) + ε(1 − 1/2n) for n ∈ N; from this we obtain Φ(V ) ≦ c and
hence the assertion.

3) The case n = 1 is clear. For the induction step 1 ≦ n⇒ n+ 1 we note
that Vn+1 = Vn ∪ Sn+1 and An ⊂ Vn ∩ Sn+1, and hence

Φ(Vn+1) + Φ(An) ≦ Φ(Vn) + Φ(Sn+1)

< Φ(An) + ε(1 − 1/2n) + Φ(An+1) + ε/2n+1.

It follows that Φ(Vn+1) < Φ(An+1) + ε(1 − 1/2n+1). �

In this connection we recall the basic fact that a σ algebra A in X which
carries a complete finite measure satisfies A# = A# = A. This is a well-
known consequence of the Choquet capacitability theorems, for example
contained in [6] 10.12 and 10.13.

The basis for the sequel will be the consequence of theorem 3.2 which
follows. We adopt an assumption from the previous section: an infinite time
domain T and a Polish state space Y with B and K, and the resultant path
space X = Y T with A and S.

3.3 Theorem. Let α : A → [0,∞[ and ϕ : S → [0,∞[ be a couple of

stochastic processes as above. Then (Sτ )# ⊂ C(ϕτ ) and α⋆ = Φ on (Sτ )#.

This is a wide extension of the basic fact that Sτ ⊂ C(ϕτ ) and of the
special case that α⋆ = Φ on Sτ , which is contained in the previous formula
ϕτ = (α⋆|Sτ )⋆.

Proof. The assertion (Sτ )# ⊂ C(ϕτ ) is in theorem 3.2. For A ∈ (Sτ )#
then Φ(A) = (Φ|Sσ)⋆(A) = (α|Sσ)⋆(A), because Sσ ⊂ A ⊂ C(ϕτ ). We
combine this with the obvious relations (α|Sσ)⋆(A) ≧ α⋆(A) ≧ Φ⋆(A) =
Φ(A) to obtain the final assertion. �

4. Proof of Theorem 2.4

We assume T = [0,∞[ as before, and Y equipped with a fixed metric d
and with B = Bor(Y ) and K = Comp(Y ) in the metric topology. As before
let X = Y T consist of the paths x = (xt)t∈T : T → Y .

For a nondegenerate interval I ⊂ T we define C(I) ⊂ Y I to consist of the
continuous paths x ∈ Y I , and F (I) ⊂ Y I to consist of the paths x ∈ Y I

which possess all relevant one-sided limits, that is x−t ∈ Y in the t ∈ I with
t > inf I and x+

t ∈ Y in the t ∈ I with t < sup I. Then E(I) ⊂ F (I) consists
of the paths x ∈ F (I) which at each inf I < t < sup I are either left or right
continuous.

4.1 Lemma. Let I ⊂ T be a nondegenerate compact interval I = [a, b].
For x ∈ F (I) define the value set M ⊂ Y to be M = M ◦ ∪M− ∪M+ with

M◦ = {xt : a ≦ t ≦ b} and M− = {x−t : a < t ≦ b} and M+ = {x+
t : a ≦

t < b}. Then M ∈ K = Comp(Y ).

Proof. To be shown is that each sequence in M has a subsequence which
converges to some member of M . A sequence in M either has

(◦) a subsequence (xs(n))n in M◦, or

(−) a subsequence (x−
t(n))n in M−, or

(+) a subsequence (x+
t(n))n in M+.
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In the latter cases there is a sequence (xs(n))n in M◦ such that d(x±
t(n), xs(n))

< 1/n for n ∈ N. This reduces the task to the situation (◦). In this situation
we pass to another subsequence to achieve that the sequence (s(n))n is
monotone, and once more to achieve that (s(n))n is either constant or strictly
monotone. But then the sequence (xs(n))n converges either to some member

of M◦ or to some member of M− or M+. �

4.2 Proposition. Let I ⊂ T be a nondegenerate compact interval I =
[a, b]. 1) We have

C(I) =
⋂

k∈N

⋃

r∈N

⋂

s∈M(I,r)

M(s, k),

where M(I, r) consists of the pairs s = (u, v) of points a ≦ u < v ≦ b with

v − u ≦ 1/r, and M(s, k) := {x ∈ Y I : d(xu, xv) ≦ 1/k}.
2) If (Y, d) is complete then we have

E(I) =
⋂

k∈N

⋃

r∈N

⋂

s∈M(I,r)

M(s, k),

where M(I, r) consists of the triples s = (u, v,w) of points a ≦ u < v < w ≦

b with w − u ≦ 1/r, and

M(s, k) := {x ∈ Y I : d(xu, xv) ∧ d(xv , xw) ≦ 1/k}.

