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Abstract

We prescribe two Jordan curves in a Riemannian manifold of certain property. A
minimal surface of annulus type bounded by these curves is described as the harmonic
extension of a critical point of some functional (Dirichlet Integral) in a certain space of
boundary parametrizations. The H?2-regularity of the minimal surface of annulus type
will be proved by applying the critical points theory and Morrey growth condition.

1 Introduction

In 1983 ([St1], see also [St2] [St3]), by extending the Ljusternik-Schnirelmann Theory
on convex sets in Banach Spaces, a general theory of critical points was developed, and
an approach to unstable solutions and Morse theory for Plateau’s Problem of disc or
annulus type in R” was given. Here a minimal surface is described as the harmonic
extension of a critical point of the following functional, defined on a set of boundary
parametrizations:

() = / %(2) P,

where H denotes the harmonic extension in R*. And H?Z-regularity of the above
minimal surface was proved in the situation of a normalized setting by the integral
condition (see [St1l]). In [IS], further details were given and the regularity of the
surface in a situation of three-points normalized setting was studied.

Recently in [Ho|, the existence of unstable minimal surfaces of higher topological struc-
ture with one boundary in a nonpositively curved Riemannian manifold was studied
by applying the method in [St2], and the regularity of minimal surfaces was discussed.

In this paper, we want to give a simialr regularity result for a minimal surface of annulus
type in manifolds satisfying some appropriate conditions, namely we will consider two
boundary curves I'1,I's in a Riemannian manifold (NN, k) such that one of the following
holds.

(C1) There exists p € N with I'1,T'y C B(p,r), where B(p,r) lies within the normal
range of all of its points. Here we assume r < 7/(24/k), where k is an upper
bound of the sectional curvature of (N, h).

(C2) N is compact with nonpositive sectional curvature.

These conditions are related to the existence and the uniqueness of the harmonic ex-
tension for a given boundary parametrization.

We first construct suitable spaces of functions, the sets of boundary parametrizations,
where we have to distinguish the cases of (C1) and (C2). And then following some
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idea of Struwe, we introduce a convex set which in fact serves as a tangent space for
the given boundary parametrization. Moreover, we consider the following functional:

(@)= [ la5(@)ide,

where F(z) denotes the harmonic extension of annulus type in a manifold N with
metric h.

We may then describe a minimal surface as the harmonic extension of a critical point
of &.

We will always use the situation that N can be embedded properly into some RF as a
closed submanifold (see [Gr]).

We then compute the H??-regularity of our surfaces using the Morrey growth condition,
see Section 3.2. We generalize the idea in [St1] to a minimal surface of annlus type in
Riemannian maniflods of the above property.

2 Preliminaries

2.1 Some definitions

Let (M, g) be a manifold of dimension 2 with boundary 0M, metric (g;;) and (N, h)
a connected, oriented, complete Riemannian manifold with metric (h,g) of dimension
n > 2, embedded isometrically and properly into some RF as a closed submanifold by
n (see [Gr]). Moreover, V resp. V denotes the covariant derivative in (N, h) resp. RF.

We use the summation convention for indices and a colon denotes the ordinary deriva-
tive with i = 1,2, o« = 1,--- ,n. And dw resp. dy denotes the area element in ) C R?
resp. in 0).

e The energy of f € C*((M,g),(N,h)) is defined by
=5 [ arParty = [ gohago fresian,

The Euler-Lagrange equation of E for f € C*((M,g), (N, h)), called the tension field
along f, is as follows:

T(f) = (V o, df ') = g (Vdf)§; = g7 (f3; — faTl + fF7T5, 0 f)aiya o f.

And f € C*((M,g), (N, h)) is called harmonic if 7,,(f) = 0.
For f = (f*)a=1,- k, the second fundamental form of 7 is :
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IT o f(df,df) := <%%df ~V o df, d2") € Ty yn(N).

e A weak Jacobi field J with boundary £ along a harmonic function f is a vector field
along f as a weak solution of

/ (VI,VX) + (tr R, df)df, X )dew = 0
M

for all X € H'Y?> N L®(M, f*TN) with X|gp = &
e For B := {w € R?||w| < 1},

HY”NC%B,N):={f € H”*NnC°B,R¥)|f(B) C N},

= IV Fllzz + 11X lco-

Let I be a Jordan curve in N which is diffeomorphic to S!:= 0B, and observe that N
can be equipped with another metric h such that T is a geodesic in (N, h) Note that
HY? N C°((B,dB),(N,I);) and H'?> N C°((B,dB), (N,TI')) coincide as sets. Using

the exponential map in (N, h), we define the following spaces.

with norm,

H>?*NC°0B;T) = {ue H>*NC°0B,R")u(dB) =T}

with norm, ||U||%,2;o = ||[VH(u)||z2 + ||u||co, here H(u) is the harmonic extension in
RF. And
T,H??>NCY0B;T) := {¢ € H>*>NC°OB,u'TN)|£(z) € Ty, for all z € OB}

= H2?NC°0B,u*TT).

2.2 The setting

Let T';,T'y be two Jordan curves of class C? in N with diffeomprphisms +* : 0B —
[;,i=1,2, and dist(T';,T5) > 0. Moreover, for p € (0,1),

A,={weB|p<|w| <1}, Ci={w]||w|=1}, Co={w]|w|=p}.
And let

Xt ={a"¢ H2>?n C°(0B;T;) | weakly monotone onto I';}.

mon

I) We first consider the following condition for (N, h)(D I'y, ).

