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UPEK Prague R&D Center,

Husinecka 7, 13000 Praha 3, Czech Republic
pavel.mrazek@upek.com

Pierre Kornprobst
Odyssée Project, INRIA Sophia-Antipolis,

2004 Route des Lucioles, 06902 Sophia Antipolis, France
Pierre.Kornprobst@sophia.inria.fr



Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/



Abstract

The structure tensor, also known as second moment matrix or Förstner interest
operator, is a very popular tool in image processing. Its purpose is the estimation of
orientation and the local analysis of structure in general. It is based on the integration of
data from a local neighborhood. Normally, this neighborhood is defined by a Gaussian
window function and the structure tensor is computed by the weighted sum within
this window. Some recently proposed methods, however, adapt the computation of
the structure tensor to the image data. There are several ways how to do that. This
article wants to give an overview of the different approaches, whereas the focus lies on
the methods based on robust statistics and nonlinear diffusion. Furthermore, the data-
adaptive structure tensors are evaluated in some applications. Here the main focus lies
on optic flow estimation, but also texture analysis and corner detection are considered.
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1 Introduction

Orientation estimation and local structure analysis are tasks that can be found in many image
processing and early vision applications, e.g. in fingerprint analysis, texture analysis, optic
flow estimation, and in geo-physical analysis of soil layers. The classical technique to estimate
orientation is to look at the set of luminance gradient vectors in a local neighborhood. This
leads to a very popular operator for orientation estimation, the matrix field of the so-called
structure tensor [10, 16, 4, 20, 38].

The concept of the structure tensor is a consequence of the fact that one can only describe the
local structure at a point by considering also the data of its neighborhood. For instance, from
the gradient at a single position, it is not possible to distinguish a corner from an edge, while
the integration of the gradient information in the neighborhood of the pixel gives evidence
about whether the pixel is occupied by an edge or a corner. Further on, the consideration of
a local neighborhood becomes even more important as soon as the data is corrupted by noise
or other disturbing artifacts, so that the structure has to be estimated before the background
of unreliable data.
The structure tensor therefore extends the structure information of each pixel, which is de-
scribed in a first order approximation by the gradient at that pixel, by the structure informa-
tion of its surroundings weighted with a Gaussian window function. This comes down to the
convolution of the structure data with a Gaussian kernel, i.e. Gaussian smoothing.
Note however, that the smoothing of gradients can lead to cancellation effects. Consider, for
example, a thin line. At one side of the line there appears a positive gradient, while at the
other side the gradient is negative. Smoothing the gradients will cause them to mutually
cancel out. This is the reason why in the structure tensor, the gradient is considered in form
of its outer product. The outer product turns the gradient vector ∇I of an image I into a
symmetric positive semi-definite matrix, which we will refer to as the initial matrix field

J0 := ∇I∇I> =

(
I2
x IxIy

IxIy I2
y

)
. (1)

Subscripts thereby denote partial derivatives. The structure tensor can be easily generalized
from scalar-valued data to vector-valued data. As with the matrix representation it is possible
to sum up gradient information, the structure information from all channels of a vector-valued
image I = (I1, ..., IN) can be integrated by taking the sum of all matrices [8]:

J0 :=
N∑

i=1

∇Ii∇I>i . (2)

The structure tensor for a certain neighborhood of scale ρ is then computed by convolution of
the components of J0 with a Gaussian kernel Kρ:

Jρ = Kρ ∗ J0. (3)

The smoothing, i.e. the integration of neighborhood information, has two positive effects on
orientation estimation. Firstly, it makes the structure tensor robust against noise or other
artifacts, and therefore allows a more reliable estimation of orientation in real-world data.
Secondly, it distributes the information about the orientation into the areas between edges.
This is a very important effect, as it allows to estimate the dominant orientation also at those
points in the image where the gradient is close to zero. The dominant orientation can be
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obtained from the structure tensor as the eigenvector to the largest eigenvalue. An operator
which is closely related to the structure tensor is the orientation tensor discussed in Chapter
4 by Köthe.

There are many applications for the structure tensor in the field of image processing. One
popular application is optic flow estimation based on the local approach of Lucas and Kanade
[21]. In optic flow estimation one searches for the spatio-temporal direction with least change
in the image, which is the eigenvector to the smallest eigenvalue of the structure tensor [4, 15].
Another application for orientation estimation is texture analysis. Here the dominant orienta-
tion extracted from the structure tensor can serve as a feature to discriminate textures [28, 4].
The dominant local orientation is also used in order to drive anisotropic diffusion processes,
which enhance the coherence of structures [39]. Often the structure tensor is also used as a
feature detector for edges or corners [10]. An application apart from image processing is a
structure analysis for grid optimization in the scope of fluid dynamics [34].

Although the classic structure tensor has proven its value in all these applications, it also holds
a drawback. This becomes apparent as soon as the orientation in the local neighborhood is
not homogeneous like near the boundary of two different textures or two differently moving
objects. In these areas, the local neighborhood induced by the Gaussian kernel integrates
ambiguous structure information that actually does not belong together and therefore leads
to inaccurate estimations.
There are two alternatives to remedy this problem. One is to adapt the neighborhood to the
data. A classical way of doing so is the Kuwahara-Nagao operator [18, 25, 2]. At a certain
position in an image this operator searches for a nearby neighborhood where the response (the
orientation) is more homogeneous than it is at the border. That response is then used at the
point of interest. In this way the neighborhoods are not allowed to cross the borders of the
differently oriented regions. In [36] it was shown that the classic Kuwahara-Nagao operator
can be interpreted as a ‘macroscopic’ version of a PDE image evolution that combines linear
diffusion (smoothing) with morphological sharpening (a shock filter in PDE terms). A very
similar approach is to use adaptive Gaussian windows [26, 23] for choosing the local neighbor-
hood. Also by nonlinear diffusion one can perform data-adaptive smoothing that avoids the
integration of ambiguous data [41, 7].
A second possibility to enhance local orientation estimation is to keep the non-adaptive win-
dow, but to clearly choose one of the ambiguous orientations by means of robust statistics
[37]. This paper will describe both approaches and will show their performance in the most
common applications also in comparison to the conventional structure tensor. Note that for
a data-adaptive structure tensor to reveal any advantages, discontinuities or mixed data must
play a role for the application. Some applications where this is the case are optic flow estima-
tion, texture discrimination, and corner detection.

