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To appear in POSITIVITY

THE LEBESGUE DECOMPOSITION THEOREM

FOR ARBITRARY CONTENTS

HEINZ KÖNIG

Horst Tietz in alter Freundschaft gewidmet

Abstract. The decomposition theorem named after Lebesgue asserts
that certain set functions have canonical representations as sums of par-
ticular set functions called the absolutely continuous and the singular

ones with respect to some fixed set function. The traditional versions
are for the bounded measures with respect to some fixed measure on a
σ algebra, in final form due to Hahn 1921, and for the bounded contents
with respect to some fixed content on an algebra, due to Bochner-Phillips
1941 and Darst 1962. Then came the version for arbitrary measures, due
to R.A.Johnson 1967 and N.Y.Luther 1968. The unpleasant fact with
these versions is that each one requires its particular notions of abso-

lutely continuous and singular constituents. It seems mysterious how
a common roof for all of them could look, and therefore how a uni-

versal version for arbitrary contents could be achieved - and all that
while several abstract extensions of particular versions appeared in the
subsequent decades, for example due to de Lucia-Morales 2003. After
these decades now the present article claims to arrive at the final aim in
the original context of arbitrary contents. The article will be based on
the author’s new difference formation for arbitrary contents 1999. This
difference formation even furnishes simple explicit formulas for the two
constituents.

1. Introduction and Previous Results

Let X be a nonvoid set. The present article considers both

the class of contents α, · · · : A→ [0,∞] on an algebra A in X, and
the class of measures α, · · · : A→ [0,∞] on a σ algebra A in X,

with the latter case marked with meas. We shall meet fundamental discrep-
ancies between contents and measures, but also between arbitrary members
and finite members in each of the two classes.

We start to recall for α, β : A→ [0,∞] the formations α ∧ β, α ∨ β : A→
[0,∞], defined to be

α ∧ β(A) = inf{α(A \ T ) + β(T ) : T ∈ A with T ⊂ A},

α ∨ β(A) = sup{α(A \ T ) + β(T ) : T ∈ A with T ⊂ A},

which are the lattice minimum and maximum of α and β in the respective
class of set functions A → [0,∞], equipped with the pointwise order ≦.
These facts and other basic properties of α ∧ β and α ∨ β are listed in
[10] section 1. The formations are in common use for finite contents and
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contents.
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measures, also for signed ones, in the context of vector lattices = Riesz
spaces, but the author is surprised to note that apart from that they almost
never appear in the textbooks on measure and integration. We recall some
of its properties.

1.1 Properties. 1) The operations ∧ and ∨ are commutative and asso-

ciative.

2) (α+ β) ∧ τ ≦ α+ β ∧ τ .
3) In the meas case: For A ∈ A there exist P,Q ⊂ A in A such that

α ∧ β(A) = α(A \ P ) + β(P ) and α ∨ β(A) = α(A \Q) + β(Q).

We come to the traditional concepts of absolute continuity and singularity
for set functions α, ϑ : A→ [0,∞]. For ϑ absolutely continuous with respect
to α these concepts are

ϑ≪ α : α(T ) = 0⇒ ϑ(T ) = 0 for all T ∈ A; and

ϑACα : ∀ε > 0 ∃δ > 0 such that α(T ) ≦ δ ⇒ ϑ(T ) ≦ ε for all T ∈ A.

One has the implications

ϑ≪ α←− ϑACα and ϑ≪ α =⇒
meas ϑ<∞

ϑACα,

for example from [9] 24.1; here and in the sequel we use simple arrows to
denote obvious implications. For ϑ singular with respect to α the concepts
are

ϑ ∧ α = 0 ; and

ϑ ⊥ α : ∃ T ∈ A such that α(T ) = 0 and ϑ(T ′) = 0.

From 1.1.3) we see that

ϑ ∧ α = 0←− ϑ ⊥ α and ϑ ∧ α = 0 =⇒
meas

ϑ ⊥ α.

It is obvious that the combination ϑ≪ α & ϑ ⊥ α implies that ϑ = 0. Thus
in the meas case the combination ϑ≪ α & ϑ∧ α = 0 implies that ϑ = 0. It
is important to note that this is not true for contents. We present a typical
example.

1.2 Example. 0) We recall the Hahn-Banach type result [11] 1.3: Let S

be a lattice in X with ∅ ∈ S. Then each isotone and modular set function ϕ :
S→ [0,∞] with ϕ(∅) = 0 can be extended to a content Φ : P(X) → [0,∞]
with Φ(X) = supϕ. 1) Let X = [0, 1[ and A = Bor(X), and α = Leb|A
be the Borel-Lebesgue measure. From 0) we obtain for each 0 < c ≦ ∞ a
content ϑ : A→ [0,∞] which fulfils

ϑ(S) = 0 for all S ∈ A such that α
(

S∩]s, 1[
)

= 0 for some 0 < s < 1,

and ϑ(X) = c. 2) It is obvious that ϑ≪ α. On the other side we have

for 0 < s < 1 : ϑ ∧ α(X) ≦ ϑ([0, s]) + α(]s, 1[) = 0 + (1− s),

which for s ↑ 1 furnishes ϑ ∧ α(X) = 0 and hence ϑ ∧ α = 0.

