
Universität des Saarlandes

U
N IV

E R S IT A
S

S
A

R A V I E N S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 154

Hierarchical Cholesky decomposition of
sparse matrices arising from

curl-curl-equation

Ilgis Ibragimow, Sergej Rjasanow and
Katharina Straube

Saarbrücken 2005

Fachrichtung 6.1 – Mathematik Preprint No. 154
Universität des Saarlandes submitted: July 12, 2005

Hierarchical Cholesky decomposition of
sparse matrices arising from

curl-curl-equation

Ilgis Ibragimow
Saarland University

Department of Mathematics
Postfach 15 11 50

D–66041 Saarbrücken
Germany

ilgis@num.uni-sb.de

Sergej Rjasanow
Saarland University

Department of Mathematics
Postfach 15 11 50

D–66041 Saarbrücken
Germany

rjasanow@num.uni-sb.de

Katharina Straube
Robert Bosch GmbH

Postfach 10 60 50
D–70049 Stuttgart

Germany
katharina.straube@de.bosch.com

Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Hierarchical Cholesky decomposition of sparse
matrices arising from curl-curl-equation

I. Ibragimov, S. Rjasanow and K. Straube

July 12, 2005

Abstract

A new hierarchical renumbering technique for sparse matrices aris-
ing from the application of the Finite Element Method (FEM) to
three-dimensional Maxwell’s equations is presented. It allows the
complete Cholesky decomposition of the matrix, which leads to a
direct solver of O(N 4/3) memory requirement. In addition, an ap-
proximate factorisation yielding a preconditioner for the matrix can
be constructed. For this, two algorithms using low-rank approxima-
tion are presented which have almost linear arithmetic complexity and
memory requirement. The efficiency of the methods is demonstrated
on several numerical examples.

AMS Subject Classification:
Keywords: sparse, reordering, hierarchical matrix, clustering, approximate
Cholesky decomposition

1 Introduction and motivation

Three-dimensional problems in electromagnetic field calculation can be solved
with a coupling of the boundary element method (BEM) and the FEM. Fine
discretisation of complex problems generates large systems of equations. The
BEM part can be solved with asymptotically optimal complexity by using
block-wise adaptive cross approximation (ACA) [4]. In larger problems the
main cost is caused by the FEM part. Especially in the case of non-linear
time dependent problems efficient solvers for the FE-system are essential. In
this paper, we address the solution of such large sparse linear systems with
a symmetric and positive definite system matrix.
One way of solving such systems is the Cholesky decomposition of the ma-
trix in order to find the exact solution. In general, the number of non-zeros

1

strongly increases during the factorisation (fill-in). Several reordering algo-
rithms based on graph theoretical heuristics have been developed in order to
reduce occurring fill-in, e.g. the bandwidth reducing algorithms by Cuthill
and McKee, and minimum degree strategies [1, 8]. Here, we concentrate on
the idea of nested dissection first discussed in [6]. It is based on recursively
finding vertex separators dividing the graph which describes the matrix struc-
ture. This gives a reordering which provides a block structure such that zero
blocks remain empty in the factorised matrix.
For general sparse matrices not arising from FEM the so called automatic
nested dissection [7, 13] can be applied to find separators. For this, no
geometry information of the degrees of freedom is needed.
Nested dissection reordering was first applied to linear systems arising from
2D finite element discretisation forming a regular grid. There, the graph
of the non-zero matrix pattern is a 2D tensor uniform grid. A cut along a
straight line of this grid gives a separator of the mesh and of the matrix graph
[6]. Later, mesh partitioning methods were used in order to find separators
of finite element matrices arising from non-uniform meshes [9].
Our discretisation of Maxwell’s equations uses an edge-based formulation,
the regularisation of which increases the number of non-zeros in the stiffness
matrix. This property does not allow using mesh partitioning as usual.
We will present a new reordering method that combines a geometric ap-
proach and the usage of the matrix structure in order to recursively find
nested dissection interfaces. A cluster tree of the degrees of freedom will
be constructed. Interfaces of decreasing size occur on every recursive level.
If kE is the number of unknowns, approximately k