Paper organization. The paper is organized as follows. In the next section we give an
overview on data-adaptive structure tensors. The approaches using robust statistics and non-
linear diffusion are described in detail and relations between methods are examined. In Sec-
tion 3 – Section 5 the structure tensor is applied to optic flow estimation, texture analysis,
and corner detection. Some experiments show the superiority of adaptive structure tensors in
comparison to the classic structure tensor and differences between the methods. The paper is
concluded by a brief summary in Section 6.
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2 Data-adaptive Structure Tensors

An early approach to data-adaptive structure tensors is the gray value local structure tensor
of Nagel and Gehrke [26], which has been designed for its use in spatio-temporal optic flow
estimation. Instead of using a fixed isotropic Gaussian kernel Kρ for smoothing the structure
tensor, a space-dependent Gaussian

G(x) =
1√

(2π)3|Σ(x)|
e−

1
2
x>Σ(x)−1x (4)

is employed, which is parameterized by the covariance matrix Σ(x). This covariance matrix
is locally adapted to the image by setting

Σ(x) = U(x)


σmin + σ2

max

1+σ2
maxλ1(x)

0 0

0 σmin + σ2
max

1+σ2
maxλ2(x)

0

0 0 σmin + σ2
max

1+σ2
maxλ3(x)

U>(x) (5)

where λi(x), i ∈ {1, 2, 3} are the eigenvalues of the resulting structure tensor and U holds
its eigenvectors. Initially, Σ(x) is set to an arbitrary diagonal matrix. The parameters σmin

and σmax are for restricting the anisotropy and the size of the Gaussian. This concept of
using a data-adaptive Gaussian for the convolution with the structure tensor has been further
investigated in the works of Middendorf and Nagel [22, 23]. See also Chapter 3 by Nagel for
the estimation of an adaptive Gaussian.

Another data-adaptive structure tensor has been proposed by Köthe [17] for the purpose of
corner detection. For corner detection one uses the fact that the coherence of the orientation
measured by the structure tensor becomes small when two edges meet. To achieve an accurate
localization of these points, it is favorable to smooth the structure tensor mainly along edges in
the image. Köthe has therefore proposed to use an hourglass-shaped filter for the convolution
with the structure tensor. The orientation of the filter is thereby adapted to the orientation
of the edges, so it is a data-adaptive smoothing.

Note that though the two previous structure tensors are data-adaptive, they are still linear
operators, as they imply a convolution operation (which is linear) based on the initial image
data. The adaptation quality can be further improved by nonlinear operators, which use the
updated data in a kind of feedback loop for the adaptation. Two such nonlinear operators
have been proposed for the structure tensor, firstly the concept based on robust statistics by
van den Boomgaard and van de Weijer [37], and secondly the techniques based on nonlinear
diffusion, proposed by Weickert and Brox [41, 7]. These methods will now be explained in
more detail.

2.1 Structure Tensors Based on Robust Statistics

Before describing data-adaptive structure tensors based on robust statistics it will be shown
that the classic structure tensor is the result of least squares estimation procedures for local
orientation. For illustration consider also the texture in Fig. 1(a). The histogram of the
gradient vectors in this texture patch is shown in Fig. 1(b). Let v be the true orientation
vector of the patch, i.e. the vector perpendicular to the stripes. In an ideal image patch
every gradient vector should be parallel to the orientation v. In practice they will not be
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Figure 1: Histograms of gradient vector space. In (a) an image (64× 64) is shown with
in (b) the histogram of all gradient vectors (where darker shades indicate that those gradient
vectors occur more often in the image. In (c) a composition of two differently oriented patterns
is shown with the corresponding histogram in (d).

parallel. The error of a gradient vector g(y) := ∇I(y) observed in a point y with respect to
the orientation v(x) of an image patch centered at location x is defined as:

e(x,y) = ‖g(y)− (g(y)>v(x))v(x)‖

The difference g(y) − (g(y)>v(x))v(x) is the projection of g on the normal to v. The error
e(x,y) thus measures the perpendicular distance from the gradient vector g(y) to the orien-
tation vector v(x). Integrating the squared error over all positions y using a soft Gaussian
aperture for the neighborhood definition we define the total error:

ε(x) =

∫
Ω

e2(x,y)Kρ(x− y)dy (6)

The error measure can be rewritten as

ε =

∫
Ω

g>gKρdy −
∫

Ω

v>(gg>)vKρdy.

where we have omitted the arguments of the functions. Minimizing the error thus is equivalent
with maximizing ∫

Ω

v>(gg>)vKρdy,
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subject to the constraint that v>v = 1. Note that v is not dependent on y so that we have
to maximize:

v>
(∫

Ω

(gg>)Kρdy

)
v = v>Jρv

where Jρ is the structure tensor.
Using the method of Lagrange multipliers to maximize v>Jρv subject to the constraint that
v>v = 1, we need to find an extremum of

λ(1− v>v) + v>Jρv.