We turn to the Lebesgue decomposition theorem. Its assertion for α, ϑ :
A→ [0,∞] is that there exist decompositions ϑ = ϕ+ψ into ϕ : A→ [0,∞]
absolutely continuous α and ψ : A → [0,∞] singular α in some sense, and
that this representation is unique either without or under certain additional
conditions on ϕ and ψ. We quote the two traditional versions of the theorem.
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1.3 Traditional Measure Theorem. Assume that α and ϑ are mea-

sures with ϑ <∞. Then ϑ = ϕ+ ψ for a unique pair of measures ϕ and ψ
with ϕ≪ α⇔ ϕACα and ψ ∧ α = 0⇔ ψ ⊥ α. Moreover ϕ ∧ ψ = 0.

1.4 Traditional Content Theorem. Assume that α and ϑ are con-

tents with ϑ < ∞. Then ϑ = ϕ + ψ for a unique pair of contents ϕ and ψ
with ϕACα and ψ ∧ α = 0. Moreover ϕ ∧ ψ = 0.

Thus in 1.3 there are four equivalent possible combinations of conditions
for ϕ and ψ. However, in 1.4 the combination ϕACα and ψ ∧ α = 0 is the
unique possible one: 1) Under the combination ϕ ≪ α and ψ ∧ α = 0 the
existence of decompositions remains true, because ϕACα implies ϕ ≪ α.
But there need not be uniqueness. In fact, in example 1.2 there are nonzero
ϑ such that both ϑ≪ α and ϑ∧α = 0. This leads to the two decompositions
ϑ = ϑ+0 = 0+ϑ, which are both of the considered kind. 2) The existence of
decompositions need not be true under the combination ϕ≪ α and ψ ⊥ α,
and hence not under the combination ϕACα and ψ ⊥ α as well, as the next
example will show.

1.5 Example. 1) Let X = N and A consist of its finite and cofinite
subsets. Define α, ϑ : A→ [0,∞[ to be α(A) = 0 for A finite and α(A) = 1
for A cofinite, and ϑ(A) = Σ

n∈A
f(n) for some f : X →]0,∞[ with Σ

n∈X
f(n) <

∞. 2) Assume that ϑ = ϕ + ψ with contents ϕ ≪ α and ψ ⊥ α. Then
ψ(E′) = 0 for some finite E ⊂ X. For all finite A ⊂ E ′ this implies that
ϕ(A) = ψ(A) = 0 and hence ϑ(A) = 0, which contradicts the definition of
ϑ.

The traditional content theorem 1.4 is reproduced in the author’s book [9]
24.2. There it is noted that ϕ = lim

t↑∞
ϑ ∧ (tα), a well-known formation from

the context of vector lattices = Riesz spaces; see for example [2] chapter II.

The final one of the previous results is the version for arbitrary measures
α, ϑ : A→ [0,∞] and for decompositions ϑ = ϕ+ψ with arbitrary measures
ϕ,ψ : A → [0,∞]. The result is due to Johnson [8], with an important
uniqueness supplement due to Luther [14]. In this situation one has to face
the problem that none of the four possible combinations in 1.3 does work,
even when one admits contents ϕ and ψ, as the next example will show.
In particular the example disproves the decomposition theorem in the 1994
textbook of Doob [5] p.148.

1.6 Example. 1) Let X be an uncountable set and A consist of its
countable and cocountable subsets. Define α, ϑ : A→ [0,∞] to be α(A) = 0
for A countable and α(A) = 1 for A cocountable, and ϑ = #|A to be the
cardinality. Thus α and ϑ are measures. 2) Assume that ϑ = ϕ + ψ with
contents ϕ ≪ α and ψ ∧ α = 0. For countable A then ϕ(A) = 0 and
hence ϑ(A) = ψ(A), which at once implies that ϑ = ψ on A. It follows that
ψ∧α = ϑ∧α = α since α ≦ ϑ, and hence ψ∧α 6= 0, which is a contradiction.

The example shows that the decomposition ϑ = ϕ + ψ must be effected
under some combination of conditions which (at least for measures ϕ and
ψ) is weaker than the previous combination ϕ≪ α and ψ ∧ α = 0. Since it
is hard to see how the condition ϕ ≪ α could be weakened, this ought to
be done on the part of ψ. The answer due to Johnson [8] is the condition
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named singular in the sense J and defined to be

ϑ singJα : ∀A ∈ A ∃T ⊂ A in A such that α(T ) = 0 and ϑ(T ) = ϑ(A).

We have the obvious implications

ϑ ⊥ α −→ ϑ singJα and ϑ ⊥ α ←−
ϑ<∞

ϑ singJα.

With this condition the theorem reads as follows.

1.7 Full Measure Theorem. Let α and ϑ be measures. Then ϑ = ϕ+ψ
for certain pairs of measures ϕ and ψ with ϕ≪ α and ψ singJα. In all these

pairs the measure ψ is the same and fulfils ψ singJϕ, and there is a unique

pair in which the measure ϕ fulfils ϕ singJψ.

In view of the definition of singJ the relation ψ singJϕ is an obvious
consequence of ψ singJα combined with ϕ ≪ α. In the theorem the union
ψ singJϕ & ϕ singJψ appears to attain the place of the previous relation
ϕ∧ψ = 0. Moreover it is clear that in case ϑ <∞ the full measure theorem
1.7 specializes to the former traditional measure theorem 1.3.

After this we are confronted with the task to handle the full situation of
arbitrary contents α, ϑ : A → [0,∞]. We shall see that in this situation the
decomposition ϑ = ϕ+ψ will require entirely new conditions on the contents
ϕ,ψ : A→ [0,∞]. The new concepts for absolutely continuous and singular

will be presented in sections 2 and 3.