3) If (Y, d) is complete then we have

F (I) =
⋂

k∈N

⋃

r∈N

⋂

s∈M(I,r)

M(s, k),

where M(I, r) consists of the sequences s = (u(1), v(1), · · · , u(r), v(r)) of

points a ≦ u(1) < v(1) < · · · < u(r) < v(r) ≦ b, and

M(s, k) :=

r
⋃

l=1

{x ∈ Y I : d(xu(l), xv(l)) ≦ 1/k}.

Proof. 1) is clear, because it says that the x ∈ C(I) are uniformly con-
tinuous.

2) Let R ⊂ Y T denote the second member. 2.i) We prove E(I) ⊂ R. Fix
x ∈ E(I) and k ∈ N. For each s ∈ I there exists δ(s) > 0 such that

u, v ∈ I∩]s− δ(s), s[ ⇒ d(xu, xv) < 1/k,

u, v ∈ I∩]s, s+ δ(s)[ ⇒ d(xu, xv) < 1/k.

This implies that

u < v < w in I∩]s− δ(s), s + δ(s)[ ⇒ d(xu, xv) ∧ d(xv, xw) ≦ 1/k.

In fact, the assertion is clear for v < s and v > s, while in case v = s this
point must be an interior one of I, so that xv = x−v or xv = x+

v , and thus the
assertion is clear as well. Now since I is compact there exist s1, · · · , sm ∈ I
with

I ⊂

m
⋃

j=1

]sj −
1

2
δ(sj), sj +

1

2
δ(sj)[.
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We take an r ∈ N with 1/r ≦ min
1≦j≦m

1
2δ(sj) > 0. For each s = (u, v,w) ∈

M(I, r) we have u ∈]sj−
1
2δ(sj), sj+

1
2δ(sj)[ and hence u, v,w ∈]sj−δ(sj), sj+

δ(sj)[ for some 1 ≦ j ≦ m. From the above it follows that d(xu, xv) ∧
d(xv, xw) ≦ 1/k, that is x ∈M(s, k). Therefore x ∈ R.

2.ii) We prove R ⊂ E(I). Fix x ∈ R. 2.ii.1) We start with an intermediate
assertion: If a < s ≦ b and k ∈ N then there exists t ∈ [a, s[ such that
t < u, v < s ⇒ d(xu, xv) ≦ 4/k. In fact, take an r ∈ N with

x ∈
⋂

s∈M(I,r)

M(s, k),

that is for all a ≦ u < v < w ≦ b with w − u ≦ 1/r one has d(xu, xv) ∧
d(xv, xw) ≦ 1/k. Now we distinguish two cases. First assume that there
exists t ∈ I ∩ [s − 1/r, s[ with d(xt, xs) ≦ 1/k. For t < u < s we have
d(xt, xu)∧d(xu, xs) ≦ 1/k, and hence d(xu, xs) ≦ 2/k. Therefore d(xu, xv) ≦

4/k for all t < u, v < s. The opposite case is d(xt, xs) > 1/k for all t ∈
I ∩ [s − 1/r, s[. For t < u < s we have d(xt, xu) ∧ d(xu, xs) ≦ 1/k, which
combined with d(xu, xs) > 1/k implies that d(xt, xu) ≦ 1/k. Thus for each
fixed t ∈ I ∩ [s − 1/r, s[ we have d(xu, xv) ≦ 2/k for all t < u, v < s. This
proves the intermediate assertion.

2.ii.2) Since (Y, d) is complete we see from 2.ii.1) that for a < s ≦ b the
limit x−s ∈ Y exists. Likewise for a < s ≦ b the limit x+

s ∈ Y exists. Now
fix a < s < b. For each k ∈ N there exists r ∈ N with

x ∈
⋂

s∈M(I,r)

M(s, k),

so that for a ≦ u < s < v ≦ b with v−u ≦ 1/r one has d(xu, xs)∧d(xs, xv) ≦

1/k. It follows that d(x−s , xs) ∧ d(xs, x
+
s ) ≦ 1/k for all k ∈ N. Therefore

xs = x−s or xs = s+s . Thus we have x ∈ E(I).