Differentiating with respect to v (remember that d
dv

(v>Av) = 2Av in case A = A>) and
setting the derivative equal to zero results in:

Jρv = λv. (7)

The ‘best’ orientation thus is an eigenvector of the structure tensor Jρ. Substitution in the
quadratic form then shows that we need the eigenvector corresponding to the largest eigen-
value.

The least squares orientation estimation works well in case all gradients in the set of vectors
in an image neighborhood all belong to the same oriented pattern. In case the image patch
shows two oriented patterns the least squares estimate will mix the two orientations and give
a wrong result.
A robust estimator is constructed by introducing the Gaussian error norm:

ψ(e) = 1− exp

(
e2

2m2

)
as depicted in Fig. 2. In a robust estimator large deviations from the model (what is considered
‘large’ is determined by the value of m) are not taken into account very heavily. In our
application large deviations from the model are probably due to the mixing of two different
linear textures (see Fig. 1(c-d)).
The error, Eq. 6, can now be rewritten as (we will omit the spatial arguments):

ε =

∫
Ω

ψ
(√

g>g − v>(gg>)v
)
Kρdy.

Again we use a Lagrange multiplier method to minimize the error subject to the constraint
that v>v = 1:

d

dv

(
λ(1− v>v) +

∫
Ω

ψ
(√

g>g − v>(gg>)v
)
Kρdy

)
= 0.
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Figure 2: Quadratic versus (robust) Gaus-
sian error norm. The Gaussian error norm
is of ‘scale’ m = 0.7.
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This leads to
Jm

ρ (v)v = λv (8)

where

Jm
ρ (v) =

∫
Ω

gg>Km(g>g − v>(gg>)v)Kρdy (9)

with Km(e2) = exp (e2/2m2). The big difference with the least squares estimator is that now
the matrix Jm

ρ (v) is dependent on v (and on x as well). Note that Jm
ρ (v) can be called a

‘robustified’ structure tensor in which the contribution of each gradient vector is weighted not
only by its distance to the center point of the neighborhood, but also weighted according to
its ‘distance’ to the orientation model.
Note that the ‘robustification’ of the structure tensor is dependent on the model that is fitted
to the data, so there is no unique robust structure tensor. The structure tensor is a local
averaging of the gradient product gg>, but whereas in the classical case each point in the
neighborhood contributes in an equal amount to this average, in the robust formulation the
weight is dependent on the plausability of the gradient observation g given the model.

A fixed point iteration scheme is used to find a solution. Let vi be the orientation vector
estimate after i iterations. The estimate is then updated as the eigenvector vi+1 of the matrix
Jm

ρ (vi) corresponding to the largest eigenvalue, i.e. one solves:

Jm
ρ (vi)vi+1 = λvi+1

The proposed scheme is a generalization of the well-known fixed point scheme (also called
functional iteration) to find a solution of the equation v = F (v).

Note that the iterative scheme does not necessarily lead to the global minimum of the error.
In fact one is often not even interested in that global minimum. Consider for instance the
situation of a point in region A (with orientation α) that is surrounded by many points in
region B (with orientation β). It is not too difficult to imagine a situation where the points
of region B outnumber those in region A. Nevertheless the algorithm is to find the orientation
α whereas the global minimum would correspond with orientation β. Because the algorithm
starts in the initial orientation estimate and then finds the local minimum nearest to the
starting point it hopefully ends up in the desired local minimum: orientation α. The choice
for an initial estimate of the orientation vector is thus crucial in a robust estimator in case
the image patch shows two (or more) orientations.

2.2 Structure Tensors Based on Nonlinear Diffusion

In the preceding subsection it has been shown that a least squares estimate of the local ori-
entation comes down to solving an eigenvalue problem of the structure tensor smoothed with
the Gaussian kernel Kρ which determines the local neighborhood. We have also seen a more
general technique than least squares that introduces an additional weighting dependent on the
data. Now the question may arise if there is on the other hand also a more general smoothing
approach than Gaussian convolution, and indeed there is one.
The generalization of Gaussian smoothing, which is equivalent to diffusion with a constant
diffusivity, is nonlinear diffusion. In contrast to Gaussian convolution, nonlinear diffusion
reduces the amount of smoothing in the presence of discontinuities in the data, so it is a
data-adaptive smoothing method. Being a nonlinear approach, discontinuities are determined
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iteratively in the updated, smoothed data and therefore one can integrate data from an ar-
bitrarily shaped neighborhood, as illustrated in Fig. 3. Thus nonlinear diffusion seems very
appropriate to replace the Gaussian convolution of the classic structure tensor in order to
bring in data-adaptive neighborhoods for the integration.

Nonlinear diffusion has been introduced by Perona and Malik [27]. With the initial condition
u(t = 0) = I, the PDE

∂tu = div
(
g(|∇u|2)∇u

)
(10)

evolves a scalar-valued data set, such as a gray value image, where I is the initial image. The
so-called diffusivity function g correlates the amount of smoothing to the gradient magnitude
and thereby prevents smoothing across edges. For smoothing the structure tensor, a good
choice for this diffusivity function is

g(|∇u|) =
1√

|∇u|2 + ε2
(11)

where ε is a small positive constant only introduced in order to prevent unlimited diffusivities.
Diffusion with this diffusivity is called total variation (TV) flow [1], which is the diffusion filter
corresponding to TV regularization [32].