For the moment we only want to note that the combination ϕ ≪ α and
ψ singJα of the full measure theorem 1.7 will not work in the future full
content situation, because it does not even work in the previous traditional
content situation 1.4. In fact, assume in example 1.5.1) that ϑ = ϕ+ψ with
contents ϕ≪ α and ψ singJα. Since ψ singJα in case ψ <∞ implies ψ ⊥ α
as we know, it follows from 1.5.2) that this is not possible.

2. The New Concept for Absolutely Continuous

The new concept for contents α, ϑ : A→ [0,∞] centers around the condi-
tion ϑ∧ (tα) ↑ ϑ for t ↑ ∞. First of all we recall from [13] 3.2 the basic fact
that

ϑ≪ α←− ϑ∧ (tα) ↑ ϑ for t ↑ ∞ and ϑ≪ α =⇒
meas

ϑ∧ (tα) ↑ ϑ for t ↑ ∞.

We want to reformulate the condition in order that it looks close to ϑACα.
Thus we define

ϑ acα : ∀A ∈ A with lim
t↑∞

ϑ ∧ (tα)(A) <∞ and ∀ε > 0 ∃δ > 0

such that α(T ) ≦ δ ⇒ ϑ(T ) ≦ ε for all T ⊂ A in A.

Then we have in fact the connection which follows.

2.1 Theorem. Let α and ϑ be contents. Then ϑ∧ (tα) ↑ ϑ for t ↑ ∞ ⇐⇒
ϑ acα.

Proof of ⇒. Assume that ϑ acα is false for A ∈ A with lim
t↑∞

ϑ∧ (tα)(A) =

ϑ(A) < ∞ and ε > 0. Thus there exist Tl ⊂ A in A with α(Tl) → 0 and
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ϑ(Tl) > ε for l ∈ N, and we can of course assume that α(Tl) <∞. Now fix
t > 0 with ϑ ∧ (tα)(A) > ϑ(A)− ε/2. For l ∈ N then

tα(Tl) + ϑ(A \ Tl) > ϑ(A)− ε/2 or ϑ(Tl) < tα(Tl) + ε/2.

It follows that ϑ(Tl) < ε for l sufficiently large, and thus a contradiction.

Proof of ⇐. Fix A ∈ A and put C := lim
t↑∞

ϑ ∧ (tα)(A) ≦ ϑ(A). To be

shown is C ≧ ϑ(A), so that we can assume that C < ∞. Fix ε > 0, and
then for each t > 0 some Pt ⊂ A in A with

ϑ(Pt) + tα(A \ Pt) < ϑ ∧ (tα)(A) + ε ≦ C + ε.

From the assumption ϑ acα we obtain δ > 0 such that α(T ) ≦ δ ⇒ ϑ(T ) ≦

ε for all T ⊂ A in A. Thus for t ≧ (C + ε)/δ we have ϑ(A \ Pt) ≦ ε, which
combined with ϑ(Pt) ≦ C + ε furnishes ϑ(A) ≦ C + 2ε. It follows that
ϑ(A) ≦ C. �

We combine these results and an obvious observation to obtain

ϑ≪ α←− ϑ acα←− ϑACα and ϑ≪ α =⇒
meas

ϑ acα −→
ϑ<∞

ϑACα.

Thus the new condition ϑ acα has a kind of intermediate position.

2.2 Remark. Instead of ϑ acα one could think to use the simpler variant

ϑ acoα : ∀A ∈ A with ϑ(A) <∞ and ∀ε > 0 ∃δ > 0

such that α(T ) ≦ δ ⇒ ϑ(T ) ≦ ε for all T ⊂ A in A.

But ϑ acoα does not fulfil 2.1: The implication ϑ acα⇒ ϑ acoα is obvious,
but the converse implication ϑ acα⇐ ϑ acoα is false.

Proof. As in example 1.5.1) let X = N and A consist of its finite and
cofinite subsets. Define α, ϑ : A→ [0,∞] to be α(A) = Σ

l∈A
2−l, and ϑ(A) = 0

for A finite and ϑ(A) =∞ for A cofinite. For t > 0 then

ϑ({1, · · · , n}) + tα({n + 1, · · · }) = t2−n for n ∈ N,

and hence ϑ∧ (tα)(X) = 0, so that ϑ∧ (tα) = 0. Thus 2.1 shows that ϑ acα
is not true. But ϑ acoα is fulfilled, because ϑ attains but the values 0 and
∞. �

We add two important properties of the new concept.

2.3 Proposition. Let α and ϑ be contents. Then ξ := lim
t↑∞

ϑ ∧ (tα) is a

content ≦ ϑ which fulfils ξ ∧ (tα) = ϑ ∧ (tα) for all t > 0. Thus ξ acα.

Proof. For t > 0 we have on the one hand ξ ∧ (tα) ≦ ϑ∧ (tα), and on the
other hand ϑ ∧ (tα) ≦ ξ and ≦ tα, and hence ϑ ∧ (tα) ≦ ξ ∧ (tα). �

2.4 Proposition. Assume that ϑ ∧ α(A) = 0 for some A ∈ A. If the

content ϕ : A→ [0,∞] fulfils ϕ acα and ϕ(A) <∞, then ϑ ∧ ϕ(A) = 0.

