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Abstract

This paper presents a local region based scale measure, which exploits properties of
a certain type of nonlinear diffusion, the so-called total variation (TV) flow. During
the signal evolution by means of TV flow, pixels change their value with a speed that
is inversely proportional to the size of the region they belong to. From this evolution
speed one can derive a local scale estimate based on regions instead of derivative filters.
Main motivation for such a scale measure is its application to texture discrimination, in
particular the construction of an alternative to Gabor filters. When the scale estimate
is combined with the components of the structure tensor, which provides orientation
information, it yields a texture feature space of only four dimensions. Like Gabor fea-
tures, this sparse feature space discriminates textures by means of their orientation and
scale, yet the representation of orientation and scale is less redundant. The quality of
the feature space containing the new scale measure is evaluated in texture segmentation
experiments by comparing results to those achieved with Gabor filters. It turns out
that one can gain a total speedup of factor 2 without loosing any quality concerning the
discrimination of textures.

Key Words: scale, texture, nonlinear diffusion, segmentation.
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1 Introduction

Texture plays an important role for the analysis of real-world scenes, particularly for the
segmentation of images. In the work of Julesz [20, 21], texture has been defined as the
repetition of basic image elements, so-called textons. From the theoretical point of view,
textons are quite attractive; see a recent work in [43].
The arising question in practice is how to extract textons from the image. Assuming that
a texture can be represented by a linear combination of basis functions, one can measure at
every position how much each basis function correlates with the image, i.e., one convolves
the image with the basis functions and represents the texture by means of the correlation
coefficients. These coefficients are supposed to contain enough features in order to regenerate
or to discriminate textures.
A very popular set of basis functions is described by a so-called Gabor filter bank [15]. Each
basis function in a Gabor filter bank has one preferred orientation and scale. Thus convolution
of the image with each filter yields high responses at those positions in the image where the
local structure fits the orientation and scale of the filter. Gabor filters have attained high
popularity, in particular because neuroscience has found a similar behavior of neuronal cells
in the primary visual cortex of primates. Since then, a lot of research aimed on determining
a model that best fits the responses measured in the visual cortex [26, 10, 13]. Moreover,
several works on texture segmentation based on Gabor filters are available in the literature,
e.g. [5, 11, 34, 29].
Basically a Gabor filter bank extracts nothing else than the magnitude, orientation, and scale
of local texture elements. The success of Gabor filters in the context of texture segmentation
indicates the importance of these basic features for discriminating textures. However, one may
wonder if it is necessary to describe these features by means of the highly redundant coefficient
vector provided by a Gabor filter bank. Actually it should be possible to reduce the feature
vector to exactly these three components.
This is the motivation of the present paper. Instead of extracting the correlation coefficients
of the texture, it is proposed to directly estimate the magnitude, orientation, and scale of
the texture elements. For extracting the magnitude and the orientation, one can employ the
so-called structure tensor [14], which is a popular tool for orientation estimation. It has been
utilized for texture discrimination already in [31] and [4].
Also for extracting the scale of texture elements we could employ methods from the literature
[19, 23, 24, 12, 35, 18]. However, all these works have one thing in common: they are all
gradient based, i.e. their measure of local scale depends directly on the local gradient or
its derivatives. Consequently, the scale cannot be measured in regions without a significant
gradient. In order to overcome this problem, the scale is often measured within local windows.
Consequently, estimates become inaccurate near texture boundaries.
In this paper we suggest a completely different strategy to measure local scale. In contrast to
existing approaches, this method is not based on edges but on regions. This means, our local
scale measure does not depend on the behavior of the gradient in scale space, but directly
on the size of regions. Since almost all state-of-the-art segmentation techniques are based
on regions, a local scale measure that directly employs the size of regions appears to be a
more appropriate solution for this kind of application than an edge based measure. A region
based technique does not need the definition of any window, and therefore yields the maximum
localization accuracy. The work probably most related to this idea is the texture segmentation
framework in [16].
With a region based technique, however, we face the problem to define regions and to measure
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their size. For this purpose we exploit special properties of a nonlinear diffusion filter called
total variation (TV) flow [2]. It is the diffusion counterpart to TV regularization [33, 1] and is
known to yield segmentation-like solutions. In [9, 36] it has been shown for the space-discrete
one-dimensional setting that TV flow evolves the signal according to a certain set of rules.
Among others, the evolution speed of regions is inversely proportional to their size. By means
of this rule we can efficiently determine the size, i.e. the scale, of a region by the evolution
speed of its pixels.
This article comprises and extends earlier work of the authors presented at a conference [7].
In particular, the extensions contain: (i) a way how to avoid the stopping parameter present
in the scale measure presented in [7], (ii) an alternative local scale measure based on a region-
merging algorithm, and (iii) an extensive comparison of the derived sparse texture features to
Gabor filters.