Since the structure tensor is not a scalar-valued but a matrix-valued data set, one needs an
extension of Eq. 10 to matrix-valued data. Such an extension has been provided in [35]:

∂tuij = div
(
g
( N∑

k,l=1

|∇ukl|2
)
∇uij

)
i, j = 1, ..., N. (12)

Details can also be found in Chapter 25 by Weickert et al.. When setting the initial condition to
uij(t = 0) = J0,ij (cf. Eq. 1 and Eq. 2), this PDE provides the nonlinear structure tensor Jt for
some diffusion time t. Here, N is the number of rows/columns of the structure tensor (which
is symmetric), i.e. N = 2 for the spatial structure tensor and N = 3 for its spatio-temporal
version. Note that all matrix channels are coupled in this scheme. They are smoothed with
a joint diffusivity taking into account the edges of all channels. Consequently, a discontinuity
in one matrix channel inhibits also smoothing in the others.
There exists also an anisotropic counterpart to this scheme, which has been introduced in
[41, 7]. In the anisotropic case not only the amount of diffusion is adapted locally to the data
but also the direction of smoothing. This has positive effects for instance in the application of

     

Figure 3: Illustration of how the local neighborhood is adapted by an increasing amount of
nonlinear diffusion.
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Figure 4: Left: Neighborhood of a non-adaptive isotropic Gaussian.
Center: Neighborhood of a data-adaptive anisotropic Gaussian.

Right: Neighborhood obtained with an iterative diffusion process.

corner detection where one is interested in smoothing mainly along edges in the image.

∂tuij = div

(
D

(
N∑

k,l=1

∇ukl∇u>kl

)
∇uij

)
i, j = 1, ..., N (13)

The matrix D is the so-called diffusion tensor that replaces the scalar-valued diffusivity g and
which we define in the spatial case, where N = 2, as

D = U

(
g(λ1) 0

0 1

)
U> (14)

The diffusivity function g is the same as in the isotropic setting and λ1 denotes the larger
eigenvalue of the matrix

∑N
i,j=1∇uij∇u>ij while U holds its eigenvectors. Simply speaking, the

diffusion tensor reduces the amount of smoothing in gradient direction depending on the gra-
dient magnitude, while it employs the full amount of smoothing in the direction perpendicular
to the gradient. For detailed information about anisotropic diffusion in general, we refer to
[38]. Anisotropic nonlinear matrix diffusion is also a topic of Chapter 25 by Weickert et al..
By applying a Gaussian convolution with a kernel Kρ to the matrix

∑N
k,l=1∇ukl∇u>kl that de-

termines the diffusion tensor D, one can even emphasize the smoothing along discontinuities
in the data [40]. With such a nonlinear diffusion process, one obtains the anisotropic structure
tensor Jt,ρ.

2.3 Relations

After the description of these approaches to data-adaptive structure tensors, one might wonder
how they are related. Are they basically all the same, or are there significant differences?
Let us first consider the gray value local structure tensor of Nagel and Gehrke and the nonlin-
ear structure tensor based on diffusion. Both methods perform a smoothing operation on the
structure tensor, using a neighborhood that is adapted to the data, so one would expect that
both methods do approximately the same. However, despite the similarities, there are some
significant differences.
Fig. 4 visualizes these differences between the approach of Nagel and Gehrke and the classic
as well as the nonlinear structure tensor. The classic structure tensor uses a fixed isotropic
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Gaussian kernel for smoothing the data, thus it is not data-adaptive at all. The method pro-
posed by Nagel and Gehrke parameterizes the neighborhood by an anisotropic Gaussian and
adapts the parameters locally to the data. Although this approach is more precise than the
classic structure tensor, one can see that in many situations the Gaussian cannot fully cover
the region of interest without also integrating ambiguous information. The iterative diffusion
process involved in the nonlinear structure tensor is more flexible and can therefore cover a
neighborhood with arbitrary shape.
Furthermore, the nonlinear structure tensor is based on a nonlinear smoothing operation, i.e.
the operation works on the updated data, while the method of Nagel and Gehrke is still a
linear operation as it smooths the initial data.

The robust structure tensor described in Section 2.1 is also based on a nonlinear process, so
let us consider its relations to the nonlinear structure tensor. From Eq. 9 one can see that
dependent on how well the values fit to the currently estimated orientation, their influence is
decreased. This is similar to the concept of the nonlinear structure tensor, where the further
expansion of the local neighborhood is reduced if the new values do not fit well to the values
of the current neighborhood. Note that the weighting function ψ′(s2) in Eq. 9 is one of the
diffusivity functions used by Perona and Malik when they introduced nonlinear diffusion (cf.
[27]). Thus both the nonlinear structure tensor and the robust structure tensor make the
integration of further data dependent on whether it fits to the already gathered data. One
can even choose the same weighting function for this selection process.
The difference between both approaches is that the nonlinear structure tensor applies this
selection process in order to determine the local neighborhood and then uses a simple least
squares approach within this neighborhood, while the structure tensor based on robust statis-
tics first gathers the data from the simple fixed Gaussian neighborhood Kρ and applies the
nonlinear weighting process afterwards. Thus the nonlinear structure tensor assumes that the
values needed for a good estimation are connected, whereas the robust statistics ignore the
aspect of connectivity. Consequently, it can be expected that in situations where the assump-
tion of connected data holds, the nonlinear structure tensor is better suited, while in situations
where the assumption is false, robust statistics should be advantageous.
Relations between robust statistics, nonlinear diffusion, and other data-adaptive smoothing
approaches are also dealt with in [24].