Proof. Fix ε > 0, and then δ > 0 from ϕ acα for A and ε, that is
α(T ) ≦ δ ⇒ ϕ(T ) ≦ ε for all T ⊂ A in A. Now let t ≧ ε/δ, and from
ϑ ∧ (tα)(A) = 0 take T ⊂ A in A such that ϑ(A \ T ) + tα(T ) ≦ ε. Then

ϑ ∧ ϕ(A) ≦ ϑ(A \ T ) + ϕ(T ) ≦ 2ε.

It follows that ϑ ∧ ϕ(A) = 0. �

We conclude with a certain weak point of the new concept.
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2.5 Remark. Let α, ϑ, η : A→ [0,∞] be contents with ϑ ≦ η. It is then
obvious that

η ≪ α ⇒ ϑ≪ α and ηACα ⇒ ϑACα.

But the implication η acα ⇒ ϑ acα need not be true.

Proof. Take X and A and α, ϑ from example 1.2, and define η to be
η(A) = 0 when α(A) = 0 and η(A) = ∞ when α(A) > 0. Then ϑ ≦ η,
because ϑ(A) > 0 implies that α(A) > 0 and hence η(A) =∞. Now

η = lim
t↑∞

tα = lim
t↑∞

η ∧ (tα),

so that η acα. But we know that ϑ ∧ α = 0, so that ϑ acα is not true. �

3. The New Concept for Singular

In the present full content situation the appropriate condition for contents
α, ϑ : A→ [0,∞] will be seen to be

ϑ singα : ϑ is inner regular [ϑ ∧ α = 0].

We emphasize the appearance of inner regular. This fact is in the spirit of
the author’s book [9] and subsequent work [12].

In the sequel our procedure will be based on the difference formation
β \ α : A → [0,∞] for contents α, β : A → [0,∞] defined in [10]. The
definition is

β \ α(A) = sup{β(T )− α(T ) : T ⊂ A in A with α(T ) <∞}.

We start to recall its relevant properties from [10] section 1, with some
further properties which have routine proofs.

3.1 Properties. 1) β \ α : A → [0,∞] is a content. If β is upward σ
continuous then β \ α is upward σ continuous as well. Thus if A is a σ
algebra and β is a measure then β \ α is a measure as well.

2) β \ α = β \ (α ∧ β).
3) (ϑ \ α) \ β = ϑ \ (α+ β).
4) α ≦ β ⇒ ϑ \ α ≧ ϑ \ β.

5) β = α∧β+(β \α) and α∨β = α+(β \α). Thus α∨β+α∧β = α+β.

In particular β = α+ (β \ α) when α ≦ β.

6) β \ α is inner regular [α <∞] := {A ∈ A : α(A) <∞}.

We mention a remarkable consequence of 3.1.1)5): If α, β : A → [0,∞]
are measures with α ≦ β, then there exists a measure τ : A → [0,∞] such
that α+τ = β. This is of course obvious when α <∞, but the full assertion
was an involved earlier result of Jean Guillerme [6]. Later then the present
difference formation offered the immediate answer τ := β \ α. In fact, the
result of Guillerme was the motivation for its development.

On the basis of the difference formation the present author introduced in
[10] for contents α, ϑ : A→ [0,∞] the symmetric condition

ϑ SINGα : ϑ = ϑ \ α and α = α \ ϑ.

The condition ϑ SINGα turned out to be responsible for the connection
with the concepts of signed contents and measures developed in that former
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paper. But we shall see that it is not involved in the present context. This
is also true for the one-sided condition ϑ = ϑ \ α. We note the implications

ϑ ∧ α = 0 −→ ϑ SINGα −→ ϑ = ϑ \ α −→
ϑ<∞

ϑ ∧ α = 0,

of which the middle one is obvious and the two others follow from 3.1.5).

We shall later need the next two examples. Then the final proposition
obtains some basic relations.

3.2 Example. 1) Let X =]0, 1] and A = Bor(X), and α = Leb|A be the
Borel-Lebesgue measure. Define ϑ : A → [0,∞] to be ϑ(A) =

∫

A

1/x dx. 2)

We claim that there is no decomposition ϑ = ϕ+ψ into contents ϕACα and
ψ = ψ \ α. In fact, in that case we conclude as follows. i) From ϕACα it
follows that ϕ <∞. Thus ψ = ϑ\ϕ, and 3.1.1) implies that ψ is a measure.
ii) For 0 < δ < 1 the subsets A ⊂ [δ, 1] in A have ψ(A) <∞, and in view of
ψ = ψ ∧ α + (ψ \ α) in 3.1.5) have ψ ∧ α(A) = 0. Thus ψ ∧ α = 0 since ψ
is a measure. iii) It follows that ψ ⊥ α, that is there exists T ∈ A such that
ψ(T ) = 0 and α(T ′) = 0, which implies that ϑ(T ′) = 0 and hence ψ(T ′) = 0.
Thus ψ = 0 and hence ϑ = ϕ <∞, which is a contradiction. �

3.3 Example. 1) Let α : A→ [0,∞[ be a finite measure 6= 0, and define
ϑ : A → [0,∞] to be ϑ(A) = 0 when α(A) = 0 and ϑ(A) = ∞ when
α(A) > 0, so that ϑ is a measure as well. 2) We have on the one hand
ϑ \ α = ϑ− α = ϑ. On the other hand ϑ ∧ (tα) = tα ↑ ϑ for t ↑ ∞, so that
ϑ acα. Then ϑ|[ϑ ∧ α = 0] = 0 shows that ϑ singα does not hold true.