3) Let R ⊂ Y I denote the second member. For x ∈ Y I thus x ∈ R′ means
that there exists k ∈ N such that for each r ∈ N there is an s ∈ M(I, r) with
d(xu(l), xv(l)) > 1/k ∀ 1 ≦ l ≦ r.

3.i) We prove F (I) ⊂ R. Assume not, and fix x ∈ F (I) such that x ∈ R′

with some k ∈ N as above. For each s ∈ I there exists δ(s) > 0 such that

u, v ∈ I∩]s− δ(s), s[ ⇒ d(xu, xv) < 1/k,

u, v ∈ I∩]s, s+ δ(s)[ ⇒ d(xu, xv) < 1/k.

Since I is compact there exist s1, · · · , sm ∈ I with

I ⊂
m
⋃

j=1

]sj − δ(sj), sj + δ(sj)[

=

m
⋃

j=1

]sj − δ(sj), sj [ ∪ {sj} ∪ ]sj, sj + δ(sj)[ (⋆).

Thus each of the 3m intervals A in (⋆) fulfils u, v ∈ I∩A⇒ d(xu, xv) < 1/k.
Now let r ∈ N, and take some s ∈ M(I, r) with d(xu(l), xv(l)) > 1/k ∀ 1 ≦

l ≦ r. Then it cannot happen that two u(l) for different 1 ≦ l ≦ r are in
I ∩A for the same interval A in (⋆). Thus r ≦ 3m, which is a contradiction.
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3.ii) We prove R ⊂ F (I). Fix x ∈ (F (I))′, and assume for example
that in some s ∈ [a, b[ the limit x+

s ∈ Y does not exist. Since (Y, d) is
complete this means that there exists k ∈ N such that for each δ > 0 there
are u, v ∈ I∩]s, s + δ[ with d(xu, xv) > 1/k. Thus we obtain two infinite
sequences s < · · · < u(r) < v(r) < · · · < u(1) < v(1) ≦ b with u(r), v(r) ↓ s
and d(xu(l), xv(l)) > 1/k ∀ l ∈ N. Hence the s = (u(r), v(r), · · · , u(1), v(1)) ∈

M(I, r) for all r ∈ N show that x ∈ R′. �

4.3 Proposition. Assume that the metric space (Y, d) is complete and

fulfils condition (COMP). Note that this implies that (Y, d) is separable and
hence Polish. Then the subsets C(T ) = C,E(T ) = E,F (T ) = F of Y T = X
are members of (Sτ )#.

Proof. The three cases admit a common proof. For the nondegener-
ate intervals I ⊂ T we write P (I) ⊂ Y I for each fixed one of the three
C(I), E(I), F (I).

1) For a nondegenerate compact interval I ⊂ T and k, r ∈ N we form

P (k, r, I) :=
⋂

s∈M(I,r)

M(s, k) ⊂ Y I ,

with the entities defined in proposition 4.2. Thus we have

P (I) =
⋂

k∈N

⋃

r∈N

P (k, r, I).

The definitions show that P (k, r, I) is closed in the product topology of Y I .
Thus for each K ∈ K the intersection K I ∩ P (k, r, I) is compact in that
product topology, and hence in view of [7] 2.4.2) is a member of ((KI)⋆)τ .

It follows that the product set (K I ∩ P (k, r, I)) × Y T\I is a member of

((KI)⋆)τ × Y T\I = ((KI × Y T\I)⋆)τ ⊂ Sτ .

Therefore the product set (KI ∩ P (I)) × Y T\I is a member of ((Sτ )σ)σ ⊂
(Sτ )#, with the last inclusion because (Sτ )# is stable under countable
unions and intersections, for example after [6] 10.3.

2) From lemma 4.1 we have

P (I) =
⋃

K∈K

KI ∩ P (I).

Moreover (COMP) implies that KI ⊂ ∪
n∈N

(K(n))I . Thus

P (I) =
⋃

n∈N

(K(n))I ∩ P (I).

Combined with 1) it follows that the product set P (I) × Y T\I is a member
of ((Sτ )#)σ = (Sτ )#.