3 Optic Flow Estimation

A well-known application of the structure tensor is optic flow estimation. In optic flow esti-
mation one searches for the displacement field (u(x, y), v(x, y)) that says for each pixel (x, y)
of one image I(x, y, t) to which position it has moved in a second image I(x, y, t+ 1).
In Bigün et al. [4] optic flow estimation has been regarded as the search for the spatio-
temporal orientation where there is the least change in the image sequence. This immediately
leads to an orientation estimation problem that can be solved by computing the eigenvector
w = (w1, w2, w3) to the smallest eigenvalue of the structure tensor. The optic flow vector can
then be computed by normalizing the last component of w to 1, which leads to u = w1/w2

and v = w2/w3.
Although this has been the first explicit usage of the structure tensor for optic flow estimation,
the structure tensor is also implicitly present in the early method of Lucas and Kanade [21].
In this method the assumptions of the optic flow estimation problem become more explicit.
Furthermore, the method of Lucas-Kanade is an ordinary least squares approach, while the
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method of Bigün estimates the flow vector by means of total least squares. For optic flow
estimation in practice, it turns out that a simple least squares approach is more robust, so we
will stick here to the method of Lucas-Kanade.

3.1 Lucas-Kanade with the Conventional Structure Tensor.

The assumption that is most frequently used in optic flow estimation is the assumption that
the displacement of pixels does not alter their gray values. This can be expressed by the
well-known optic flow constraint (OFC) [14]

Ixu+ Iyv + Iz = 0. (15)

The optic flow is not uniquely determined by this constraint, since this is only one equation
for two flow components. This is also called the aperture problem. In order to obtain a unique
solution, Lucas and Kanade proposed to assume the optic flow vector to be constant within
some neighborhood, e.g. a Gaussian window Kρ.
With this second assumption, it is possible to estimate the optic flow at each point by the
minimizer of the local energy function

E(u, v) =
1

2
Kρ ∗

(
(Ixu+ Iyv + Iz)

2
)
. (16)

A minimum (u, v) of E must satisfy ∂uE = 0 and ∂vE = 0, what leads to the 2 × 2 linear
system (

Kρ ∗ I2
x Kρ ∗ IxIy

Kρ ∗ IxIy Kρ ∗ I2
y

)(
u
v

)
=

(
−Kρ ∗ IxIz
−Kρ ∗ IyIz

)
. (17)

Note that it is possible to use instead of a purely spatial neighborhood also a spatio-temporal
neighborhood where the assumption of constant flow is extended to hold also over time. Since
the spatio-temporal version has access to more data, it leads in general to more accurate re-
sults. However, for simplicity we considered only spatial neighborhoods in the experiments.

3.2 Lucas-Kanade with the Nonlinear Structure Tensor

One can easily observe that the entries of this linear system are five of the six different
components of the spatio-temporal structure tensor

Jρ = Kρ ∗
(
∇I∇I>

)
= Kρ ∗

 I2
x IxIy IxIz

IxIy I2
y IyIz

IxIz IyIz I2
z

 . (18)

Thus it is possible to replace these entries by the components of one of the data-adaptive struc-
ture tensors. Such a replacement means that the fixed neighborhood of the original method
is replaced by an adaptive neighborhood which prefers those pixels that fit the assumption of
constant optic flow.
As already discussed in Section 2, one can obtain a good adaptation of the neighborhood
by nonlinear diffusion. Thus with the nonlinear structure tensor [41, 7] described in Section
2.2 and determined by the nonlinear diffusion process given by Eq. 12, the assumption of
constant flow holds much more often than in the case of the conventional structure tensor.
Consequently, there are less estimation errors, in particular near motion boundaries.
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3.3 Robust Structure Tensor for Optic Flow Estimation

Compared to Section 2.1, with optic flow estimation the orientation estimation task has
changed a bit. We now search for the orientation with least change in a spatio-temporal
space. Since the robustified structure tensor selects the data according to how well it fits to
the model, a new robust structure tensor has to be derived due to the change of the model.
In order to see the relations to the derivation in Section 2.1 we adapt to the same notation
and write g = ∇I. The optic flow vector (u, v) will be written as the estimated orientation
v. Further on, the Lucas-Kanade approach will be interpreted as a least squares estimation
procedure first, before the generalized robust estimation procedure is described.

Least squares estimation. As stated above, the optic flow constraint Eq. 15 has two un-
knowns: the two components of the optic flow vector v, and a way to get an expression for
a unique solution for v is to come up with more equations each describing the same vector
v. This is achieved with the assumption of Lucas-Kanade that within a local neighborhood
of a point x the optical flow vector is constant. Like in Section 2.1 a Gaussian aperture is
selected to define the local neighborhood. Let v(x) be the optical flow vector at x then the
error towards the optic flow constraint is given as:

ε(x) =

∫
Ω

(Iz(y) + v(x) · g(y))2Kρ(x− y)dy (19)

If we now select the vector v∗ that minimizes the above expression then the OFC expression
Iz + v · g is minimized on average in the local neighborhood of a point x:

v∗ = argminvε(x)

The optimal value is found by solving for dvε = 0:

dvε = 2

∫
Ω

(
Iz(y) + v(x) · g(y)

)
g(y)Kρ(x− y)dy

Here we use the convention used throughout this article that the integration of a matrix/vector
equation is to be done for each of the matrix/vector components individually. Consider the
term (v·g)g, where we have omitted the spatial arguments for clarity. This can be rewritten as
(gg>)v. Note that gg> is a 2× 2 matrix which, when integrated over a spatial neighborhood,
is the structure tensor J(x). Using this we can rewrite the above equation as:(∫

Ω

g(y)g>(y) Kρ(x− y)dy

)
v(x) = −

∫
Ω

Iz(y)g(y)Kρ(x− y)dy (20)

or

J(x)v(x) = −
∫

Ω

Iz(y)g(y)Kρ(x− y)dy

After integration the structure tensor can be assumed to be non-singular and thus:

v(x) = −J−1(x)

∫
Ω

Iz(y)g(y)Kρ(x− y)dy

This is the well-known linear least squares estimator of the optical flow vector. Like many
local structure calculations it suffers from the fact that all points in the neighborhood are used
in the calculation. At motion boundaries the above expression is known to give the wrong
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answers.