Paper organization. In the following section, we introduce our new region based scale
measure. We review the analytic behavior of TV flow in the one-dimensional setting and show
how to derive a local scale estimate from these findings. For comparison, we estimate the local
scale in a similar way by means of a region-merging algorithm. In Section 3 we briefly discuss
orientation estimation by means of the structure tensor. In Section 4 then both the scale
measure and the structure tensor components are combined in order to yield a sparse texture
feature space. After a brief review of Gabor filters, Section 5 compares the performance of
the new features to that of Gabor features in the scope of texture segmentation. The paper
is concluded by a brief summary in Section 6.

2 A Region Based Local Scale Estimate

2.1 Total Variation Flow

The local scale estimate is based on the nonlinear diffusion technique called TV flow [2]. This
diffusion method has the tendency to yield segmentation-like results, so it implicitly provides
the regions needed for measuring the local scale. Starting with an initial image I(x, y), the
denoised and simplified version u(x, y, t) of the image evolves under progress of artificial time
t according to the partial differential equation

∂tu = div

(
∇u

|∇u|

)
(1)

with initial condition u(t = 0) = I and with reflecting boundary conditions. In the one-
dimensional setting it has been shown that the evolution of u successively leads to larger
regions, inside which all pixels have the same value [9, 36]. However, the representation of
these regions is not explicit, so it is not straightforward how to determine the region sizes.
For this reason, we exploit another useful property of TV flow besides its tendency to yield
segmentation-like results: linear contrast reduction. This allows an efficient computation of
the region sizes, without the explicit representation of regions, since the size of a region can
be derived by means of the evolution speed of its pixels.
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In 1-D, space-discrete TV flow (and TV regularization) have been proven to comply with the
following rules [9, 36]:

(i) A region of m neighboring pixels with the same value can be considered as one superpixel
with mass m.

(ii) The evolution splits into merging events where pixels melt together to larger pixels.

(iii) Extremum pixels adapt their value to that of their neighbors with speed 2
m

.

(iv) The two boundary pixels adapt their value with half that speed (due to reflecting bound-
ary conditions they can as well be considered to be twice as large).

(v) All other pixels do not change their value.

In higher dimensions, these rules are no longer exactly satisfied. However, one can expect TV
flow to evolve the signal in a very similar manner. Thus, although it is only possible to derive
an exact scale measure for 1-D signals, the technique provides good scale estimates also in
higher dimensions, where TV flow behaves only approximately according to the above listed
rules.

2.2 Scale Measure Based on TV Flow

In 1-D, the analytic behavior of TV flow leads to the very useful consequence that by simply
sitting upon a pixel and measuring the speed with which it changes its value, it is possible to
determine its current local scale. As pixels belonging to small regions move faster than pixels
belonging to large regions (iii), the rate of change of a pixel determines the size of the region it
currently belongs to. Integrating this rate of change over the evolution time and normalizing
it with the evolution time T yields the average speed of the pixel, i.e. its average inverse scale
in scale space:

1

m̄
=

1

2

∫ T

0
|∂tu| dt

T
. (2)

This formula may give rise to the question why to measure the average speed of the pixels and
thereby introducing the integration time T as an unpleasant parameter of the method. Why
not just measuring the speed of the pixels at time t = 0?
The main reason why the pixel speed at time t = 0 is not well suited to estimate the scale of
texture elements is the fact that in a real-world image it rarely happens that two pixels have
exactly the same value. This means, at t = 0 almost all regions are of size 1. Therefore, it is
necessary to simplify the image, i.e. to create regions, before it makes sense to measure their
size.
The second reason why it is reasonable to compute the average scale over some time is the
fact that only extremum regions change their value according to (iii) - (v). This means, while
a pixel is not part of an extremum region, it is not possible to derive its scale. By integrating
all time instants up to a time T , one increases considerably the chance that all pixels have
been part of an extremum region. Respecting for normalization also the time at which a pixel
does not move, leads to the following formula:

1

m̄
=

1

2

∫ T

0
|∂tu| dt

T −
∫ T

0
δ∂tu,0 dt

(3)
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Figure 1: Local scale estimate 1
m̄

for a zebra image. The measure yields the average inverse
scale, so dark regions correspond to large scales, bright regions to fine scales. Values have
been normalized for better visibility. From Left to Right, Top to Bottom: (a) Input
image. (b) T = 5. (c) T = 20. (d) T = 50. (e) T = 100. (f) T = 500.

where δa,b = 1 if a = b, and 0 otherwise. In the rare case that a pixel has never been part of
an extremum region, the result is set to 0. Alternatively, one could interpolate between the
values of neighboring regions. Besides this shortcoming the measure in (3) yields exactly the
regions’ sizes.
As already mentioned before, the rules for TV flow, from which the scale measure in (3) is
derived, do not strictly carry over to the higher-dimensional cases. However, we assume that
the scale measure applied to two-dimensional data still yields very good approximations, in
fact approximations that compare favorably to alternative scale estimation techniques. This
assumption is empirically justified by the experiments shown in this paper; see e.g. Fig. 1.
Thus in 2-D, (3) is only slightly changed by introducing the pre-factor 1

4
due to the 4 neighbors

of a pixel in 2-D:

1

m̄
=

1

4

∫ T

0
|∂tu| dt

T −
∫ T

0
δ∂tu,0 dt

. (4)

Fig. 1 depicts the local scale measure for different stopping times T . At first glance it appears
a bit counterproductive to have a scale parameter in a scale measure. However, the scale
involved in the choice of T and the local scale measured in the image are of different nature.
While T globally defines the range of expected scales of texture elements, the estimated scale
of different texture elements varies locally. While T is determined by the image size and by
the predefinition which image structures are still considered as texture, the purpose of the
local scale measure is to distinguish regions of different scale.
For texture discrimination one is in general interested in small structures. Thus it is usually
advantageous to choose T not too large. For instance, one can see that in Fig. 1e,f the pixels
of the stripes of the zebras have been part of a large zebra region for such a long time, that
one can no longer distinguish their different scales. In Fig. 1f, the most dominant structure
besides the stripes is already the shadow of the zebra, though its scale is very large and should
actually not be considered as texture anymore. On the other hand, Fig. 1b shows what hap-
pens if T is chosen very small. In such a case mainly the image noise contributes to the scale
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Figure 2: Average inverse scale for a synthetic texture image. From Left to Right, Top
to Bottom: (a) Input image. (b) T = 1. (c) T = 5. (d) T = 20. (e) T = 50. (f) T = 100.

estimate. Setting T to values that correspond to the expected maximum of texture scales,
however, results in good scale estimates, as shown in Fig. 1c,d. The same value of T yields
also nice results for other images, see Fig. 2. For texture discrimination, T can in general be
set to a fixed value such as T = 20.

Avoiding the stopping parameter. Instead of setting T fixed, one may be interested
in removing the parameter completely from the scale measure. Indeed this is possible when
exploiting a further property of TV flow that even carries over to the 2-D case: TV flow
flattens the image within finite time Tmax [3]. This means, with a finite diffusion time it is
possible to consider all possible scales. Thus, only the fact that large scales obtain too much
weight in the average scale, keeps us from choosing Tmax as the stopping time for the scale
measure.
The reason for the lower weight of smaller scales is the fact that small regions move faster
than large regions and hence have a shorter period of existence in scale space before they are
merged to neighboring regions. This bias towards larger scales can be balanced by introducing
a weight w(t) in (4):

1
˜̄m

=
1

4

∫ Tmax

0
w(t)|∂tu| dt∫ Tmax

0
w(t)(1− δ∂tu,0) dt

. (5)