3) At last we conclude from

P (T ) =
⋂

m∈N

P ([0,m]) × Y T\[0,m],

combined with 2) that P (T ) is a member of ((Sτ )#)σ = (Sτ )#. This is the
assertion. �
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Proposition 4.3 and theorem 3.3 combine at once to furnish the first main
theorem 2.4. �

5. Preparations for the Proof of Theorem 2.5

The present final part of the paper assumes T = [0,∞[ and Y = R with
the path space X = R

T . We start with some preparations which involve the
product topology of X.

We define X◦ ⊂ X to consist of the paths x = (xt)t∈T ∈ X with the
properties

i) x has values in N0 := N∪ {0} with x0 = 0 and is monotone increasing,
and hence has one-sided limits x±t ∈ N0 for t ∈ T , with the convention
x−0 := x0 = 0;

ii) x+
t − x−t ≦ 1 for all t ∈ T ;

iii) x is unbounded, that is xt ↑ ∞ for t ↑ ∞.

For x ∈ X◦ and r ∈ N we define

t(x, r) := sup{t ∈ T : xt ≦ r − 1} = inf{t ∈ T : xt ≧ r} ∈ T,

which is the point in T where the rth jump of x takes place. We list a few
immediate properties.

5.1 Remark. Let x ∈ X◦ and r ∈ N. i) For t ∈ T we have

t < t(x, r) ⇒ xt ≦ r − 1 ⇒ t ≦ t(x, r),

t > t(x, r) ⇒ xt ≧ r ⇒ t ≧ t(x, r).

ii) We have 0 ≦ t(x, 1) < · · · < t(x, r) < · · · and t(x, r) ↑ ∞ for r ↑ ∞.

iii) We have xt = r for t(x, r) < t < t(x, r + 1), and xt = 0 for 0 ≦ t <
t(x, 1) when t(x, 1) > 0. Hence x−

t(x,r) = r − 1 and x+
t(x,r) = r, and xt(x,r) is

either = r − 1 or = r.

5.2 Remark. For r ∈ N the function t(·, r) : X◦ → [0,∞[ is continuous

in the product topology of X restricted to X◦.

Proof. We fix a ∈ X◦ with t(a, r) > 0; the case t(a, r) = 0 is a simpler
variant. Let 0 < ε < t(a, r) and put v := t(a, r) + ε and u := t(a, r) − ε.
The set

A := {x ∈ X◦ : xv ≧ r and xu ≦ r− 1} = {x ∈ X◦ : xv > r− 1 and xu < r}

is open, and from 5.1.i) we see that a ∈ A and that the x ∈ A fulfil u ≦

t(x, r) ≦ v or |t(x, r) − t(a, r)| ≦ ε. �

Next we form in X◦ for r ∈ N the subsets

L(r) := {x ∈ X◦ : xt(x,r) = r − 1= x−
t(x,r)},

R(r) := {x ∈ X◦ : xt(x,r) = r = x+
t(x,r)},

thus the sets of the paths x ∈ X◦ which are left/right continuous at t(x, r).
Note that t(x, r) > 0 for x ∈ R(r). We have X◦ = L(r) ∪ R(r) and L(r) ∩
R(r) = ∅. The main result of the second part will be in terms of L(r) and
R(r). The basis are the remarkable properties of the compact subsets of
L(r) and R(r) which follow.
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5.3 Remark. For fixed r ∈ N let K ⊂ L(r) be compact 6= ∅. Define

t(K, r) := sup{t(x, r) : x ∈ K}. Thus t(K, r) ∈ T , and

Kr := {x ∈ K : t(x, r) = t(K, r)} ⊂ K is compact 6= ∅ after 5.2.

Also define the compact subsets

Kr
t := {x ∈ K : xt ≧ r} ⊂ K for t ∈ T.

Then i) Kr
t is monotone increasing in t ∈ T with Kr

0 = ∅ and Kr
t = K for

t > t(K, r).
ii) In case Kr

t 6= ∅ we have t(Kr
t , r) < t, and Kr

s = Kr
t for t(Kr

t , r) <
s < t.

iii) We have Kr = {x ∈ K : xt(K,r) = r − 1}, and

K \Kr = {x ∈ K : t(x, r) < t(K, r)} is = {x ∈ K : xt(K,r) ≧ r} = Kr
t(K,r),

and hence is compact as well.