Robust estimation. Robustifying optical flow calculations can be found e.g. in [5]. Here we
emphasize that a robust estimator of the optical flow vector nicely fits into the framework for
robust local structure calculations as set up in this article.
The squared error of Eq. 19 is replaced with a robust error measure:

ε(x) =

∫
Ω

ψ (Iz(y) + v(x) · g(y))Kρ(x− y)dy (21)

leading to the following expression for the derivative dvε:

dvε =

∫
Ω

ψ′
(
Iz(y) + v(x)g(y)

)
g(y)Kρ(x− y)dy

Like in Section 2.1 we select the Gaussian error norm for ψ, leading to:

dvε =

∫
Ω

Iz(y) + v(x) · g(y)

m2
exp

(
−(Iz(y) + v(x) · g(y))2

2m2

)
g(y)Kρ(x− y)dy

This can be rewritten as:

dvε =

∫
Ω

(
Iz(y) + v(x) · g(y)

)
g(y)Km(Iz(y) + v(x) · g(y))Kρ(x− y)dy

Solving for dvε = 0 we obtain:(∫
Ω

g(y)g(y)>Km(. . . )Kρ(x− y)dy

)
v = −

∫
Ω

Iz(y)g(y)Km(. . . )Kρ(x− y)dy

Compared with the linear least squares estimator, a new term Km(. . . ) has been added that
can be interpreted as the model error penalty. This equation is the ‘robustified’ equivalent of
Eq. 20.
Again we obtain a ‘robustified’ structure tensor. Carefully note that the model error penalty
term is different from the one we have derived in a previous section where we looked for the
local orientation of maximum change in a purely spatial neighborhood. Here we arrive at the
equation

Jm
ρ (v)v = l(v)

where

Jm
ρ (v) =

∫
Ω

g(y)g(y)>Km(Iz(y) + v(x) · g(y))Kρ(x− y)dy

and

l(v) = −
∫

Ω

Iz(y)g(y)Km(. . . )Kρ(x− y)dy.

And again we can solve this through a fixed point procedure:

vi+1 = −
(
Jm

ρ

)−1
(vi)l(vi)

with v0 some initial estimate of the optical flow vector (the linear least squares estimate is an
obvious choice for this).
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3.4 Adapting the Neighborhood with a Coherence Measure.

As stated above, the assumption of constant flow field over a neighborhood is used in order to
disambiguate the optic flow constraint equation. This leads to the idea that diffusion should
be reduced at those areas where the aperture problem is already reasonably solved [19]. In
regions with non-constant smooth motion fields, this will avoid oversmoothing the tensor field
and then preserve small motion differences. The aperture problem is solved as soon as the two
larger eigenvalues of the structure tensor are large enough compared to the smallest one, i.e.
that the ellipsoid associated to the tensor is flat. In order to quantify the flatness of a tensor,
we use a slightly changed version of the coherence or corner measure proposed in [13]:

cm(J) =

(
λ1 − λ3

λ1 + λ3 + ε

)2

−
(

λ1 − λ2

λ1 + λ2 + ε

)2

. (22)

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are the eigenvalues of the structure tensor J and ε is a small positive
constant for regularization purposes. If λ2 ≈ λ3, this measure yields a value close to 0, while
if λ1 ≈ λ2 > λ3, the value is close to 1. This measure can be use to steer the diffusion of the
structure tensor through a matrix-valued nonlinear diffusion scheme, written in a continuous
formulation as

∂tJij = div (g(cm)∇Jij) (23)

where g is decreasing, g(0) = 1, g(1) = 0. Note that the continuous formulation is problematic
if g is not smooth. However, an associated discrete scheme will be generally well defined. It
can be written as

Jn+1
s = Jn

s + τ
∑

r∈N(s)

βrg (cm(Jn
r + Jn

s )) (Jn
r − Jn

s ) (24)

where s = (i, j) denotes a image location (and not the tensor component), N(s) a discrete
neighborhood, τ an evolution step and the βr are positive values that depend on the neighbor-
hood (but not on the tensors), with reflecting boundary conditions. The diffusivity function
used in this work is

g(cm) =


1 ifcm < α− η
(α+ η − cm)/2η ifα− η ≤ cm < α− η
0 ifcm ≥ α− η

(25)

depicted in figure 5. The thresholds α and η have been set respectively to 0.9 and 0.1 in the
experiments. This diffusion is an alteration of the linear diffusion and possesses the same sta-
bility properties. It behaves well in presence of small structures with high curvatures, but has
the same drawback that the linear diffusion with respect to motion discontinuities. Indeed,
as it can be seen from the discrete formulation (24), if Js and Jr are neighboring tensors with

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Diffusivity 

Figure 5: The diffusivity function g(cm).
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different orientations, their sum will become isotropic and their coherence measure small, so
a maximal diffusivity of 1 will be assigned in the corresponding term of (24).