2/3
E of them are associ-

ated to the interface cluster that belongs to the first clustering step. The
nested dissection based reordering yields a special block structure. A com-
plete block Cholesky decomposition algorithm (HSLLT) benefiting from the
time optimised BLAS-3 library will be used to solve the reordered system.
An evaluation of our method is carried out by a comparison to super-nodal
factorisation methods [12] provided by freely available libraries for sparse
matrix computation (see Section 8).
For higher dimensions, usually iterative methods (for example, Krylov sub-
space methods) are used where the stiffness matrix is only treated by matrix-
vector multiplications. Because of a high condition number of the stiffness
matrix a preconditioner is used to obtain reasonable convergence rates. Very
fast methods of constructing preconditioners are based on incomplete fac-
torisation as presented in [14]. It reduces the number of non-zeros in the
Cholesky factor by setting negligible entries to zero.
Another possibility to construct a preconditioner is given by an approximate
Cholesky decomposition as presented in [3], where H-matrices as introduced

2

by Hackbusch [10] are used in order to reach almost linear complexity. H-
matrices are based on block-wise low-rank approximations yielding a data
sparse representation of fully populated matrices.
We will first use the approximate H-Cholesky decomposition in order to con-
struct a preconditioner. For this, the above mentioned cluster tree is applied,
which we originally constructed for nested dissection reordering. The second
approach in constructing a preconditioner is also based on block-wise low-
rank approximations. However, the factorisation is computed non-recursively
with a block Cholesky algorithm and it has almost linear complexity.
This paper is organised as follows. First we describe the generation of the
system of equations arising from the finite element discretisation of mag-
netostatic problems using edge elements (Section 2) and its regularisation
(Section 3). In Section 4, we address the clustering method with the ex-
act block decomposition method. In Section 5 and 6, the construction of
approximate decompositions by block-wise low-rank approximation is de-
scribed. After deriving complexity estimates (Section 7), we evaluate these
methods in comparison to leading sparse matrix solvers by applying them to
numerical examples in Section 8.

2 Discretisation of magnetostatic problems

Electromagnetic simulations are based on Maxwell’s equations. We will only
discuss the treatment of magnetostatic problems with linear materials. For
this, the decoupled magnetic part of the equations holds:

curl ~H = ~, (1)

div ~B = 0. (2)

Here, ~H is the magnetic field strength, ~B the magnetic induction and ~ the
electric current density. The material properties are represented by

~B = µ ~H (3)

with a constant magnetic permeability µ for the linear case. The system
of differential equations (1), (2) together with the material properties (3)
will be solved on a contractible domain Ω by FEM. The potential ansatz
~B = curl ~A with the magnetic vector potential ~A is applied and yields the so
called curl-curl-equation

1

µ
curl curl ~A = ~. (4)

3

On the boundary we assume homogeneous Neumann boundary conditions.
A variational formulation is derived in the Hilbert space

H(curl,Ω) = {~u ∈ [L2(Ω)]3, curl~u ∈ [L2(Ω)]3}.

For this, curl ~u exists in a weak sense and the respective scalar product is

〈~u,~v〉H(curl,Ω) = 〈~u,~v〉L2(Ω) + 〈curl~u, curl~v〉L2(Ω).

Green’s formula is applied to the variational representation. After consider-
ing the boundary conditions, this yields a(~u,~v) = f(~v) with ~u, ~v ∈ H(curl,Ω),
the symmetric bilinear form a and the linear functional f :

a(~u,~v) =

∫

Ω

1

µ
curl~u · curl~v dΩ,

f(~v) =

∫

Ω

~ · ~v dΩ.