(C1) There exists p € N with I'1,T'y C B(p,r), where B(p,r) lies within the normal
range of all of its points. Here we assume r < 7/(2/k), where £ is an upper
bound of the sectional curvature of (N, h).
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In this paper, B(p,r) denotes a geodesic ball of p € N with the properties in the
condition (C1).

Remark 2.1. IfT'\,T'y C N satisfy (C1), for eachx’ € H%’QHC_’O(aB;Fi) and p € (0,1)
there ezists g, € H"> N C°(A,, B(p,r)) and g* € H"> N C°(B, B(p, 7)) with g,lc, =
2!, gole, () = 2%(3) and g'lop = 2%, i =1,2.

Proof. Let Q :=exp~*(B(p,r)) C B(0,7)g» C R* for some 7 > 0.

For ' := exp~!(z'), we have an Euclidean harmonic extension h,(zZ!,z%) of finite
energy, whose image is in B(0,7)g=. The map exp is a diffeomorphism and € is star
shape, so there exists a retraction ¢ : B(0,7)gs — Q with | = Id in the class of H>?.
Then the map g, := exp(6(h,(z*,7%))) : A, = Qis an HY>*NC°(4,, B(p, ))-extension
with boundary z' and 2(7). We may also find an H"* N C°(B, B(p,r))-extension. O
From the results in [HKW], [JK] and the above Remark, we have a unique harmonic
map of annulus and of disc type in B(p,r) C N for a given boundary mapping in the

class of H22 N C°. Now we define,
M = {s'cH 22 C°B;T;) |z* is weakly monotone, orientation preserving}.
Then M® is complete, since the C°-norm preserves the monotonicity.
We now investigate another alternative condition for (N, h).
(C2) N is compact with nonpositive sectional curvature.

A compact Riemannian manifold is homogeneously regular and the condition of non-
positive sectional curvature for N implies my(N) = 0.

In order to define M*, we need some preparation. First, we consider for p € (0, 1),
G,:={fe€ H”NCA, N)| f|c; is continuous and weakly monotone onto T;}.

We may take a continuous homotopy class, denoted by F, C G, so that every two
elements f,g in F), are continuous homotopic (not necessarily relative), denoted by
f ~ g, more exactly:

f~g ¢ there exists a continuous mapping H : [0,1] x 4, = N

Now define
MY = {fle, (") € H*?N C°(0B;T) | orientation preserving, f € F,},
M? = {fle,(-p) € H22N C°(0B;Ty) | orientation preserving, f € F,}.



Then for z* € M, there exists a unique harmonic extension to A, with z'(-) on C;
and z?(=) on Cy by [Le], [ES], [Hm].

’
Definition For z* € M*,i = 1,2 let F,(z',2%) be the unique solution of the following
Dirichlet Problem:

(1) F,(z', 2°) e“: ) = 331(61:0) on C}
S"p(xl,ac2)(pew) = 22(") on Cy(= 0B,),

and define € : M — R with

z+— E(F(x)) = %/A |dF, (2", 2%) |} dw.

IT) Now let (N, h) and I';,7 = 1,2 satisfy (C1) or (C2).

We will introduce a kind of tangent space of z* € M°.
For a given oriented y* € X! . there exists a weakly monotone map w* € C°(R,R)
with w'(f + 27) = w*(#) + 27 such that y*(0) = v (cos(w'(#)), sin(w'(8))) =: v* o w'(H).
We note that w® = @' + Id for some @' € C°(OB,R). Roughly speaking, w® can
be considered as a map in C°(0B,0B) and then w' is unique for given ¥, whereas
w' € C°(R,R) is unique up to 27/, € Z. And whether w' is in C°(0B,dB) or
C°(R,R), it will be determined according to a given situation, simply denoted by
Y = i o w'.

Denoting the Dirichlet -Integral by D and the Rf-harmonic extension by 3, let

Wi = {w' € C°(R,R) | weakly monotone, w*(6+27) = w'()+2m; D(H(y'ow")) < oo}.
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Clearly, Wy,

is convex. For further details, we refer to [St1].
Definition For 2! € M*, considering w — w' as a tangent vector along °, let

Toi = {dy((w — w) 5 0 0') [w € Wi and 7' 0w =2},

. . 1 . P
And T, is convex in T,: H2? N C°(0B;T;), since Wg» is convex.

Let exp denote the exponential map with resoect to the metric h. We note then the
following.

Remark 2.2. In case of (C1), exp& € M for £ € Tp,i=1,2.
For the case (C2), there exists l; > 0, depending on ~' such that for any z* € M’,
exp,& € M*, if 1€ll7; < liyi=1,2.



Proof For (C1) it is clear. In the case of (C2), for some small 6 > 0, there exists a
retraction r from the d-neighborhood of N in R onto N, since N is compact. Then,
letting ||z° — xf)||%,2;0 <4,

d(r(f, + 3, (z* — 23,0)))|2dw
Ap

5, N).