Proof. i) is clear from 5.1.i).

ii) We have t > 0 from i). For x ∈ Kr
t we have xt ≧ r by definition

and hence t ≧ t(x, r) from 5.1.i). But t = t(x, r) cannot happen since
xt(x,r) = r− 1. Thus t > t(x, r) for all x ∈ Kr

t and hence t > t(Kr
t , r). Next

let t(Kr
t , r) < s < t For x ∈ Kr

t then s > t(x, r) and hence xs ≧ r from
5.1.i), that is x ∈ Kr

s . Thus Kr
t ⊂ Kr

s , while Kr
t ⊃ Kr

s from i).

iii) For x ∈ K we have

x ∈ Kr ⇒ xt(K,r) = xt(x,r) = r − 1 because x ∈ L(r),

x ∈ K \Kr ⇒ xt(K,r) ≧ r from 5.1.i);

thus we have ⇔ both times. �

5.4 Remark. For fixed r ∈ N let K ⊂ R(r) be compact 6= ∅. Define

t(K, r) := inf{t(x, r) : x ∈ K} ∈ T . Thus t(K, r) > 0, and

Kr := {x ∈ K : t(x, r) = t(K, r)} ⊂ K is compact 6= ∅ after 5.2.

Also define the compact subsets

Kr
t := {x ∈ K : xt ≦ r − 1} ⊂ K for t ∈ T.

Then i) Kr
t is monotone decreasing in t ∈ T with Kr

t = K for 0 ≦ t < t(K, r)
and ∩

t∈T
Kr

t = ∅, so that Kr
t = ∅ for sufficiently large t ∈ T .

ii) In case Kr
t 6= ∅ we have t(Kr

t , r) > t, and Kr
s = Kr

t for t < s <
t(Kr

t , r).
iii) We have Kr = {x ∈ K : xt(K,r) = r}, and

K\Kr = {x ∈ K : t(x, r) > t(K, r)} is = {x ∈ K : xt(K,r) ≦ r−1} = Kr
t(K,r),

and hence is compact as well.

The proof is parallel to that of 5.3 in all parts. So far the preparations
on the path space X and its subspace X◦.

We come to the point where the measures and hence the inner premeasures
enter the scene. We start to recall two basic facts: a special case of [6]
theorem 21.17 on product formation and [9] theorem 3.10 on direct images.
We adopt the former notations.
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5.5 Recollection. Let X and Y be nonvoid sets, and S in X and T

in Y be lattices with ∅. Let ϕ : S → [0,∞[ and ψ : T → [0,∞[ be inner •
premeasures with Φ = ϕ•|C(ϕ•) and Ψ = ψ•|C(ψ•) (• = στ), and ϑ = ϕ×ψ :
(S×T)⋆ → [0,∞[ be their product inner • premeasure after [6] theorem 21.9;
thus Θ = ϑ•|C(ϑ•) is an extension of Φ×Ψ. Assume that Ψ(Y ) <∞. Then

for E ∈ C(ϑ•) the sections E(x) := {y ∈ Y : (x, y) ∈ E} ⊂ Y for x ∈ X
fulfil

ψ•(E(·)) : X → [0,∞[ is measurable C(ϕ•),

and Θ(E) =
∫

ψ•(E(x))dΦ(x).

5.6 Recollection. Let X and Y be nonvoid sets and H : X → Y . Let

S in X and T in Y be lattices with ∅ such that

(⇒) H(S•) ⊂ T• and (⇐) H−1(T•) ⊂ S⊤S• (• = ⋆στ).

Assume that ϕ : S → [0,∞[ is an inner • premeasure with Φ = ϕ•|C(ϕ•)
such that ψ := ϕ•(H

−1(·))|T < ∞. Then ψ : T → [0,∞[ is an inner •
premeasure with Ψ = ψ•|C(ψ•) which fulfils ψ• = ϕ•(H

−1(·)) on P(Y ) and

Ψ =
−→
HΦ.

After this we return to the situation T = [0,∞[ and Y = R with X = R
T .

As before let B = Bor(R) and K = Comp(R) with the resultant A and S

in X. We recall from [10] corollary 14 that Comp(X) ⊂ Sτ ⊂ Cl(X). For
p = {t(1), · · · , t(n)} ∈ I with 0 ≦ t(1) < · · · < t(n) one forms Kp := (Kp)⋆

on Y p = R
p := R

n. We recall from 2.2 the fundamental connection between
the inner • prob premeasures ϕ : S → [0,∞[ and the projective families
(ϕp)p∈I of inner • prob premeasures ϕp : Kp → [0,∞[ (• = ⋆στ).