On a discretisation Ωh of the domain Ω, the discrete representation of the
magnetic vector potential reads

~Ah =

kE∑

i=1

ai~βi,

where kE is the number of edges of Ωh. The degree of freedom ai is interpreted
as integral of ~A along the ith edge . In case of tetrahedrons ~βi describes the
Whitney-1-form [5]

~βi = λk∇λl − λl∇λk

associated to the oriented edge ei = {nk, nl} from node nk to nl. Here,
λk and λl are the Whitney-0-forms associated to nk and nl. In the case of
hexahedrons we characterise ~βi in the reference element. Each of its edges is
parallel to one of the axis of the coordinate system (ξ, η, ζ). Thus, we find

~βi =

1
8
(1 + ηiη)(1 + ζiζ)~eξ , ξ−direction

1
8
(1 + ζiζ)(1 + ξiξ)~eη , η−direction

1
8
(1 + ξiξ)(1 + ηiη)~eζ , ζ−direction

with ~e being the unit vector according to the subscripted coordinate. These
tangentially continuous Whitney-1-forms form a finite dimensional discrete
subspace of H(curl,Ω). The discretisation of (4) by the Galerkin method

4

yields a linear system of equations Qx = b. The system matrix Q ∈ RkE×kE
is symmetric and sparse with

Qij =
1

µ

∫

Ωh

curl~βi · curl~βj dΩh, i, j = 1, . . . , kE.

The right hand side b = (b1, . . . , bkE)T is given by

bj =

∫

Ωh

~ · ~βj dΩh, j = 1, . . . , kE,

and x = (a1, . . . , akE)T is the vector of degrees of freedom.
Due to the missing gauging in the potential ansatz, Q has a kernel of di-
mension dim(kerQ) = kN − 1, where kN is the number of corner nodes of
the mesh. This is a result of topological considerations on the discretisation
[5]. In order to deal with the singularity, we will describe a general way for
regularisation in the next section.

3 Regularisation of the system

Let A ∈ CN×N be a complex valued singular matrix with

kerA = span(v1, . . . , vM) = ImV , V = (v1
... v2

... . . .
... vM) ∈ CN×M ,

kerA∗ = span(u1, . . . , uM) = ImU , U = (u1
... u2

... . . .
...uM) ∈ CN×M .

The vectors v1, . . . , vM and u1, . . . , uM are assumed to be linearly independent
and therefore the columns of the matrices V and U form a basis in kerA and
in kerA∗. Thus, the system of linear equations with the matrix A

Ax = b , x, b ∈ CN (5)

is only solvable if the right hand side b is orthogonal to the kernel of the
adjoint matrix A∗,

b ∈ (kerA∗)⊥ . (6)

In this case, there are infinitely many solutions of the system (5). There
are no solutions of this system if condition (6) is violated. The whole vector
space CN can be decomposed in the following direct orthogonal sums:

CN = ImA⊕ kerA∗ = ImA∗ ⊕ kerA . (7)

5

If system (5) is not solvable, the normal system can be considered:

A∗Ax = A∗b . (8)

This system is always solvable. The sets of solutions of systems (5) and (8)
are identical if (5) is solvable. Otherwise the solutions of system (8) are called
pseudo-solutions. However, the matrix A∗A of system (8) is still singular,
much more populated than the sparse matrix A and possibly its condition
number is much higher than that of the matrix A.
If condition (6) is violated, a further possibility to solve system (5) is to
modify the right hand side,

Ax = b̃ = Pb ,

where P is the projector on the image of the matrix A

P : CN → ImA ,P2 = P .

If the kernel of the adjoint matrix A∗ is known then it is theoretically easy
to construct the projector P. However, this procedure is not stable from the
numerical point of view if the dimension of the kernel is very high (M ∼ N).
On the other hand, system (9) is still singular.
In this section, we suggest a different approach to deal with the singular
system (5) which is based on the explicit knowledge of the kernel of the
matrix A and its extreme sparsity (cf. (11)).

Lemma 1 Let the matrix A of the system

Ax = b , x, b ∈ CN

be singular and let the columns of the matrices V, U ∈ CN×M form a basis in
kerA and in kerA∗. Then the matrix A+ U V ∗ is regular, the linear system

(A+ U V ∗)x = b (9)

is uniquely solvable and its solution x is one of the solutions of the solvable
original system. If the original system is not solvable then the vector x is a
pseudo-solution.