Ol fllew, 2, N) / df, P + /B d30(z* — 2b)2dw) < C(|If,

We have then some /; > 0 with the desired property, since exp,{ = +'(w) for £ =

dy'((w — w') & o b') € Ty O

Lemma 2.1. & is continuously partially differentiable in x* resp. z? with respect to
variations €' € Ty resp. €2 € Ty with

(G,0E, €Y = / (dF (", 22), VI, (€1, 0))ndew.
AP

A similar result is obtained for the second variation.
And the derivatives are continuous in M*' x M?.

Proof See [Ki. O

3 H%*2- Regularity of minimal surfaces

3.1 A result

Now we define for z = (z', 22, p) € M' x M? x (0,1),

(2) gix) = sup (—(0s&,)), i=1,2.
fZ.E Ty
1€ < Ls

We have then the following result.

Theorem 3.1. Let x = (z',2?%,p) € M' x M? x (0,1) with g;(z) = 0,47 = 1,2. Then
F,(z',2%) is in the class of H”(Ap,N)

Remark 3.1. In addition to the above conditions in Theorem 3.1 let us require that
g3(z) := p-0,& = 0. Then, z = (2", 2%, p) is defined as a critical point of & such that
F,(z', 2%) is a minimal surface of annulus type in N. For details we refer to [Ki].



Lemma 3.1. Let F, := F,(z',22) : A, > N <& R and F, € HY2(A, RF). If
pr |0pdF,|2dw < C < 00, then F,(z*,2?) € H**(A,, N).

Proof By the young’s inequality: in polar coordinates with AF:=AreF,,
1
‘V2gp|2 = ‘ardgpp + T_Q‘BGdStp‘Q

2

1 1 1 1 1 1
= |AF, - T—Qaeaff,, - ;a,ff,, +3 105, F,|” + 70—4|aa:fp|2 — zﬁae,ypaeffp + r—2|89d&"p|2

< CE)AF,2+ (1+¢) :—Qagastp + %aﬁp L %|60T?p|2 + :—4\aasfp|2 - 2:—389&,)8952,
_25;—389@,593,, + e%\aarff,f + 0(5);—4|aﬁ,,\2 + %|89d3",,|2
< CE)AF,2+ 2+ g)%wad&rpﬁ + 0(8):—25399,)?
< Cle,n, A)|dF, [ + Cle, p)|0pdT, [,
since F, is harmonic in N <5 R¥, i.e. 7,(f) = 0. O

3.2 Morrey growth condition

We introduce a Lemma from [Mo].

Lemma 3.2. Let G be a bounded domain in R*. Suppose ¢ € Hy*(G) and ¢ € L'(G)
satisfies the Morrey growth condition

/ [|dw < Cort, for all B,(z).
BT(ZO)
Then ¥¢? € LY(G) and for all B,(zy) there holds

/ 2| deo < €y Cyril? / dp|?dw
B (z0)NG G

for some uniform constant C.

Let z¢ be as in Theorem 3.1 with ' = v ow?, and w' = @'+ Id, @ € H>2NC°(dB, R),
i = 1,2 (recall the construction in section 2.2). Moreover for a given function f on R,
fi(:) resp. f_(-) denotes the function f, (- + h) resp. f_(- — h), for h € R.

For z' € M* let H,(z',2%) denote the unique Rf-harmonic extension with boundary
x® on C;, i = 1,2 and H(-) the RF-harmonic extension of disc type.

Then we have the following growth condition.



Lemma 3.3. for each Py € 0A, there exist Cy, j1,79 > 0 such that for all r € [0, ro] it
holds

3) / (145,17 + |43, (", 0)[2)dw < Cor® / (15,12 + |d9€, (1, 0)[2) .
APQBT(P(])

A/’
Remark 3.2. We also get the same result as in Lemma 3.3 for |dF,.|* (resp. |dF,-|?)
and [dH,(wt, w?)|? (resp. |dH,(wk,w?)[?).
We observe the following as in [Ho].

Remark 3.3. (i) Let F,: A, — N be harmonic, we have then for X € Hy?(A,,RF),

- / (IT o F,(dF,,dF,), X )dw + / (dF ,, dX )ydw = 0.
Ap

Ap

(ii) This means, for X € H"*(A,, R*) the above expression only depends on the bound-
ary of X. Thus, for ¢ = (¢!, %) € H2?2 x H%’Q(;) we define

4)  A(F)(0) = /A (1o F,(dF, ,dF,), X )dw + / (dF,, dX)dw,

Ap
where X is any mapping in H"*(A,,RF) with X|sa, = ¢.

Specially for ¢* € H3? N C°0B, (2")*TT;),i = 1,2, we take X = Jg5,(¢', ¢*) which
is tangent to N along JF,, then from the definition of the second fundamental form
(I 0 F,(dF,,dTF,), I (9", 8%)) =0, so

(5) AT = / (dF,, ds, (6", 6))du

Ap

— [ (45,035, O+ [ (45,435, 0,67

p Ap

= <8$18, ¢1) + (8w28, ¢2>

Hence for a critical point x = (z*,22,p) of & A(F,)(§) > 0, for all £ = (£1,&€?) €
Tm1 X ‘.sz.

Proof of Lemma 3.3 In several steps we will show (3).

I) Let Py € Cy fixed, B, := B,.(F), and

(6) whi=Q! w'dy, whi=wh+Id:R—R,
(B2r\Br)NOB



where faBn(B2,\Br) d, = Q,
€ = —[o(le" — Po)]”(w" — u?é)% ow' € H»* N C°(0B,w! " T(9B)),

where w! means the map from 0B into itself, and ¢ € C* is a non-increasing function
of |z| satisfying the conditions 0 < ¢(z) < 1, ¢ = 11if |2| < 2r, ¢ = 0 if |2] > 3r,
dg| < €, |d*¢| < & for some C, fixed 7.