The decisive question is how this weight has to be chosen in order to balance the bias towards
larger scales. In order to answer this question we go back to the simpler 1-D case and consider
two extremum regions with the same contrast c to its neighbors and masses m1 and m2 = a·m1

with a > 1. Due to the linear contrast reduction, region m1 disappears after time t1 = c·m1

2

while region m2 only disappears after time t2 = c·m2

2
= c·a·m1

2
. In other words, regions that are

twice as large survive twice as long. This indicates the weight we have to choose to balance
this behavior:

w(t) =
1

m
=

1

2
|∂tu|. (6)

As before, we assume that the behavior of regions approximately carries over to the 2-D case.
This yields the following scale measure without a parameter:

1
˜̄m

=
1

4

∫ Tmax

0
|∂tu|2 dt∫ Tmax

0
|∂tu| dt

. (7)

6



Figure 3: Local scale estimate 1
˜̄m

without a stopping parameter. The measure yields the
average inverse scale, so dark regions correspond to large scales, bright regions to fine scales.
Top Row: Scale estimate for the images from Fig. 1 and Fig. 2. Bottom Row: Input
image and scale estimate for two further images.

Fig. 3 depicts the scale estimates with this method that is free of a stopping parameter. Al-
though one gives away the possibility to define a priori a range of simplification levels at which
typical texture elements appear as regions, the results are still relatively good. The scale mea-
sure without the stopping parameter can therefore be seen as an alternative to the previous
setting with T = 20 fixed.

Implementation aspects. Numerical implementation of TV flow can cause stability prob-
lems when the gradient tends to zero. In order to avoid this, the process is often stabilized
artificially by adding a small positive constant ε to the gradient (e.g. ε = 0.001):

∂tu = div

(
∇u√

u2
x + u2

y + ε2

)
(8)

The stability condition for the time step size τ of an explicit scheme is τ ≤ 0.25ε, so for small
ε, many iterations are necessary. A much more efficient approach is to use a semi-implicit
AOS scheme [42, 37], which is unconditionally stable, so it is possible to choose τ = 1. Let
uk denote u after iteration k. Then the discrete versions of the scale measures for arbitrary τ
read:

u0 = I

uk+1 =
1

2

( (
E − 2τAx(u

k)
)−1

+
(
E − 2τAy(u

k)
)−1
)
uk

1

m̄
=

1

4τ

∑T
k=0 |uk+1 − uk|

T −
∑T

k=0 δ|uk+1−uk|,0
(9)

1
˜̄m

=
1

4τ

∑Tmax

k=0 |uk+1 − uk|2∑Tmax

k=0 |uk+1 − uk|
(10)

where | · | is the Euclidean norm and E denotes the unit matrix. Ax and Ay are the diffusion
matrices in x and y direction; for details see [42]. The diffusion time Tmax can be determined
by checking when

∑
i |u

k+1
i − uk

i | becomes 0 or almost 0.
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Figure 4: Average inverse scale obtained with the region-merging algorithm for the synthetic
texture image in Fig. 2. From Left to Right: (a) αStop = 100. (b) αStop = 250. (c) αStop =
500. (d) αStop = 1000.

2.3 Comparison to an Alternative Scale Measure Based on Region
Merging

One may wonder whether TV flow is the only image simplification method that can be used for
deriving region based scale estimates. Indeed there is another simplification method that even
yields an explicit representation of regions including their size: the region merging algorithm.
We derive local scale estimates based on this algorithm to show an alternative region based
technique.
In [22], region merging has been motivated as a technique to minimize the cartoon limit of
the Mumford-Shah functional [28]

E(u, Γ) =

∫
Ω

(I − u)2 dx + α

∫
Γ

ds. (11)

This energy functional searches for a piecewise constant solution u with the edge set Γ such
that u is close to the image I and the total edge length

∫
Γ
ds is minimal. The parameter α > 0

determines to which extend region boundaries are penalized, so larger α yield results with less
regions.
Global optimization of this functional is very difficult. The region merging algorithm therefore
uses a greedy heuristic starting with the trivial segmentation where each pixel is a region, and
then successively merges those two neighboring regions that lead to the largest energy decrease.
This merging of regions yields successively simplified images with increasingly large regions.
The size of these regions is the sought local scale m(α). Similarly to the stopping time of TV
flow there appears a scale parameter that defines how much two regions may differ in their
value to be still considered as one region.
As in the case of TV flow, the average inverse scale over some range of different values of α
yields better results than choosing a single α:

1

m̄
=

∫ αStop

0
1

m(α)
dα

αStop

. (12)

In [27] a finite α for merging all regions is shown. Furthermore, it is shown that the upper
bound for the number of regions increases proportionally with α2. From these properties one
can derive a scale measure without a parameter in a similar way as in the case of TV flow.
However, since the outcome is considerably worse than in the case of TV flow, this possibility
is not further discussed in this paper.
Fig. 4 and Fig. 5 show the average inverse scale for two of the test images. One can see that
although the very small scale texture can be distinguished from the rest of the image, the
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Figure 5: Average inverse scale obtained with the region-merging algorithm for the zebra
image in Fig. 1. From Left to Right: (a) αStop = 100. (b) αStop = 250. (c) αStop = 500.

results are quite noisy and the quality of the scale estimates are considerably worse than those
obtained with the TV flow based method. This is mainly due to the tendency of the region-
merging algorithm to keep single pixels even for quite large α if their value is considerably
different from its neighbors. This shows that not only the concept of a region based local scale
measure is important, but it is also decisive to choose an appropriate image simplification
method.

3 Orientation Estimation with the Structure Tensor

As mentioned in the introduction, the local scale measure is employed to define a sparse
alternative to a Gabor texture feature space. Apart from the scale of texture elements, also
their orientation and magnitude are important features to discriminate textures. A popular
tool for orientation estimation is the structure tensor, also known as second moment matrix
[14]. It has already been applied to texture analysis in [31, 4, 25].
The structure tensor integrates the outer product of the image gradient

J0 = (∇I∇I>) =

(
I2
x IxIy

IxIy I2
y

)
(13)

within a local neighborhood, which is in the classic case a Gaussian window Kρ with standard
deviation ρ:

Jρ = Kρ ∗ J0. (14)

The result is a symmetric positive semi-definite matrix, from which the dominant orientation
in the neighborhood can be extracted by computing the eigenvector to the largest eigenvalue.
Additionally to the dominant orientation, the structure tensor contains the magnitude of
the structure and the homogeneity of orientation. The magnitude of the structure can be
extracted as the trace of the structure tensor, whereas the homogeneity of orientation can be
made explicit by the ratio of its two eigenvalues. However, the three features are in general
represented just by the three components of the structure tensor without making the separate
features explicit.
The non-adaptive Gaussian neighborhood of the classic structure tensor has recently been
replaced by adaptive neighborhoods obtained by means of nonlinear diffusion [41, 8]. This
concept is called nonlinear structure tensor and has successfully been applied to texture seg-
mentation in [32]. An alternative adaptation strategy is to apply robust statistics [40]. The
advantage of data-adaptivity is the avoidance of blurring effects near texture boundaries. At
such positions, the non-adaptive Gaussian window integrates ambiguous data from two regions
reducing the accuracy of the estimation.
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Figure 6: Top Row: Components of J0: I2
x, I2

y , IxIy. Bottom Row: Components of the
nonlinear structure tensor Jt with t = 5000.

A nonlinear structure tensor Jt is obtained by using J0 as initial condition in the partial
differential equation

∂tJij = div

(
g

(
2∑

k,l=1

|∇Jkl|2
)
∇Jij

)
i, j = 1, 2 (15)

which describes matrix-valued nonlinear diffusion with a coupling of all matrix channels [38].
The diffusion time t is a scale parameter that corresponds to the standard deviation of the
Gaussian kernel used for the Gaussian neighborhood. The diffusivity g steers the reduction
of smoothing in the presence of discontinuities. A very well suited diffusivity function for
smoothing the structure tensor leads to TV flow that has already appeared in the last section
on scale estimation:

g(|∇u|2) =
1

|∇u|
. (16)

Fig. 6 depicts the components of J0 and those of the nonlinear structure tensor Jt with t = 5000
for the zebra image introduced in Fig. 1. It can be observed that despite the smoothing, the
localization accuracy near texture boundaries is still high.