3.5 Comparison

Fig. 6-8 shows three well-known test sequences for optic flow estimation and the results ob-
tained with the methods described above 1. The visualization of both the orientation and the
magnitude of the flow vector is achieved by using color plots where the hue is determined by
the orientation and the intensity corresponds to the magnitude of the flow vector.
In all sequences, one can see a clear qualitative difference between the Lucas-Kanade method
based on the classical structure tensor and the methods based on its data-adaptive versions.
While the classic structure tensor causes blurring artifacts at motion discontinuities, leading
to bad estimates in these areas, the data-adaptive structure tensors avoid mixing the data
from the different regions and therefore yield much more accurate results.

For the test sequences used here, there is also the ground truth available, so it becomes pos-
sible to compare the methods by a quantitative measure. The standard measure used in the
literature is the average angular error (AAE) introduced in [3]. Given the estimated flow field
(ue, ve) and ground truth (uc, vc), the AAE is defined as

aae =
1

N

N∑
i=1

arccos

(
uciuei + vcivei + 1√

(u2
ci + v2

ci + 1)(u2
ei + v2

ei + 1)

)
(26)

where N is the total number of pixels. Against its indication, this quality measure not only
measures the angular error between the estimated flow vector and the correct vector, but
also differences in the magnitude of both vectors, since it measures the angular error of the
spatio-temporal vector (u, v, 1).
Tab. 1 compares the errors of the different methods. It can be observed that all data-adaptive
approaches show a higher performance than the conventional method in all sequences. Between
the data-adaptive methods there are some differences, however, there is no clear winner.

4 Texture Analysis

4.1 Robust Orientation Estimation

An important property of texture is its dominant orientation. In Section 2.1 it was shown
that the dominant orientation of an line pattern can be estimated using a linear least squares
estimator. The resulting orientation turns out to be the eigenvector of the structure tensor
belonging to the largest eigenvalue.
In Fig. 9(a) an oriented pattern is shown and in (b) the scatter diagram of the gradient vectors
observed at small scale in a neighborhood in the image at the border of the two differently
oriented regions. It is evident that a least squares estimator cannot distinguish between the
two oriented patterns and will ’smooth’ the orientation.

1The Yosemite sequence with clouds was created by Lynn Quam and is avail-
able at ftp://ftp.csd.uwo.ca/pub/vision. The version without clouds is available at
http://www.cs.brown.edu/people/black/images.html. The original, uncropped, street sequence has
been published in [11] and is available at http://www.cs.otago.ac.nz/research/vision.
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Figure 6: Yosemite sequence (316× 252× 15). From Left to Right, Top to Bottom:
(a) Frame 8. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear structure tensor.
(e) Robust structure tensor. (f) Coherence based smoothing. See colour plates.
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Figure 7: Yosemite sequence without clouds (316× 252× 15). From Left to Right, Top
to Bottom: (a) Frame 8. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear
structure tensor. (e) Robust structure tensor. (f) Coherence based smoothing. See colour
plates.
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Figure 8: Street sequence (cropped) (145 × 100 × 20). From Left to Right, Top to
Bottom: (a) Frame 10. (b) Ground truth. (c) Classic structure tensor. (d) Nonlinear
structure tensor. (e) Robust structure tensor. (f) Coherence based smoothing. See colour
plates.

18



Yosemite sequence without clouds.

Technique AAE
Classic structure tensor 3.80◦

Nonlinear structure tensor 3.74◦

Robust structure tensor 3.21◦

Coherence based structure tensor 3.43◦

Yosemite sequence with clouds.

Technique AAE
Classic structure tensor 8.78◦

Nonlinear structure tensor 7.67◦

Robust structure tensor 8.01◦

Coherence based structure tensor 8.21◦

Street sequence.

Technique AAE
Classic structure tensor 10.54◦

Nonlinear structure tensor 7.75◦

Robust structure tensor 7.08◦

Coherence based structure tensor 9.79◦

Table 1. Comparison between results. In all cases the flow fields are dense.
AAE = average angular error.

A robust estimation of orientation greatly improves this. We start again with the estimator
for the orientation that is based on the error measure as given in Eq. 6:

ε =

∫
Ω

Kρ ψ(
√

g − (g>v)v)dx

where we have replaced the quadratic error norm with a robust error norm ψ. The local
orientation is then found by minimizing the above error measure for v under the constraint
that v>v = 1. Using a Lagrange multiplier we have to minimize ε + λ(1 − v>v). Setting
∂ε/∂v = 0 and solving for v we arrive at:

Jm
ρ (v)v = λv

where

Jm
ρ (v) =

∫
Ω

gg>Km(g − (g>v)v)Kρdx

is the ’robustified’ structure tensor. Note that the structure tensor Jm
ρ (v) depends on the

orientation v and thus we have to solve for the optimal orientation in an iterative fixed point
manner. Starting with an initial estimate v0, calculate the structure tensor Jm

ρ (v0) and
calculate a new orientation estimate as the eigenvector of largest eigenvalue. This iterative
procedure in practice needs very few iterations to converge (typically 3 to 5 iterations).
In Fig. 10 the robust orientation estimation is compared with the linear least squares estima-
tion. It can be clearly observed that whereas the linear estimator ’gently’ changes from the
one orientation to the second, the robust estimator shows a sharp transition. A pattern with
only slight variation in orientation is shown in Fig. 11. Again the robust estimator is capable
of clearly detecting the edges between areas of different orientation.
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Figure 9: Gradient histogram with two differently oriented textures.

Figure 10: Comparison between least squares and robust orientation estimation. See also
colour plates.