Since (1 — ¢*)w' + ¢*w§ € Wi, dv'(€s) € Ty, hence

(7) A(F,)(=d'(§),0) > 0.
Letting z := 7' (wg)

1 1

ot -5 = dy'(w' —wy) — / / d*y' (s")ds"ds' = dyt (w' — wy) — a(wh),

wg
and for small r > 0,
AT (S (T, = TPl 0) = A(F,)(d*dy (w' —wp), 0) — A(F,) (¢ ('), 0)

< —A(T)(¢"a(w'),0),
where F)(A4,) = 25 € I'y.
On the other hand, for small r > 0, ¢*(F, — F})|c, = 0, so we can take ¢*(F, — F)) in
the definition of A(F,). Hence

A(?p)(¢2(gp - 9:2)|01 ’ 0)

_ / ($2dF,, dF ,)dw + / (20dp(F, — F2), dF ydw

A, Ay

_/A <¢2(3rp - 5"2),110 fTF/o(d‘rf"/f)’ dﬂfp))dw

< —A®F)(Fo(w),0),

and

($2dF,, dF,)dw < / (8 (F, — F), 1T 0 F,(dF,, dF,))dw

Ap

(®) - [ (2046(5, - 5. d%,)do - AT,) (Fa(w),0).

Ap

For the estimate of —A(F,)(¢*a(w'),0), consider
N T'w!) (T'(w')
>k 1= @ / d*y'(s")ds"ds' € H"(A,, RF)
w) s
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with #*|o, = ¢?a(w'), #*|c, = 0, where wl(r,0) = wt + Id(r,0) = wt + 0, (r,0) €
[p, 1] x R
By simple computation we get
S < O a)e (3w, 0) — wh?,
dkx| < C(y, Y|, (w',0) — wiPgldg| + C(v!, 2")|dH,(w', 0)||H,(w!, 0) — w}[*¢?,

and from (8) by the young’s inequality

/A<¢2d3rp’d?p>dw§/l4 |d3rp|2|3rp_372|¢2dw

3

45 [ g, edw @) [ 15, 53 doPd
A, Ap

+C[|F,(w", 0) — w§ | (5s,) / (1dF, ¢ + 3¢, (w', 0) — w§ *|dg|”) de

p

L O||F, (6", 0) — bl (s / (143, (w1, 0)” + |dF,?) ¢ dw

P

+0/ |, (w?, 0) — wh|?|dF, | ¢*dw.
Ap

Thus, for 7 € (0, 7o), sufficiently small, dependent on &, C, modulus of continuity of
F, — F) and I, (w',0) — w; we have the following estimate:

/ ($2dTF,, dTF,)dw < 5/ (|dF, % + |dF, (w?, 0)]?) ¢*dw
Ap

Ap
(9) +0(e) / (1%, — 5P + 190, (ut, 0) — wi ) [dé Pdo.
Ap
1) We will estimate [, |d3C,(wh, 0) [2¢2dw.

e First,

D[(3,(w',0) - w§)¢] = / [ld3,(w!, 0)[*6” + | (F,(w, 0) — wh)|*|de|’

Ap

245, (w, 0) (K, (w?, 0) — wh)pde] duw,
and by the Young’s inequality
/ A3, (w0, 0)PFdw < D[(3, (w1, 0) — wi)g]
Ap

(10 +5 [ st 0P da + O) [ (301, 0P + i) 9P de

Ap
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e The estimate of D[(%, (U;l, 0) - u;é)qﬁ]

On C', F,—-F) = dy'(w f fs, d*y!(s")ds"ds', and @|yp,,(py) = 0, s0 on
a(A,N B3,(P0))

(%p(dl,O)—dé)qﬁ:Idvl(Tl(wl))\_2[dvl(T1( D) (F, = F)

+dyH(TH(w /T(w /T

We denote the latter map on A, by U.
And it holds,

(1) A[(G(w!,0) — wh)@] = 2dI,(w',0) - d + (3C,(w', 0) — wh)Ad =: f.

w)
d2 1 "dS:|¢

Note that: for a solution ¢ € C?(Q,R) of Ap = f, it holds, with a boundary data ¢,

DwsDw—/ﬂw—w,th¢€%+Hf®)

Hence, by the variation characterization of the equation (11), we get

(12 D[OGW",0)—ub)e] < D@~ [ f[(3,(0,0) ~ wp)o - V]
Letting

Ay (TH (") - (T, — F9) + Ay (T (") - [ @7 [ dPy (s)ds'

v (T () ’
e

= TR

dldy (T" (w")) - (F, — Fp)] = d’+ (T (w")d(T" (w"))(F, — Fp) + dy' (T (w'))dF, =: a,

T (w T (wh) - ~ ~
d / 1 / @A) = Py (T ()0, 0)(3,t, 0) — ) =+ b

d|dy' (T (w") 7> = =2|dy" (T" (w"))|"H{d*y" (T (w")), d'y" (T" (w")))dFH,(w?,0) =: c,
we have

la + b|?¢? + ©%¢*c? + ©?|dg|? + (a + b)cd?O + (a + b)pOde + @2¢cd¢
|ldy (T (w'))[?