Proof. Let us consider the square of the norm of the vector (A + U V ∗)v
for an arbitrary vector v ∈ CN :

‖(A + U V ∗)v‖2 = ‖Av‖2 + ‖U V ∗v‖2 + 2 Re(Av, U V ∗v)

= ‖Av‖2 + ‖U V ∗v‖2 .

6

Here, the property

A∗U = 0

implying

(Av, U V ∗v) = (v, A∗U V ∗v) = 0

has been used. The norm of the vector (A + U V ∗)v can thus vanish only if
the next two conditions

Av = 0 , U V ∗v = 0

are satisfied simultaneously. These conditions are equivalent to

v ∈ kerA , v ∈ ImA∗ . (10)

The first property in (10) is obvious and the second can be checked as follows:

U V ∗v = 0 ⇔ V ∗v = 0 ⇔ v ∈ (kerA)⊥ ⇔ v ∈ ImA∗ .

Here the linear independence of the columns of the matrix U has been used.
Corresponding to (7), the vector v belongs to two spaces which are orthogonal
to each other. It should be equal to zero. Thus, the matrix A+U V ∗ is regular
and the system of linear equations (9) is uniquely solvable for any right hand
side b. The solution vector x solves system (8) since

A∗(A+ U V ∗)x = A∗Ax = A∗b .

If the original system is solvable, then x is one of the solutions. It is a
pseudo-solution if the original system is not solvable.

�
The matrices Q arising from the FEM as described above are real valued and
symmetric. Thus, the matrix Q+U U ∗ can be used instead of the matrix Q
without any modification of the right hand side.
In order to perform this regularisation, we need to construct the matrix U
spanning the kernel. For this purpose, one has to consider the reason of
ambiguity inherent in the potential ansatz. It allows to add gradients of
arbitrary scalar functions

~B = curl ~A = curl(~A+∇ψ)

without changing the magnetic induction. This is due to the vector analytic
relation that gradient fields have no circulation.

7

To describe the discrete kernel, we need to find discrete representatives of
gradient fields. The finite element mesh Ωh forms a polygonal topology by
a union of simplices in 3D. On such a topology, d-dimensional simplices can
be transferred into (d− 1)-dimensional simplices with the help of incidence
matrices. It is shown in [5] that the discrete counterpart to the gradient
operator is formed by the incidence matrix D ∈ RkE×kN associated to edges
and nodes. In case of a connected domain, dim(kerD) = 1 and the image di-
mension amounts to dim(ImD) = kN−1. On a trivial topology for arbitrary
vector fields,

curl~w = 0⇔ ~w = ∇~v
holds in the continuous and the discrete case [5]. With this, one can conclude
that the whole kernel U of the matrix Q is formed by the discrete gradient
D (cf. [2]). The product UU ∗ contains information about the connection of
the edges of the topology:

(
UU∗

)
ij

=

2, i = j
±1, ei and ej are adjacent

0, ei and ej are not adjacent
.

Thus, the matrix UU ∗ is symmetric and extremely sparse. The additional
fill-in will be illustrated in detail in the last section of the paper, where some
numerical results to the solution of

Kx = (Q + αUU∗)x = b

will be shown. Here, the factor α > 0 is used to improve the condition
number of the system.

4 Hierarchical clustering algorithm

Our first approach for solving the system Kx = b with positive definite sys-
tem matrix K is the construction of the exact Cholesky decomposition. For
this, a new hierarchical clustering algorithm is presented which provides a
fill-in reducing reordering. Thus, PKP T = LLT can be computed exploiting
the arising block structure. In Section 5 and 6, we will reuse this hierar-
chical clustering for the computation of an approximate decomposition by
H-matrices.
As already mentioned, the decomposition factor L is in general much more
populated than K because fill-in occurs in the Cholesky decomposition. For
symmetric matrices, this is analysed within an undirected so called matrix
graph G(E,W). The vertices ei ∈ E with i ∈ I = {1, . . . , kE} represent

8

the degrees of freedom of the matrix. Between two vertices ei and ej an
undirected edge w ∈ W exists if there is a non-zero entry at the respective
position in the matrix. Further graph theoretical details on symmetric ma-
trices can be found in [13]. The natural ordering of the degrees of freedom is
given by the sequence in which they occur in the matrix, that is, the sequence
of rows and columns. The degrees of freedom are assigned to the index set
I.
The Cholesky decomposition step for a column i in the matrix is interpreted
as the elimination of the associated vertex ei in the graph G. The resulting
elimination graph G′(E ′,W ′) is formed,

E ′ = E \ ei,
W ′ = W ∪ C(adj(ei)).