As in [9] section 6 and [10] section 5 we fix a family (γt)t∈T of Radon prob
premeasures γt : K → [0,∞[ with γ0 = δ0|K which under convolution fulfils
γs⋆γt = γs+t for s, t ∈ T , and consider the resultant projective family (ϕp)p∈I

of inner τ prob premeasures ϕp : Kp → [0,∞[. We want to deduce the
inductive version of their definition, which had been written down without
proof in [11] 1.1. Note that the Γt = (γt)•|C((γt)•) are independent of
• = ⋆στ . After this (γt)t∈T will then be specialized to the Poisson semigroup.

5.7 Proposition. Let q = {t(0), t(1), · · · , t(n)} with 0 ≦ t(0) < t(1) <
· · · < t(n) and p = {t(1), · · · , t(n)}. Then for E ∈ C((ϕq)τ ) the function

s 7→ (ϕp−t(0))τ
(

E(s) − (s, · · · , s)
)

: R → [0,∞[ is measurable C((γt(0))τ ),
and

(ϕq)τ (E) =

∫

(ϕp−t(0))τ
(

E(s) − (s, · · · , s)
)

dΓt(0)(s).

Proof. As in [9] section 6 we use the family (γp)p∈I of the product inner
τ prob premeasures γp : Kp → [0,∞[ formed after [7] section 1, of which the
inductive definition reads γq := γt(0) × γp−t(0). Then the above 5.6 will be
applied to the homeomorphisms Gp : R

p → R
p defined to be

Gp : (s1, · · · , sn) 7→ (t1, · · · , tn) with tl =
l

Σ
k=1

sk for 1 ≦ l ≦ n,

and to the lattice Kp on both sides. After [9] proposition 6.5 this furnishes
the desired projective family (ϕp)p∈I of the ϕp := (γp)τ (G

−1
p (·))|Kp.
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Now let E ∈ C((ϕq)τ ), which after 5.6 is equivalent to G−1
q (E) ∈ C((γq)τ ).

Thus 5.5 asserts that the function s 7→ (γp−t(0))τ
(

(G−1
q (E))(s)

)

: R → [0,∞[
is measurable C((γt(0))τ ), and that

(ϕq)τ (E) = (γq)τ (G−1
q (E)) =

∫

(γp−t(0))τ
(

(G−1
q (E))(s)

)

dΓt(0)(s).

It remains to rewrite the integrand. For s ∈ R the section (G−1
q (E))(s)

consists of the (s1, · · · , sn) ∈ R
n such that (s, s1, · · · , sn) ∈ G−1

q (E), which
means

Gq(s, s1, · · · , sn) =
(

s,Gp−t(0)(s1, · · · , sn) + (s, · · · , s)
)

∈ E

or Gp−t(0)(s1, · · · , sn) ∈ E(s) − (s, · · · , s). Thus

(G−1
q (E))(s) = G−1

p−t(0)

(

E(s) − (s, · · · , s)
)

,

so that 5.6 furnishes

(γp−t(0))τ
(

(G−1
q (E))(s)

)

= (γp−t(0))τ
(

G−1
p−t(0)

(

E(s) − (s, · · · , s)
))

= (ϕp−t(0))τ
(

E(s) − (s, · · · , s)
)

.

The assertion follows. �

6. Proof of Theorem 2.5

We continue under the notions and notations of section 5. In the sequel
we specialize (γt)t∈T to be the Poisson semigroup, defined for t > 0 to be

γt = e−t
∞
Σ

l=0
(tl/l!)δl|K and hence (γt)τ = e−t

∞
Σ

l=o
(tl/l!)δl.

Thus the family (ϕp)p∈I obtained above furnishes via 2.2 the Poisson process
ϕ : S → [0,∞[ and its traditional version α : A → [0,∞[. We recall
from [10] corollary 1 combined with theorem 6 that ϕτ is inner regular
Comp(X) ⊂ Sτ .