AT |* =

11



and we compute further from the property of ¢

|2 dw

Ap

< 0/ \d&”|¢2dw+0/ (15, — T + (3¢, (w, 0) — wd[?]|do
+Cs / (1, 0) — wd[2ldd|? + [d3C, (w1, 0)[2¢?] du

where § = |||F, — F| + |3(,(w!, 0) — w}

wg HLoo(A,,nBST)'

We can also compute that
=10 - wle - e
A,NBs,

< / [2/d3€, (w!, 0)do|F,(w", 0) — wi][dg| + 3¢, (w?, 0) — wh[*| Ad|¢
mBS'r

+C|dC,(w', 0)|6|F, — Fol|dg| + C|H,(w', 0) — wh||F, — FO|| A
+C|3¢, (w, 0) — wi| (|43, (w', 0)[g[H,(w', 0) — w}|dg]| + [3(,(w", 0) — wi|*| Ag|g)]duw

< / O%,— TR+ 12, 1,0) — wh)*( o] + |A0)

£ ~ ~ ~
+(§ + C”J{p(wla 0) - wé||Loo(ApnBS7‘))|de(w1’ 0)|2¢2} dw

Now the estimate of D[(J{p(uﬁ, 0) — u;(l])qb} follows from (12).

e From (10) and the above estimates, we get
/ |dH,(w', 0)*¢%dw < 0/ |dF,[*¢*dw
A, Ay
+C(e) /A (15, = Fol + 13 (w', 0) — wi*) (|dS[* + |Ad|)duw
o

3¢ ~ ~ ~
(13) +(Z + C’”‘g"p — ffg‘ + ‘J’Cp(wl’ O) — wé‘”L‘”(ApﬂBsr))/A |dj'cp(w1, 0)|2¢2dw-
p

I1I) From (9), (13), for r < ry, where ry is dependent on €, C(z', p) and the modulus
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of continuity of ¥, — F) and H,(w?, 0) — u;é, we get from the definition of ¢:

/A (T A 0 < O / (IF, — TR + |36, (w",0) — wh?)dew

ApﬁBgr,‘\Bz,«

< o / . (1F, — FO + 3¢, (w", 0) — wh[2)dw
4 3r r

(Poincaré inequality) < C'/ (\d?p|2 + ‘dj{p(dlao)F)dw
ApNB3,\Br

+Cr—2( / F, - 3’2)d0)2 + cr—Z( / (3¢, (", 0) —
8BN By, \B, 8BNBy,\B,

where the last term is 0 from the definition of u;é

On 0B, we have

wt s’
7, - 80 = ' (uh)(wt - wly) + [ [ [ #vnasas,
dBNBy \By Jw} Jw}

so, from the estimate in integration and by the second inequality in Lemma 3.4,

/ (3, — 5)d,
BBOBQT\B,

w! s’
= / dyt (wd) (w — wlo)d, +/ / / d*y (s")ds"ds'
dBNBs,\B; dBNBa,\B, Jw, w§

1
0

< C lw' — wy|*d,
dBN(Ba,\By)

~ ~ ~ 2
< C’r/ |dﬂ{p(w1,o)|2dw+9(/ (' — 'o)d,)
BN(Ba,\By) r dBNBa,\B;

Here the last term is again zero fromt he definition of u;(l)

Thus,

Cr—2 ( /aBmb\BT (F, — gjg)d())?

~ 2 ~
< c(/ 4%, (07, 0)%d)” < C(:vl,p)/ 43, (w1, 0) Pd,
BA(Bay\By) BN(B2y\By)

hence

/A (45, a3t 0) ) < € (145, 2 + [d3, (1", 0) ) dow.
pMBr

ApnBST\B'r

13
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Letting Y(r) := prﬂBr(Po) (|dF,|? + |3, (w', 0)[?)dw, the above inequality means that
T(r) < C(T(3r) - T(r)),

where C' is independent of r < rg, for some small 7.

Then the inequality (3) follows from the Iteration-lemma. O

3.3 The proof of the main theorem

We will give here the proof of Theorem 3.1. We begin with Poincaré inequality as
follows (see [St1] Lemma 5.5):

Lemma 3.4. Let 2y € 0A,, B, := B,(2), Gy == A,N (B3, \B,), K, := A, N (B \By)
and S, := 0A,N By, \B,. Then, for some small o > 0, there exists a uniform constant
C independent of zy such that for all r < ro and for each ¢ € HY(G,):

2
lo|Pdw < 07‘2/ |d<p\2dw+0</ <,0do> , and

G»

2
/|s0|2do < CT/ |d¢|2dw+g</ eodo> :
S, , r S,

where d, is the one-dimensional area element.

Proof. Let 2,7 fixed. Suppose by contradiction that for a sequence ¢,, € H“*(G,)

2
1= |om|*dw > mr2/ A |*dw +m (/ ©m do) .
Gr Gy r

Then {¢,,} in bounded in H"?(G,) and some subsequence, denoted again by {¢,,},
converges weakly to some ¢ in HY?(G,) but strongly in L?(G,) by Rellich-Kondrakov.
From the above assumption, dy,, — 0 strongly.