4 A Sparse Set of Texture Features

We are now in the position to combine the components of the nonlinear structure tensor
(J11, J22, J12) at time t and the TV flow based scale measure 1

m̄
. This yields a four-dimensional

texture feature vector

F :=

(
J11, J22, 2J12,

1

m̄

)
(17)

which contains the texture magnitude, orientation, scale, and homogeneity of orientation.
In comparison to the responses of a Gabor filter bank, the three typical features modelled
by Gabor filters are represented sparsely by three feature channels. In addition, F models
also the spatial homogeneity of orientation which arises from the smoothing involved in the
structure tensor.
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Figure 7: Sparse texture feature space F(t) with t = 500. Top Left: F0. Top Right: F1.
Bottom Left: F2. Bottom Right: F3 (scale).

One may wonder, if it would make sense to apply the coupled nonlinear diffusion process
to the structure tensor components after the scale measure (and perhaps further features)
have been added. Since also the scale measure contains important discontinuities, this could
better indicate texture boundaries and avoid smoothing across them. In fact this concept to
assemble a feature vector of unsmoothed features and to smooth them with some discontinuity
preserving method establishes strong relations to the work in [34] where Beltrami flow is used
to smooth the responses of Gabor filters.
In order to ensure a fair coupling in nonlinear diffusion, it is necessary that all feature channels
have approximately the same dynamic range. However, the dynamic range of the scale esti-
mates is [0, 1] while the range of the structure tensor components is proportional to the square
of the dynamic range of the discrete image; the exact factor depends on the discretization of
the derivatives. Thus before the nonlinear diffusion process can be applied, all features have
to be normalized to a common dynamic range.
With regard to the possibility to add further features, in particular the gray value or color
image itself, we normalize all features to the potential range of the image, which is usually
[0, 255]. Therefore, J0 is replaced by

J̃0 :=
J0

|∇I|
. (18)

Multiplying the components of J̃0 with the factor that is determined by the discretization of
the derivatives - for central differences and grid size h = 1 this factor is 2 - ensures a potential
range of the structure tensor components equivalent to that of the image gray value. The
scale measure simply has to be multiplied by the range of the image gray value to achieve the
same effect.
This normalized feature vector serves as initial condition F(0) =

(
J̃0,11, J̃0,22, 2J̃0,12,

1
m̄

)
for

the partial differential equation [17]

∂tFi = div

(
g

(
4∑

j=1

|∇Fj|2
)
∇Fi

)
i = 1, ..., 4 (19)

which performs coupled TV flow on the feature vector and yields after diffusion time t the

11



Figure 8: Sparse texture feature space F(t) with t = 1000. Top Left: F0. Top Right: F1.
Bottom Left: F2. Bottom Right: F3 (scale).

smoothed feature vector F(t), which is depicted in Fig. 7 and Fig. 8 for two different input
images.

5 Experiments

5.1 A Brief Review of Gabor Filters

In the following experiments the sparse feature space F(t) is compared to Gabor filters as
the standard approach to texture discrimination. As a further alternative one may consider
wavelet representations of an image [39]. The typical implementation of wavelets, however, is
neither translation nor rotation invariant. Further on, one is restricted to a small number of
discrete scales. Thus one can expect a lower discrimination quality with a number of features
that is still significantly larger than with our proposed method. In our view, the question
about the quality-efficiency tradeoff of our proposed feature space can be best answered by a
comparison to Gabor filters.
In principle, the Gabor function used for Gabor filters is a Gaussian function modulated by
an oriented sinusoidal with orientation φ and frequency f :

Gφ,f (x, y) =
1

2πσ2
e−

x2+y2

2σ2 · e2πfi(x cos φ+y sin φ). (20)

The standard deviation σ of the Gaussian is usually set dependent on the frequency f of the
wave function. This is reasonable, since both parameters determine the scale of the local
structure that should respond to the filter. The relation between σ and f is set to [30]:

σ = 3

√
2 ln 2

2πf
. (21)