6.1 Lemma. For r ∈ N and c ∈ T we have ϕτ ({x ∈ X◦ : t(x, r) = c}) =
0.

Proof. To be shown is ϕτ (K) = 0 for K ⊂ X◦ compact 6= ∅ with
t(x, r) = c ∀x ∈ K. From [10] theorem 11 we know that

ϕτ (K) ≦ (ϕq)τ (Hq(K)) = (ϕq)τ ({(xt)t∈q : x ∈ K}) for all q ∈ I.

We take q = {u, v} with 0 = c = u < v in case c = 0 (note that in this case
r = 1) and 0 < u < c < v in case c > 0. In view of c = t(x, r) < t(x, r + 1)
for x ∈ K and hence c < inf{t(x, r + 1) : x ∈ K} by 5.1.ii) and 5.2 we can
take c < v < inf{t(x, r + 1) : x ∈ K}, so that xv = r for x ∈ K by 5.1.iii).
Likewise in case r ≧ 2 we can take sup{t(x, r − 1) : x ∈ K} < u < c, so
that xu = r − 1 for x ∈ K; this relation is also true in case r = 1 for both
c > 0 and c = 0. It follows that ϕτ (K) ≦ (ϕ{u,v})τ ({r − 1} × {r}). Now 5.7
furnishes

(ϕ{u,v})τ ({r−1}×{r}) = (ϕ{v−u})τ ({1})Γu({r−1}) ≦ (γv−u)τ ({1}) ≦ v−u,

so that ϕτ (K) ≦ v − u. The assertion follows. �

We come to the main result of the second part. In combination with [10]
section 5 it will furnish much more than the desired theorem 2.5.
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6.2 Theorem. For the Poisson process we have ϕτ (L(r)) = ϕτ (R(r)) = 0
for all r ∈ N.

The proofs of the two assertions are parallel in all essentials. But this
is not clear a priori, because there are certain differences between left and
right. Therefore we shall present both proofs.

Proof for L(r). To be shown is ϕτ (K) = 0 for K ⊂ L(r) compact 6= ∅.
Assume that ϕτ (K) > 0. We define

c := inf{t ∈ T : ϕτ (Kr
t ) = ϕτ (K)},

and obtain the properties which follow. 1) 0 ≦ c ≦ t(K, r) from 5.3.i).

2) ϕτ (Kr
c ) < ϕτ (K). In fact, assume that ϕτ (K

r
c ) = ϕτ (K) > 0. Then

Kr
c 6= ∅, so that in particular c > 0 from 5.3.i). From 5.3.ii) it follows that

Kr
s = Kr

c and hence ϕτ (Kr
s ) = ϕτ (Kr

c ) = ϕτ (K) for certain 0 < s < c, in
contradiction to the definition of c.

3) Define M := ∩
c<t<∞

Kr
t ⊂ K ⊂ L(r), so that M is compact with

ϕτ (M) = ϕτ (K) > 0 and hence 6= ∅. We claim that c = t(M,r). In fact, on
the one hand we have for t > c by definition M ⊂ K r

t , for x ∈ M therefore
xt ≧ r, and combined with xt(x,r = r − 1 from x ∈ L(r) hence t > t(x, r).
Therefore c ≧ t(M,r). On the other hand c > t(M,r) is impossible, because
for x ∈M then c > t(x, r) and hence xc ≧ r or x ∈ Kr

c , so that M ⊂ Kr
c and

hence ϕτ (M) ≦ ϕτ (K
r
c ) < ϕτ (K) from 2) which is wrong. Thus c = t(M,r)

as claimed.

Now 5.3.iii) shows that M = M r ∪M r
t(M,r) = M r ∪M r

c with M r = {x ∈

M : t(x, r) = t(M,r) = c} and M r
c compact and disjoint. From 6.1 we have

ϕτ (M r) = 0. It follows that ϕτ (K) = ϕτ (M) = ϕτ (M r
c ) ≦ ϕτ (Kr

c ) < ϕτ (K)
from M ⊂ K and 2), which is a contradiction. Thus we obtain ϕτ (K) = 0.

Proof for R(r). To be shown is ϕτ (K) = 0 for K ⊂ R(r) compact 6= ∅.
Assume that ϕτ (K) > 0. We define

c := sup{t ∈ T : ϕτ (Kr
t ) = ϕτ (K)},

and obtain the properties which follow. 1) 0 < t(K, r) ≦ c <∞ from 5.4.i).