Thus, {¢pm} converges strongly to some constant C in H"*(G,) and ¢,,, — C in L?(S,).
On the other hand, fSr Omdo — 0, 80 ¢ = 0 in G,, contradicting the assumption, since
Om — @ in L2

The second inequality can be proved similarly, supposing by contradiction that

2
1= | om|?dy > mr/ |dm|*dw + % (/ Om do>
S, . r

and applying the above result for [, |¢pn[*dw.

By scaling, one can see that C' is independenf of z,r. O

14



Proof of Theorem 3.1

From Lemma 3.1 and by a well known result in [GT] it suffices to show that

(14) / |ARdTF,’dw < C < 0,
Ap

where A,dF, := ZelBM=dT00) [ 24 and C is independent of h.

We show (14) in several steps. The same notations as in the preceding sections will be
used.

(I) With A_hAh.rJ'rpbB = A_hAh’Yl e} eiwl and A_hAhS’rpbe(-p) = A—hAh')/2 e} eiwz(-)’
/A ApdS, Pde = — / (dF,, dA_yAnF,)dw

Ap

= - / (IT o F,(dF ,, dF,), A 4 ARTF Ndw — A(F,) (A 4AF,loa,)-
AP

Denoting 7! 0 ¢ and 7 o0 ™’ by v*(w'()) and w'(- + h) resp. w'(- — h) by w'. resp.
w' , we have:

Ay Apyi () = A_ h[v (w+)h "(wi)]
o (%52
= dy'(w')(A_pApw?) /wz_ TLARwt 4+ A, ( /w / d?y'(s") ds"ds)

w

1
= A_ -
& hl

d2 z( II)dSIIdSI]

Since 7' is smooth, clearly dy!(w®)(A_pApw) € H22 N C(OB, (¢1)*TT;).

Writing w® = @ + Id for some @' € H22 N C°(dB,R) and define a real valued map of
(r,0) € [p,1] x R as follows: for i =1

T (w')(r,0) :== H,(w,0)(r,0) + Id(r,0) with Id(r,6) =0,

where H,(w,0) is the harmonic extension to A, ~ [p, 1] x R/27 with @ on 0B and 0
on 0B,. Then it holds that

T (wh) (r,0 + 27) = T (w')(r,0) + 27, for (r,0) € [p,1] x R,

and €7 ®") can be considered as a map from 9B into itself.

15



Now define a map S(P*,0)(-) : A, — RF with the boundary P! (resp. 0) on C (resp.
Cy) as follows:

1 (T o
S(P0)() = -z/p( Py (s')ds' - Hy(Apw", 0)(")

wh)(-)
T (wl)(")
/ / d2 1( ")ds"ds )
T (wh)(

Similarly, a map S(0, P?)(-) : A, — R¥F with the boundary 0 (resp. P?) on C; (resp.
02)2

*(w2)()
S(0,P?)() = _%/m A2 (s')ds' - H,(0, Ayw?) (")

w?)(-)
(wi)()
( / / d2 2( ”)dslldS),
2 (w?2)( T2 (w?)(

where T?(w?)(+) = H,(0,@)(-) + Id(-), and S(0, P?)|c, = 0,5(0, P?)|c,(-p) = P2(:).

Clearly S(P',0),5(0, P?) € H*?(A4,,R*), so letting S(P*, P?) := S(P*,0) + S(0, P?),
we have a map in H"?(A,, R*) with boundary (P!, P?).

By computation, %ZA_hAhwi = s(w' +w') —w'. And L(w’ + w}) € Wi, which is

convex. Thus, by the definition of T,

h? ;
—d")/ ( )(A_hAhw’) S Taﬂ

And ~f(w')(A_pApw?) is in H2? for which A(F,) is well defined, recall Remark 3.3.
From (4) and Remark 3.3, since ¢g'(z) = ¢?(z) = 0,

hQA(S" ) (dy' (') (A_pApu'), 0) = AF,) (h;dfyl(wl)(AhAhwl), 0) > 0,

so A(F,) (dy'(wh)(A_pApw'),0) > 0.
Similarly, for the second variation, A(F,) (0, dv?(w?) (A _pApw?) (= )) > 0.
From now on we will omit the scaling term (;) for the second variation.

Moreover, from the definition of A(%F,), clearly

A(F,) (' +&, 0" +&7) = A(F,) (0", ¢%) + A(F,) (€, ),

16



if there exist H'? extension of (¢!, ¢?) and (&', £?).

Hence we have that

A(F,) (dy' (w)(A_pApw?), dy*(w?) (A_pApw?))
(15) = A(F,) (dy' (w")(A_pApw'), 0) + A(F,) (0, dv*(w?)(A_pApw?)) > 0.

Now we can compute:

/A ApdS, Pdew = — /A (I o F (AT, dF,), A_nAnF Yo — A(F,)(DonAnF o)

= - / (IT o F,(dF,, dF ), A_h AT, dw
Ap

—A(F,)(P1, P?) = A(F) (dy' (w')(A_pApw'), dy*(w?) (A pApw?))

< — /A (IT o F,(dF ,,dF,), A_ AT ,)dw — A(F,)(P', P?)
(16) = — /A (IT o F,(dF,,dF,), A nAnF,)dw
(17) + /A (I 0 F,(dF ,, dF,), S(P",0))dw + /A (I 0 F,(dF ,, dF,), S(0, P?))dw
(18) — /A (dF,, dS(P*,0))dw — /A (dF,,dS(0, P?))dw.