3.4 Proposition. Let α and ϑ be contents. Then

ϑ singα =⇒
meas

ϑ singJα and ϑ singα←− ϑ singJα,

ϑ SINGα =⇒ ϑ singα =⇒ ϑ = ϑ \ α.

Proof of the first assertion. The implication ← is clear from the defi-
nitions. We prove ⇒ for measures α and ϑ. For fixed A ∈ A there exist
Tl ⊂ A in A with ϑ ∧ α(Tl) = 0 for l ∈ N and ϑ(Tl) → ϑ(A). We can of
course assume that Tl ↑ and hence Tl ↑ some T ⊂ A in A. Then ϑ∧α(T ) = 0
and ϑ(T ) = ϑ(A). From 1.1.3) we obtain S ⊂ T in A such that α(S) = 0
and ϑ(T \ S) = 0. It follows that ϑ(S) = ϑ(A), so that S is as required.

Proof of the second assertion. We start with the first implication ⇒. On
the one hand 3.1.6) asserts that ϑ = ϑ \ α is inner regular [α <∞]. On the
other hand we have

α = α ∧ ϑ+ (α \ ϑ) = α ∧ ϑ+ α from 3.1.5),

which implies that [α <∞] ⊂ [α∧ϑ = 0]. Thus ϑ is inner regular [ϑ∧α = 0].

We turn to the proof of the second implication ⇒. Fix A ∈ A and
c < ϑ(A). To be shown is ϑ \ α(A) > c. By assumption there exists N ⊂ A
in A with ϑ ∧ α(N) = 0 and ϑ(N) > c. Now 3.1.2) furnishes

ϑ \ α(A) = ϑ \ (ϑ ∧ α)(A)

= sup{ϑ(T )− ϑ ∧ α(T ) : T ⊂ A in A with ϑ ∧ α(T ) <∞} ≧ ϑ(N) > c,

and hence the assertion. �
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4. The Main Theorem

4.1 Full Content Theorem. Let α, ϑ : A → [0,∞] be contents. Then

there exists a unique decomposition ϑ = ϕ+ψ into contents ϕ,ψ : A→ [0,∞]
which fulfils

ϕ acα and ψ singα and in addition ψ singϕ and ϕ singψ.

Let ξ := lim
t↑∞

ϑ∧(tα), so that 2.3 asserts that ξ ≦ ϑ is a content ξ : A→ [0,∞]

with ξ acα. Then ϕ = ξ \ (ϑ \ ξ) = ϑ \ (ϑ \ ξ) and ψ = ϑ \ ξ.

The above theorem will come with several complements. In the final
section it will be seen that the new conditions ϕ acα and ψ singα are the
natural and canonical ones, and that at the same time the previous theorems
are all direct consequences.

4.2 Lemma. For each pair of contents α, β : A→ [0,∞] one has

β|[β <∞] inner regular [α <∞]

=⇒ α ∧ β|[β <∞] inner regular [α+ β <∞].

Proof of 4.2. Fix B ∈ [β < ∞] and c < α ∧ β(B), and then ε > 0 with
c+ ε < α ∧ β(B). By assumption there exists A ⊂ B in [α <∞] such that
β(A) > β(B)− ε or β(B \A) < ε. Now for T ⊂ A in A we have

c+ ε < α ∧ β(B) ≦ α(T ) + β(B \ T )

= α(T ) + β(A \ T ) + β(B \ A) < α(T ) + β(A \ T ) + ε,

and hence c < α(T )+β(A\T ). Thus c ≦ α∧β(A). In view of A ∈ [α+β <∞]
the assertion follows. �

We turn to the proof of the full content theorem. 1) (ϑ \ ξ) ∧ α = 0 on
[ξ <∞]. It suffices to prove that

(ϑ \ ξ) ∧ α ≦
1

t
ϑ ∧ (tα) for all t > 0.

To see this fix A ∈ A and t > 0 with c := ϑ∧ (tα)(A) <∞, and take Pl ⊂ A
in A with ϑ(A \ Pl) + tα(Pl) → c for l ↑ ∞, and of course < ∞ for l ∈ N.
We put

δl : = ϑ(A \ Pl) + tα(Pl)− c with 0 ≦ δl <∞ and δl → 0

=
(

ϑ(A \ Pl)− ϑ ∧ (tα)(A \ Pl)
)

+
(

tα(Pl)− ϑ ∧ (tα)(Pl)
)

,

where these two brackets are both ≧ 0 and hence ≦ δl. From 3.1.4) we
obtain

(ϑ \ ξ) ∧ α(A) ≦ ϑ \ ξ(A \ Pl) + α(Pl) ≦ ϑ \ (ϑ ∧ (tα))(A \ Pl) + α(Pl)

=
(

ϑ(A \ Pl)− ϑ ∧ (tα)(A \ Pl)
)

+
1

t

(

tα(Pl)− ϑ ∧ (tα)(Pl)
)

+
1

t
ϑ ∧ (tα)(Pl) ≦ (1 + 1/t)δl + (1/t)c.

For l ↑ ∞ the assertion follows.

2) ϑ \ ξ is inner regular [(ϑ \ ξ) ∧ α = 0], that is (ϑ \ ξ) singα. In fact,
the above 1) asserts that [ξ < ∞] ⊂ [(ϑ \ ξ) ∧ α = 0], and ϑ \ ξ is inner
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regular [ξ < ∞] from 3.1.6). Thus 3.1.5) furnishes a first decomposition
ϑ = ξ + (ϑ \ ξ) of ϑ into ξ acα and (ϑ \ ξ) singα.