2) ϕτ (Kr
c ) < ϕτ (K). In fact, assume that ϕτ (K

r
c ) = ϕτ (K) > 0. Then

Kr
c 6= ∅. From 5.4.ii) it follows that Kr

s = Kr
c and hence ϕτ (Kr

s ) =
ϕτ (Kr

c ) = ϕτ (K) for certain s > c, in contradiction to the definition of
c.

3) Define M := ∩
0≦t<c

Kr
t ⊂ K ⊂ R(r), so that M is compact with

ϕτ (M) = ϕτ (K) > 0 and hence 6= ∅. We claim that c = t(M,r). In
fact, on the one hand we have for t < c by definition M ⊂ K r

t , for x ∈ M
therefore xt ≦ r − 1, and combined with xt(x,r = r from x ∈ R(r) hence
t < t(x, r). Therefore c ≦ t(M,r). On the other hand c < t(M,r) is impos-
sible, because for x ∈ M then c < t(x, r) and hence xc ≦ r − 1 or x ∈ Kr

c ,
so that M ⊂ Kr

c and hence ϕτ (M) ≦ ϕτ (Kr
c ) < ϕτ (K) from 2) which is

wrong. Thus c = t(M,r) as claimed.

Now 5.4.iii) shows that M = M r ∪M r
t(M,r) = M r ∪M r

c with M r = {x ∈

M : t(x, r) = t(M,r) = c} and M r
c compact and disjoint. From 6.1 we have

ϕτ (M r) = 0. It follows that ϕτ (K) = ϕτ (M) = ϕτ (M r
c ) ≦ ϕτ (Kr

c ) < ϕτ (K)
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from M ⊂ K and 2), which is a contradiction. Thus we obtain ϕτ (K) = 0.
�

To conclude the second part we combine the new main result 6.2 with
those for the Poisson process in [10] section 5. In the path space X = R

T we
have the chain of subsets C ⊂ D ⊂ E ⊂ F ⊂ X. Beside them the present
consideration was for the subset X◦ ⊂ X and the L(r), R(r) ⊂ X◦ for r ∈ N.
One notes that

X◦ ⊂ E and X◦ ∩D =
⋂

r∈N

R(r).

The principal actor in [10] section 5 was the set E(T ) ⊂ X. We summarize
the former results and add the present consequences.

1) By [10] theorem 27 we have E(T ) ∈ C(ϕτ ) with Φ(E(T )) = 1.

2) The subsets E(T ),X◦ ⊂ X are not far from each other, but none of
them is contained in the other. However, by [10] proposition 30.2) there
exists an A ∈ A with α(A) = 1 such that E(T )∩A ⊂ X◦. From 1) of course
E(T )∩A ∈ C(ϕτ ) with Φ(E(T )∩A) = 1, and since Φ is complete it follows
that X◦ ∈ C(ϕτ ) with Φ(X◦) = 1.

3) Much weaker than 6.2 is the assertion that ϕτ (X
◦∩D) = 0. It combines

with 2) to furnish

ϕτ (D) = ϕτ (D ∩X◦) + ϕτ (D ∩ (X◦)′) = 0.

Thus we have proved theorem 1.2.

4) We combine 2) with 6.2 and withX◦ = L(r)∪R(r) and L(r)∩R(r) = ∅,
to conclude that L(r) and R(r) are not in C(ϕτ ). The substance of this
assertion is already in Tjur [15] 10.1.2 and 10.9.4 (but not the quantitative
6.2!). However, it remains open whether the intersection ∩

r∈N

R(r) = X◦ ∩D

and hence D are in C(ϕτ ) or not.

5) The traditional assertion on the rôle ofD ⊂ X for the Poisson process is
α⋆(D) = 1. It appears in [10] remark 29 in the sharper form α⋆(E(T )∩D) =
1. We conclude for A ∈ A with α(A) = 1 that

1 = α⋆(E(T )∩D) = α⋆(E(T )∩D∩A)+α⋆(E(T )∩D∩A′) = α⋆((E(T )∩A)∩D).

Thus [10] proposition 30.2) cited above implies that α⋆(X◦ ∩D) = 1.

All this manifests an essential difference between the traditional treat-
ment, this time of the Poisson process, and the present one on the basis of
the new maximal measure Φ = ϕτ |C(ϕτ ). We shall come back to this point
in a subsequent paper [12].
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