(II) For the estimstes of the above terms we need some preparation.
First, letting s(7) :=7F,4+ + (1 - 7)F,, 0 <7 <1,

1
|ARIT 0 Fy(dF ), dTF,)| = |E{H 0 Fp+(Fps Fpt) = 11 0 Fy(dF,, dF )}

1
= |E{Ilogjp+(d9:p+,d3~p+)—IIOS:(ds’rp+,d?p+)
+1I 0 F,(dF ) 1,dF, 1) — I 0 F,(dF,, dF,) }|
1
= {1, -3 / / PLI(5(7)|Fpe — F,[*drdt)(dF 1, dF )
+IIOS:p(dg:p,+ d?p,d?p+ +IIO?(d9:p,d3:p+ dg:p)}‘
= |dII(F,) - ApF,(dF, 4+, dTF, 1) / / d*I1(s(7))|F,+ — FplPdrdt(dF, 1, dF, )

1T 0 F)(AydF,,dF, ) + 110 F (d&fp, AndF,)|
< CIFpllcoa) IART AT o+ [* + | AndF | (|dTF 4| + [dF,))]-
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Now letting

T (wl
! ' P ()ds = % and 2y (5")ds"ds' = o,
h
T (w!) Ty JTi)

we have
|x | < CYMH(A_pw',0)], [ xx] < C(Y")Hy(Apw',0)],

and
dx| = |- h[dQ (T (wh))dT* (wh) = d®o (T (w")dT" (w")]|

Y (TH(wl)) = A (TH (W) (o 17,1 1(,,1
- ‘_E[ Tty Ty ¢ s = T )l (ws)

oy (T (') (4T () - dT*(w"))]|

< CU llos) (|Hy(A-nw', 0)||dH (L, 0)] + [dH, (A ', 0)]),

|d**‘ = ‘d[l(/ﬂ(wi)dfyl(sl)dsl_/Tl(w#)d’yl(Tl(wl))dSI)]‘
h T (w!) Tl(wl)
1 dyH (T (wy)) — dy (T (W) (fn wl) — T w! 1!

—d*y (TH(wh))dT (w") (dTH (w]) — dTH (w"))] ‘
< Ol lle2) [ Hp(Anw', 0)| (|dH,(w! 4, 0)| + [dH,(w?, 0)]).
Using the above results, we estimate (16), (17),(18) for some C' € R, independent of h.

First,

(16) < /A (AT o F,(dF,, dF,), AyF,) | dw

<c / (18R 21T 2 + | AndF, | (dFp | + 45, )| AT, ) o
Ap

< C / dF, o [2|AnF, 2o + / |AndF, 2w + C(e) / (dF, 4 2 + |dF, )| AnF, 2dw.
Ap Ap AP

18



For the estimate of (17),
/ (IT 0 F,(dF,, dF,), S(P", 0))dw
Ap
< [ AT o Fy(dFy,dF,), () Hp(ApwZ, 0))| + (ARIT 0 F,y(dF, dF,), (xox))| b
Ap

< ¢ / 1dF, 219, (A, 0) Pda
Ap

+C/ {1 AT, [[dF 1 |3, (Anw", 0) + [ AndTF | (|dF 1] + |dF|) |3, (Apw’, 0) [
Ap

IA

c / 14,213, (A_y, 0)[2dew + C / AF (1A + 13, ( A, 0))do
A A,

te / |AndSF, Pdes + C () / (1dF 4 219, (A, 0)2 + |dF, I3, (Apw?, 0) P)do,
Ap

Ap

note that Ayw! = A_,w!, and we obtain a similar estimate for the second term of
(17).
Thus, we have that

(17) < &C /A |AndF, 2dw + C(e) /A (14,2 + |dF,,[2) -

P

(|ARTF 2 + |FH,(Apw', 0) 2 + |F,(0, A_pw?)[? + H,(Apw', 0)* + [H,(0, Apw?) |*) dw.

For the estimate of (18),
— /A (dF,, dS(P',0))dw < /A [(dF p, d()H,(A_pw?, 0))|dw
+ /A [(dF », (x)dFH,(A_pw', 0))|dw + /A [(ARdTF,, d(ox))|dw
e /A |ApdF,2dw + C /A 1dH,(Apw, 0) [2dw

+C(e) / (a5 ,|* + [dFCp (@2, 0)[* + |dIC, (w3, 0)|* + [dIC,(@?, 0)?) -
Ap

(|:}CP(A—hw1a 0)]* + w{p(Ahwl’ 0)|2) dw.
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We get a similar estimate for the second term of (18):
(18) < eC / |AndF, 2w + C / 1dH, (A, 0) [2dw
4, A,

4C(E) [ (T, + 36,0, 00 + a3, 0) + 36, (", 0)
Ap

+d3,(0, %) | + [dF,(0, @) [* + |dIH,(0, %)) -
(196 (A—pw®, 0)* + |H,(Anw?, 0)[* + [F€,(0, Apw®)[* + |3,(0, Apw®) |*) dew.