3) On both [ξ < ∞] and [ϑ \ ξ < ∞] we have (ϑ \ ξ) ∧ ξ = 0, and hence
ξ = ξ \ (ϑ\ξ) from 3.1.5). For the first case let A ∈ A with ξ(A) <∞. Then
(ϑ \ ξ) ∧ α(A) = 0 from 1) and hence (ϑ \ ξ) ∧ ξ(A) = 0 from 2.4. For the
second case we note that

ϑ \ ξ|[ϑ \ ξ <∞] inner regular [ξ <∞]

=⇒ ξ ∧ (ϑ \ ξ)|[ϑ \ ξ <∞] inner regular [ϑ <∞],

from lemma 4.2 applied to ξ and ϑ \ ξ and from 3.1.5). Since we know that
ϑ \ ξ is inner regular [ξ <∞] and that ξ ∧ (ϑ \ ξ) = 0 on [ϑ <∞] ⊂ [ξ <∞],
it follows that ξ ∧ (ϑ \ ξ) = 0 on [ϑ \ ξ <∞].

4) For A ∈ A we have

ξ \ (ϑ \ ξ)(A) = sup{ξ(T ) : T ⊂ A in A with ϑ \ ξ(T ) <∞}.

This is an immediate combination of 3.1.6) and 3).

5) ξ \ (ϑ \ ξ) = ϑ \ (ϑ \ ξ). In view of 3.1.6) it suffices to prove this on
[ϑ\ξ <∞]. Now 3.1.5) furnishes ϑ = (ϑ\ξ)+ϑ\(ϑ\ξ) besides ϑ = ξ+(ϑ\ξ).
Thus on [ϑ \ ξ <∞] we have ϑ \ (ϑ \ ξ) = ξ and hence = ξ \ (ϑ \ ξ) from 3).

6) For ϕ := ξ \ (ϑ \ ξ) = ϑ \ (ϑ \ ξ) we have ϑ = ϕ + (ϑ \ ξ) and ϕ acα.
Thus we obtain another decomposition of ϑ into ϕ acα and (ϑ \ ξ) singα.
In fact, the first assertion follows from 3.1.5). For the second assertion fix
A ∈ A. From 3) we see for T ⊂ A in A with ϑ \ ξ(T ) <∞ that

ξ ∧ (tα)(T ) = ϕ ∧ (tα)(T ) ≦ ϕ ∧ (tα)(A) for t > 0,

and hence ξ(T ) ≦ lim
t↑∞

ϕ ∧ (tα)(A) since ξ acα. Thus from 4) it follows that

ϕ(A) ≦ lim
t↑∞

ϕ ∧ (tα)(A), that is ϕ acα.

7) The decomposition ϑ = ϕ+ψ of ϑ into ϕ := ξ \ (ϑ\ ξ) = ϑ\ (ϑ\ ξ) and
ψ := ϑ \ ξ obtained in 6) fulfils ϕ singψ and ψ singϕ, that is ϕ and ψ are
inner regular [ϕ∧ ψ = 0]. In fact, on both [ξ <∞] and [ϑ \ ξ <∞] we have
ϕ ∧ ψ ≦ ξ ∧ (ϑ \ ξ) = 0 from 3). Thus [ξ < ∞], [ϑ \ ξ < ∞] ⊂ [ϕ ∧ ψ = 0].
Now ψ is inner regular [ξ < ∞] and ϕ is inner regular [ϑ \ ξ < ∞] after
3.1.6). Thus the assertion follows.

At this point the proof of the existence assertion in 4.1 is complete. We
turn to the uniqueness assertion. For the parts 8)9)10) below we assume an
arbitrary representation ϑ = ϕ+ ψ of ϑ into contents ϕ acα and ψ singα.

8) We have i) ϕ ≦ ξ and ii) ψ ≧ ϑ \ ξ, and iii) ϑ = ξ + ψ. For the proof
of i) note that ϑ ∧ (tα) ≧ ϕ ∧ (tα) for t > 0, which in view of ϕ acα implies
that ξ ≧ ϕ. ii) From

ξ + (ϑ \ ξ) = ϑ = ϕ+ ψ ≦ ξ + ψ by i)

we obtain ϑ \ ξ ≦ ψ on [ξ < ∞], and hence ϑ \ ξ ≦ ψ on A since ϑ \ ξ is
inner regular [ξ <∞]. iii) From ψ singα we obtain ψ = ψ \α after 3.4. This
implies that ψ = ψ \ (nα) for n ∈ N via induction from 3.1.3) and hence
ψ = ψ \ (tα) for t > 0 from 3.1.4). Thus 3.1.5) furnishes

ϑ = ϑ ∧ (tα) + ϑ \ (tα) ≧ ϑ ∧ (tα) + ψ \ (tα) = ϑ ∧ (tα) + ψ for t > 0,
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and hence ϑ ≧ ξ + ψ. Combined with ξ ≧ ϕ this implies that ϑ = ξ + ψ.