We choose 4 different orientations φ ∈ {0, π
4
, π

2
, 3π

4
} and 3 different scales f ∈ {0.2, 0.35, 0.5}

for the Gabor filter bank. Fig. 9 shows the corresponding filter stencils. Sometimes more
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Figure 9: Gabor filter stencils with 4 different orientations φ ∈ {0, π
4
, π

2
, 3π

4
} and 3 different

frequencies f ∈ {0.2, 0.35, 0.5}. Top: Real part. Bottom: Imaginary part.

filters are applied, but this increases not only the sampling accuracy but also the redundancy
of the filter bank and the dimension of the feature space.
Instead of using directly the responses of the Gabor filters for texture discrimination, mostly
the so-called Gabor energy

Eφ,f =
√

(I ∗ <(Gφ,f ))2 + (I ∗ =(Gφ,f ))2 (22)

is used, where < and = denote the real and imaginary part, respectively. The Gabor energies
are depicted in Fig. 10 for the zebra image. One can clearly see the redundancy of these
features.

5.2 Discrimination of Separated Textures

One main purpose of a texture feature space is its application to texture segmentation. For
segmentation, both good discrimination capabilities and a good localization accuracy are im-
portant. Before employing the sparse feature space in a segmentation task, however, we test
the texture features in a much simpler experiment where only the discrimination capabilities
play a role, as the textures are already separated from each other. Fig. 11 shows 8 different
textures and the dissimilarities between these textures measured once with the Gabor feature
space and once with the sparse representation.
A simple distance measure taking into account the means µk(T ) and the standard deviations
σk(T ) of each feature channel k of two textures T ∈ {T1, T2} serves as dissimilarity measure
for each feature channel:

∆k =

(
µk(T1)− µk(T2)

σk(T1) + σk(T2)

)2

. (23)

For the total dissimilarity the average of all M texture channels is computed:

∆ =
1

M

M∑
k=1

∆k. (24)
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Figure 10: Gabor energy for the filter stencils shown in Fig. 9 and the zebra image in Fig. 7.
Same ordering as in Fig. 9 from left to right, top to bottom.

Additionally to the 12, respectively 4, texture channels, also the gray value is added as sup-
plementary feature. This increases the accordance of the results with the visual impression
when two textures have different average gray values. The diffusion time t in F(t) has been
0. There is no smoothing necessary in this experiment, since the mean value already implies
an infinite amount of smoothing. The stopping time of the scale measure has been set to
T = 20 like in all the following experiments. We could have also employed the version without
stopping parameter, yet it induces considerably more computational effort as it has to diffuse
the image until it is flat. So in practice one may prefer the faster alternative. Note that also
the Gabor filter bank captures only textures with a limited scale.
The first value in Fig. 11 indicates the dissimilarity computed with the Gabor features, while
the second value shows the distance in the sparse feature space. With both feature spaces the
computed values are in accordance with what one would expect from a measure of texture
dissimilarity. Mostly the value of the Gabor feature space is around three or four times larger
than the value of the sparse feature space, so up to a constant factor both feature spaces yield
approximately the same values showing that indeed they discriminate textures by means of
the same properties. Only in a few cases there is a significant discrepancy. In such cases, it
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Figure 11: Dissimilarities measured between some textures. First Value: Dissimilarity in
the Gabor feature space. Second Value: Dissimilarity in the sparse feature space.

is difficult to decide which feature space is more in accordance with the expectation. This
gives much evidence that, instead of the 12-dimensional Gabor feature space, also the sparse
and more efficient 4-dimensional feature space can be used for texture discrimination without
compromising the quality of the results.

5.3 Texture Segmentation

This is further supported by the segmentation results shown in Fig. 12 and Fig. 13. In this
experiment, the features were feeded into the level set based segmentation framework described
in [32, 6]. Like in the previous experiment, the gray value has been added as additional feature.
The parameters that appear in the segmentation technique have been optimized separately for
the Gabor feature space and the sparse feature space. The same parameters were then used
for all test images. To ensure a fair comparison, also the Gabor features have been allowed to
be smoothed by coupled TV flow.
Obviously, there are only marginal differences between the results obtained with Gabor fea-
tures and those based on the sparse feature space. This can be explained by the fact that both
approaches discriminate texture by means of the same basic features: magnitude, orientation,
and scale. The additional orientation homogeneity present in F(t) as well as the reduced
redundancy may explain why for some images the sparse feature space yields slightly better
results. Its main advantage, however, is the improved efficiency. Although the computation of
the features itself takes some more time, the segmentation is about three times faster due to
the reduced number of features that have to be considered. The total increase in computation
speed including feature computation is around factor 2. The exact numbers can be found in
Table 1.
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(a) (b)

(c) (d)

Figure 12: Synthetic texture images. Left: Segmentation with smoothed Gabor feature
space. Right: Segmentation with sparse feature space F.