Now gathering all the above results:

(19) |ApdF,|%dw

Ap

< EC/ \Ahdfr"p|2dw+60/ |dH,(Apw?, 0)|*dw
4, A,

+0(E) [ (13,7 + 145,
Ap
+|dF, (0L, 0)[* + |[dFH, (], 0)* + [dIH,(@", 0)]
+[dF,(0, ) [* + [dF,(0,07)|? + [dFH,(0, ©*)[?) -
(45,2 + 16,5, O + 196, (A’ O
+]H, (0, A _pw?)|* + |H,(0, Ahw2)|2)dw
— C [ | AndF,Pdw+<C / 1T, (Apw', 0)Pdws + C(e)E .
Ap

Ap

IIT) On 0B, it holds that A,(y' o w?) = dy(w?) Apw® + + uii ° 2~i(s")ds"ds', so
h Jw w

. o o N L
(20) At = ()| [y’ (u) - DaF, = () - 1 / N / (") ds"ds'].

?

Using T%(w?) at the right side of (20), we get a H"?(A,, R¥)- extension with boundary
Apw' on C' and 0 on C,, and by the D-minimality of the harmonic extension between
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the maps with the same boundary, we have

|dH,(Apw', 0)|Pdw
Ap

< C’/ [|dFH,(w", 0)[ (|ART,| + | x %]) + |dALTF,| + |d**|]2dw
Ap

< C/ {13, (w', )| AnT,|* + [dIC,(Anw?, 0)*|3C,(Apw’, 0)* + |[dALT,|”
Ap

+|FH,(Apw', 0)*(|dIH,(w' 4, 0)| + |dIH,(w!, 0)])?
+dH, (w!, 0) | Apw?, 0)] + I, (w?, 0)[| AnT,||dALT,|
+dH, (w!, 0)||H,(Apw", 0)] (|dH(w' ., 0)| + |dFH,(w!, 0)[)|AnF|
+dH,(w?, 0)[[H,(Apw', 0)[|dALF|
+dH, (w!, 0)||H, (Apw", 0)] | H,(Anw!, 0)[(|dFH,(w' 4, 0)| + [dH,(w!, 0)))
+HdART,[[F,(Apw', 0)[(|dFy (w1, 0)] + [dIH,(w!, 0)]) }dow
(21) < C [ |dATF,’dw + C=
Ap

by the young’s inequality, and = is from (20). Similarly, we get an estimate

(22) |dH,(0, Apw?)|Pdw < C / |dALT, | dw + CZ.
Ap Ap

Using the estimate (20) for pr |dALTF ,|?dw and from (21), (22),

|dALT |2 dw + / |dH,(Apw', 0)]|*dw + / |dH, (0, Apw?)|*dw

A, A, A,
< 60/ |dALT 2 dw + 80/ |dH,(Apw!, 0)[*dw + 60/ |dH, (0, Apw?)|*dw
A, A, A,
+C(e)E.
Since 1(a? +b%) < (a+b)? < 2(a® 4+ b%),a,b € R and H,(f,9) = H,(f,0) + H,(0, g),
for some small € > 0 in the above estimate we get finally the following inequality:
/ |AndS,deo + / A3, (A, Apw?) Pds
A, Ay

< C(e)/ (145, + |dF,, P + |dF,_|?

Ap
HdH, (wh, w?])? + [dH,(wl, w2)[? + [dH,(w?, w2 [?) -
(23) (|Ah?p|2 + |H(A_hw1, A_hw2)\2 + |H(Ahw1, Ahw2)|2) dw.
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(IV) Now extend F, to R?\B,2 by conformal reflection as follows

Choose 1 € (O,min{p_—,fz, ro}), and ¢ € C§°(Ba,(0)) with ¢ =1 on B, (0).

We may cover A, with balls of radius r in such a way that at most & balls of the
covering intersect at any point p € A,, for any r as above (R? is metrizable). Let B
denote the balls of the covering with centers p; and ¢;(p) := ¢(p — p;).

Then from (23),

|Ahd3'“,,|2dw+/ |dg-cp(Ahw17Ahw2)‘2dw
A, Ay

< CEi/ (|ARF, > + |H(A_pw', A_pw?) > + |H(Apw', Apw?)|?) @7 -
R2\A

(1dF 1 + |dF o |2 + |dF > + |dFC, (wh, w2) |2 + |dF,(wh, w2) 2 + [dF,(wk, w?)[?) dw.

- i

=X

From Lemma 3.3 and Remark 3.2, x satisfies the Morrey growth condition, so apply the
Morrey Lemma with x and (A,F,)¢; resp.H(A_jw', A_pw?)p; resp. H(Apw', Apw?)ep;.
Then we obtain

[ (s, At &)+ (S, ag?) P
B2r(pi)
< ort / i / (1dART? + [dH (A_yw', A_yw?)[? + |dH (Apw, Apw®)P) deo
By\B,» By (P;)
+Cr’ / xdw / (|ARTF, 2 + [H(Apw', Aw?)|? + |H(Apw', Apw?)|?) dw.
B2\B,3 B (P;)
Summing over ¢ we get a constant C', independent of r such that
/ AndT,2des + / 1T (A, Apes?)2das
A, Ay
< Cr / (|dALF,|* + [dH (A_pw', A_yw?) |? + |dH (Apw', Apw?)|*) dw
B2\Bp2

FOrE [ (T B, ) H (!, )
BQ\BPQ
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Since dF,, dH(w', w?) € L* choosing small 7 > 0, we obtain C' € R, independent of

|h| < ho with
|ApdF,|%dw < C.

Ap
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