9) Assume that in addition ψ singϕ. Then i) ϕ ≧ ξ \ (ϑ \ ξ) and ii)
ψ = ϑ \ ξ. For the proof of ii) fix A ∈ A and real c < ψ(A), and then ε > 0
with c+ ε < ψ(A). Since ψ is inner regular [ϕ ∧ ψ = 0] there exists P ⊂ A
in A such that ϕ ∧ ψ(P ) = 0 and ψ(P ) > c + ε. Hence there exists Q ⊂ P
in A with ϕ(Q) < ε and ψ(P \ Q) < ε, so that ψ(Q) > c. And since ψ is
inner regular [ψ ∧ α = 0] there exists R ⊂ Q such that ψ ∧ α(R) = 0 and
ψ(R) > c. After this 1.1.2) implies that ϑ∧ (tα) ≦ ϕ+ψ∧ (tα) for all t > 0,
in particular ϑ∧ (tα)(R) ≦ ϕ(R), and hence ξ(R) ≦ ϕ(R) ≦ ϕ(Q) < ε <∞.
Thus ψ(R) = ϑ \ ξ(R) from the above 8.iii). It follows that c < ψ(R) =
ϑ \ ξ(R) ≦ ϑ \ ξ(A) and hence ψ(A) ≦ ϑ \ ξ(A), which combined with 8.ii)
furnishes the assertion.

For the proof of i) combine ϑ = ϕ + ψ = ϕ + (ϑ \ ξ) from ii) with
ϑ = ξ \ (ϑ \ ξ)+ (ϑ \ ξ) from 6) to obtain ϕ = ξ \ (ϑ \ ξ) on [ϑ \ ξ <∞]. This
implies that ϕ ≧ ξ \ (ϑ \ ξ) on A since ξ \ (ϑ \ ξ) is inner regular [ϑ \ ξ <∞]
by 3.1.6).

10) Assume that in addition ψ singϕ and ϕ singψ. Then ϕ = ξ \ (ϑ \ ξ).
In fact, we see from 3.4 and 9.ii) that ϕ = ϕ\ψ = ϕ\ (ϑ\ξ), and hence that
ϕ is inner regular [ϑ \ ξ <∞]. Now note that ϕ = ξ \ (ϑ \ ξ) on [ϑ \ ξ <∞]
from 8.i) with 3) and 9.i). Since both sides are inner regular [ϑ \ ξ <∞] it
follows that ϕ = ξ \ (ϑ \ ξ) on A. This completes the proof of 4.1. �

4.3 Addendum. Let ϑ = ϕ + ψ be an arbitrary representation of ϑ with

contents ϕ acα and ψ singα. Then ϕ ≦ ξ and ψ ≧ ϑ \ ξ. In case ψ singϕ
we have ξ \ (ϑ \ ξ) ≦ ϕ ≦ ξ and ψ = ϑ \ ξ. If moreover ϕ singψ then

ϕ = ξ \ (ϑ \ ξ) = ϑ \ (ϑ \ ξ).

4.4 Addendum. We have ξ∧(ϑ\ξ) = 0 and hence ξ = ξ\(ϑ\ξ) = ϑ\(ϑ\ξ)
on [ξ <∞] and on [ϑ \ ξ <∞].

4.5 Example. We return to example 1.6.1), where α and ϑ are both
measures. Here ξ = lim

t↑∞
ϑ ∧ (tα) = lim

t↑∞
tα implies that ξ(A) = 0 for A

countable and ξ(A) =∞ for A cocountable. It follows that

ϑ \ ξ(A) = sup{ϑ(T ) : T ⊂ A countable} = ϑ(A) for A ∈ A.

Now ϑ \ ξ = ϑ implies that ϑ \ (ϑ \ ξ) = ϑ \ ϑ = 0. We see that there can be
a big difference between the two first terms ξ and ξ \ (ϑ \ ξ) = ϑ \ (ϑ \ ξ) in
the representations of ϑ which occur in 2)6) of the above proof of 4.1.

5. Complements to the Main Theorem

In the course of the paper we have collected for the pairs of contents
α, ϑ : A→ [0,∞] three conditions P : ϑPα of the type absolutely continuous

and six conditions Q : ϑQα of the type singular. The conditions P are
ϑ≪ α, ϑACα, and ϑ acα, and their implications from sections 1 and 2 are

ϑ≪ α←− ϑ acα←− ϑACα and ϑ≪ α −→
meas

ϑ acα −→
ϑ<∞

ϑACα.

The conditions Q are

ϑ ∧ α = 0, ϑ ⊥ α, ϑ singJα and ϑ singα, ϑSINGα, ϑ = ϑ \ α,
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and their implications from sections 1 and 3 are

ϑ ∧ α = 0 −→ ϑ singα −→
meas

ϑ singJα −→
ϑ<∞

ϑ ⊥ α −→ ϑ ∧ α = 0,

ϑ ∧ α = 0←−
ϑ<∞

ϑ singα ←− ϑ singJα ←− ϑ ⊥ α ←−
meas

ϑ ∧ α = 0,

ϑ ∧ α = 0 −→ ϑ SINGα−→ ϑ singα −→ ϑ = ϑ \ α −→
ϑ<∞

ϑ ∧ α = 0.

The last line serves to separate the less involved conditions ϑ SINGα and
ϑ = ϑ \ α.

5.1 Remark. 1) Each condition P of the type absolutely continuous fulfils
0Pα for all contents α. In fact, it suffices to confirm that 0ACα, and this is
obvious from the definition. 2) Each condition Q of the type singular fulfils
0Qα and αQ 0 for all contents α. In fact, it suffices to confirm that 0 ⊥ α
and α ⊥ 0, and these are identical and obvious from the definition.