Image Size Gabor features F
Fig. 12a 120× 122 3.4 1.7
Fig. 12b 109× 113 3.1 1.5
Fig. 12c 123× 119 3.5 1.7
Fig. 12d 121× 122 3.4 1.7
Fig. 13a 220× 140 6.8 3.3
Fig. 13b 329× 220 16.9 8.6
Fig. 13c 250× 167 9.6 4.8
Fig. 13d 189× 244 10.2 5.1

Table 1: Computation times in seconds on an AMD Athlon XP1800+ (C++ implementation).

6 Conclusion

In this article we introduced a new paradigm to estimate the local scale in images. In contrast
to conventional gradient based methods, our approach creates regions by means of an image
simplification method and estimates the scale of these regions. Since the usage of local windows
can be avoided, the estimates yield a very high localization accuracy. Two alternative image
simplification methods have been investigated: TV flow and region merging. It has turned
out that TV flow is much better suited for estimating the scale of texture elements. We also
suggested two alternative ways to choose the simplification level. The possibility to a priori
set a maximum simplification level appears most reasonable for texture discrimination, since
regions above a certain scale are in general no longer considered as texture. The version that
avoids such a parameter may in return be more attractive from the theoretical point of view
or for applications besides texture discrimination.
In this paper the principal motivation for a region based scale measure has been the idea to
replace the texture feature vector consisting of the responses of a Gabor filter bank by a smaller
feature vector too comprising magnitude, orientation, and scale of the texture elements. A
direct comparison between these two feature vectors has revealed very similar results. The
higher implementation complexity of the sparse feature space is rewarded by a total speedup
of about factor 2.
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(a)

(b)

(c)

(d)

Figure 13: Real-world texture images. Left: Segmentation with smoothed Gabor feature
space. Right: Segmentation with sparse feature space F.

Acknowledgements

Our research was partly funded by the DFG projects WE 2602/1-1 and WE 2602/1-2. This
is gratefully acknowledged.

References

[1] R. Acar and C. R. Vogel. Analysis of bounded variation penalty methods for ill–posed
problems. Inverse Problems, 10:1217–1229, 1994.

[2] F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón. Minimizing total variation flow.
Differential and Integral Equations, 14(3):321–360, Mar. 2001.

17



[3] F. Andreu, V. Caselles, J. I. Diaz, and J. M. Mazón. Qualitative properties of the total
variation flow. Journal of Functional Analysis, 188(2):516–547, Feb. 2002.

[4] J. Bigün, G. H. Granlund, and J. Wiklund. Multidimensional orientation estimation with
applications to texture analysis and optical flow. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(8):775–790, Aug. 1991.

[5] A. C. Bovik, M. Clark, and W. S. Geisler. Multichannel texture analysis using local-
ized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(1):55–73, Jan. 1990.

[6] T. Brox, M. Rousson, R. Deriche, and J. Weickert. Unsupervised segmentation incor-
porating colour, texture, and motion. In N. Petkov and M. A. Westenberg, editors,
Computer Analysis of Images and Patterns, volume 2756 of Lecture Notes in Computer
Science, pages 353–360. Springer, Berlin, Aug. 2003.

[7] T. Brox and J. Weickert. A TV flow based local scale measure for texture discrimination.
In T. Pajdla and J. Matas, editors, Computer Vision - Proc. 8th European Conference on
Computer Vision, volume 3022 of Lecture Notes in Computer Science. Springer, Prague,
Czech Republic, May 2004.

[8] T. Brox, J. Weickert, B. Burgeth, and P. Mrázek. Nonlinear structure tensors. Technical
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