Figure 11: Comparison between least squares and robust orientation estimation. See also
colour plates.
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4.2 Texture segmentation

The three different components of the structure tensor can also directly be integrated as
features into a segmentation method, like the one proposed in [31, 6]. This segmentation
framework computes a two region segmentation given a suitable feature vector. In our case
this is the vector composed of the three different components of the structure tensor and the
image gray value. The components of the structure tensor are normalized to the same range as
the image gray value in order to ensure a fair weighting between the channels. Fig.12 reveals
that with a data-adaptive approach, the segmentation can benefit from the reduced blurring
effects in the feature channels and yields a higher accuracy at region boundaries. Note that
although the components of the nonlinear structure tensor look almost unsmoothed, there is
some smoothing that provides the dominant orientation also in the gaps between the stripes.
For comparison, the segmentation result obtained with the unsmoothed structure tensor J0 is
depicted in Fig. 13.

Figure 12: Left Column: Segmentation with the classic structure tensor (ρ = 2). Center
Column: Segmentation with the nonlinear structure tensor (t = 25). Right Column:
Segmentation with the robust structure tensor (ρ = 3, m = 0.05). From Top to Bottom.
(a) Segmented image (250 × 167). (b) Tensor component J11 based on I2

x. (c) J22 based on
I2
y . (d) J12 based on IxIy.

Figure 13: Segmentation with the un-
smoothed structure tensor J0.
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5 Corner Detection

When looking for some important, distinguished locations of an image, one often considers
points where two or more edges meet. Such locations have been named corners or interest
points, and a range of possible approaches exists to detect them in an image, see e.g. the
reviews in [30, 33]. Methods based on the structure tensor are well established in this field.
For detecting corners, the coherence information present in the structure tensor after integra-
tion is exploited. At zero integration scale, the structure tensor J0 as introduced in Eq. 1 or
Eq. 2 contains information on intrinsically 1-dimensional features of the image, i.e. edges. For
gray-scale images, only one eigenvalue of the structure tensor J0 may attain nonzero values
(equal to the squared gradient magnitude), while its corresponding eigenvector represents the
gradient direction.
Two-dimensional features of an image (corners) can be detected after integrating the local 1-D
information of J0 within some neighborhood, since the consideration of a local neighborhood
makes additional information: that of the homogeneity, or coherence, of the surrounding ori-
entation. If two differently oriented edges appear in the neighborhood, the smoothed structure
tensor J will possess two nonzero eigenvalues λ1, λ2. An analysis of the eigenvalues can serve
as a measure for the coherence of the surrounding structure. Three cases can be distinguished
when regarding the eigenvalues λ1 ≥ λ2 of the matrix:

• λ1 ≈ λ2 ≈ 0: homogeneous areas, almost no structure present

• λ1 > 0, λ2 ≈ 0: edges, one dominant orientation

• λ1 > 0, λ2 > 0: corners, structure with ambiguous orientation

Several possibilities have been proposed to convert this information into a coherence measure
or a measure of ‘cornerness’, e.g. by Förstner [9], Harris and Stephens [12], Rohr [29], or
Köthe [17]. In our experiments on corner detection we employ the last approach, and detect
corners at local maxima of the smaller eigenvalue of the smoothed structure tensor.

One should note that for this application of the structure tensor, it is necessary to allow the
integration of ambiguous orientation, because one searches for exactly the points where these
ambiguities attain a maximum. This is completely contrary to orientation estimation where
ambiguities are to be avoided. It therefore seems contradictive on the first glance that a
data-adaptive structure tensor could perform better than the classic one on this task. Indeed,
the structure tensor based on robust statistics is not applicable here, since it uses the same
neighborhood as the classic structure tensor but selects the weighting of the pixels in order to
minimize the ambiguities.
With the nonlinear structure tensor, however, the situation is a bit different. The nonlinear
diffusion process does not select the pixels in order to minimize the ambiguities, but it selects
the neighborhood. Thus ambiguities in the orientation, though they are reduced, can still
appear. Since the neighborhood is better adapted to the structures in the image, this even
leads to advantages in comparison to the classic structure tensor, see Fig. 15 and Fig. 16.
Corners remain well localized even for higher diffusion times when any possible noise or small-
scale features would have been removed.
The better concept of data-adaptive smoothing in the case of corner detection, however, is
the nonlinear diffusion process stated in Eq. 13. The anisotropic diffusion process propagates
information along the edges. This leads to a very precise maximum in the second eigenvalue
of the structure tensor at the position where two edges meet, see Fig. 15. A small diffusion
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time already suffices to produce significant corner features which are well localized. In Fig. 16
it can be observed that this kind of smoothing leads to the best performance.
It is also very closely related to the data-adaptive structure tensor proposed by Köthe [17]. In
order to detect corners, Köthe also smoothes along edges, in his case using a linear, hourglass-
shaped filter. This filter as well propagates information along edges and leads to a maximum
in the second eigenvalue of the structure tensor at the position where edges meet.

6 Summary

In this article, we have juxtaposed several concepts for data-adaptive structure tensors. It
has emerged that though the different techniques have the same basic motivation, there are
quite important differences in detail. All data-adaptive structure tensors discussed here are to
deal with the inaccuracies and blurring artifacts caused by the Gaussian neighborhood of the
conventional structure tensor. However, the strategies how to choose an adaptive neighborhood
are different. In some typical applications of the structure tensor, the data-adaptive structure
tensors have shown their beneficial properties in comparison to the classic structure tensor.
The differences between the data-adaptive structure tensors have been sometimes marginal,
sometimes larger, depending on the application. This yields two messages: firstly, compared
to the conventional structure tensor, the data-adaptive methods are in many cases worth the
additional effort. Secondly, it is wise to choose a data-adaptive technique depending on the
application. There is no clear winner that always performs better than the other techniques.
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