It follows that for the decompositions ϑ = ϕ+ψ of ϑ into pairs of contents
ϕ,ψ : A→ [0,∞] we have eighteen combinations of conditions (P,Q): ϕPα
and ψQα.

We want to sort out those combinations which are of no use. These are
on the one hand the combinations (P,Q) of non-existence kind, defined to
mean that there exists a pair α and ϑ such that ϑ has no decomposition
ϑ = ϕ+ ψ with ϕPα and ψQα.

On the other hand these are the combinations (P,Q) of non-uniqueness

kind, defined to mean that there exists a pair α and ϑ 6= 0 with both ϑPα
and ϑQα. In fact, in this case ϑ has the two different decompositions
ϑ = ϑ + 0 = 0 + ϑ, each of which ϑ = ϕ + ψ fulfils ϕPα and ψQα
and moreover ψQϕ and ϕQψ. Thus the combination (P,Q) violates the
uniqueness assertion as formulated in theorem 4.1. It can be said that we
have a non-uniqueness situation of maximal badness.

Now the examples in the previous sections combine to furnish the unique-
ness result which follows.

5.2 Theorem. The above combinations of conditions (P,Q) : ϕPα and

ψQα are all, except the combination (P,Q) : ϕ acα and ψ singα, either of

non-existence kind or of non-uniqueness kind (or both).

It follows that besides 4.1 there can be no other Lebesgue type theorem
for arbitrary contents, at least within the terms which appear in the present
article.

Proof. We shall make constant use of the above lists of conditions P and
Q with their implications ←− and −→. We note that for a combination
(P,Q) the non-existence behaviour passes across an arrow ←− from left to
right, while the non-uniqueness behaviour passes from right to left (and of
course the opposite at an arrow −→).

1) Example 1.5.2) asserts that the combination (P,Q) : ϕ≪ α and ψ ⊥ α
is of non-existence kind, even with an example α and ϑ < ∞. Then the
final remark of section 1 notes as a consequence that the combination (P,Q)
: ϕ ≪ α and ψ singJα is of non-existence kind as well. It follows that all
combinations (P,Q) with arbitrary P and with Q : ψ ⊥ α and Q : ψ singJα
are of non-existence kind.
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2) Example 1.6.2) asserts that the combination (P,Q) : ϕ ≪ α and ψ ∧
α = 0 is of non-existence kind. As a consequence the combination (P,Q)
: ϕ ≪ α and ψ SINGα is of non-existence kind as well. It follows that
all combinations (P,Q) with arbitrary P and with Q : ψ ∧ α = 0 and Q :
ψ SINGα are of non-existence kind.

Thus what remains are the combinations (P,Q) with arbitrary P and with
Q : ψ = ψ \ α and Q : ψ singα.

3) Example 3.2.2) asserts that the combination (P,Q) : ϕACα and ψ =
ψ \ α is of non-existence kind. Hence the combination (P,Q) : ϕACα and
ψ singα is of non-existence kind as well.

4) At this point non-uniqueness enters the scene. Example 1.2.2) asserts
that the combination (P,Q) : ϕ ≪ α and ψ ∧ α = 0 is of non-uniqueness
kind. Thus the combinations (P,Q) : ϕ ≪ α and ψ = ψ singα and (P,Q) :
ϕ≪ α and ψ = ψ \ α are of non-uniqueness kind as well.

5) It remains the combination (P,Q) : ϕ acα and ψ = ψ \ α. But this
combination is of non-uniqueness kind by example 3.3.2). This completes
the proof. �

The final task in the present paper is to convince ourselves that the pre-
vious results quoted in section 1, which after all appear in quite different
terms, are nontheless direct consequences of our main theorem 4.1 and its
addenda 4.3 and 4.4. Of course this has to be deduced from the connections
between the different terms, established in the previous sections and sum-
marized above. It should be noted, however, that the new approach offers
much more than the former ones: in view of its explicit formulas, thanks to
the difference formation \.

Proof of the Traditional Content Theorem 1.4. Assume that α, ϑ :
A → [0,∞] are contents with ϑ < ∞. i) From 4.1 we obtain the decompo-
sition ϑ = ϕ + ψ of ϑ into ϕ = ξ \ (ϑ \ ξ) and ψ = ϑ \ ξ, which fulfil ϕ acα
and ψ singα and hence ϕACα and ψ ∧ α = 0, and ψ singϕ and ϕ singψ
and hence ϕ ∧ ψ = 0. Moreover ξ ≦ ϑ < ∞ implies that ϕ = ξ after 4.4.
ii) Now let ϑ = ϕ+ ψ be an arbitrary decomposition of ϑ with ϕACα and
ψ ∧ α = 0. Then ϕ acα and ψ singα. From 2.4 we see that ψ ∧ ϕ = 0, and
hence that ψ singϕ and ϕ singψ. Thus 4.1 furnishes the desired uniqueness
assertion. �

Proof of the Full Measure Theorem 1.7 (and hence of the Tradi-

tional Measure Theorem 1.3). Assume that α, ϑ : A → [0,∞] are
measures. Then ϕ and ψ in 4.1 are measures in view of 3.1.1), and we have
ϕ ≪ α and ψ singJα. ii) Let ϑ = ϕ + ψ be an arbitrary decomposition
of ϑ into measures ϕ ≪ α and ψ singJα. Then ϕ acα and ψ singα, and
moreover ψ singJϕ and hence ψ singϕ. Now the two uniqueness assertions
in 1.7 follow from 4.3. �
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