Here, C(adj(ei)) denotes the complete graph of all vertices adjacent to ver-
tex ei in the matrix graph G. By repeating this elimination process with
G′ until one vertex is remaining, one obtains the sparsity structure of the
triangular factor L. During this process, the fill-in is counted by the number
of additional edges occurring in the elimination graphs.
The ordering of the matrix, that is, the sequence of elimination nodes, af-
fects the amount of fill-in. As mentioned in the introduction, there are several
heuristics providing a fill-in reduced ordering of the matrix. We will concen-
trate on nested dissection strategies. For this, a partitioning of the matrix
graph given by a preferably small set SI, called interface, needs to be found.
Removing all vertices associated to SI and their incident edges results in two
clustered graphs with no connection between them.
The reordering is performed by permuting the index set, so that first the ver-
tices of the two non-connected graphs are numbered consecutively, followed
by the vertices of the interface. This will be done recursively for the resulting
subgraphs as is illustrated in Figure 1 by two steps of partitioning.
On the left, the matrix graph is shown, where grey coloured parts represent
the recursively constructed interface layers. On the right, one can see the
matrix structure after renumbering the degrees of freedom. The dark grey
blocks belong to the nodes of the first level interface layer I. In the remaining
2×2 block, only the two blocks on the diagonal contain non-zeros, whereas the
two white shaded blocks are empty. This is because the vertices separated
by the interface I do not interact. The corresponding interfaces I1 and I2

divide up the previous partitioning. The respective rows and columns of the
matrix can be reordered in such a way that the same structure is obtained
on the non-zero subblocks.
The construction of such interfaces can be done graph theoretically [7, 13].
Another method is geometrical partitioning of the associated finite element

9

�����

�����

� � �

� ���

� � �

	
	

	��

� �

 � �

���

��	

� � �

Figure 1: On the left, two steps of hierarchical clustering are illustrated. The
associated matrix structure after renumbering is shown on the right.

mesh [9]. For our application, a combination of geometrical partitioning and
the usage of the matrix structure is appropriate. In the following sections,
we present an algorithm to create a suitable cluster tree which is used to
renumber the matrix efficiently.

4.1 The structure of the cluster tree

Starting point for the clustering is the index set I = {1, . . . , kE} correspond-
ing with edges of the finite element mesh. A so called cluster tree TI is
a hierarchical partitioning of I [10]. Elements of a cluster tree are called
clusters and form subsets of I .
For every cluster S ⊂ I we define the set of sons S(S) = {S ′, S ′ = son(S)}.
If a cluster has no sons, it is called a leaf. The set of leafs of the tree is
denoted by L(TI) = {S, S(S) = ∅}.

Definition 2 (cluster tree) With the finite index set I a cluster tree TI is
defined as follows

1. I ∈ TI,

2. ∀S ⊂ TI : S =
⋃
S′∈S(S) S

′,

3. ∀S ⊂ TI : #S(S) 6= 1.

In order to reach a suitable nested dissection structure, every non-leaf cluster
is desired to have three sons. If so, one of them contains all indices dividing
the underlying matrix graph of its father, that is, the interface. This cluster
is a leaf. The two other clusters are leaves if they have less than a certain

10

number b > 2 of degrees of freedom. Alternatively, the set of sons can contain
only two clusters. This happens if the father cluster is not connected, so that
it is possible to find two sons divided by nature.

4.2 Creation of the cluster tree

In the creation process we make use of the correspondence between the matrix
graph of stiffness matrix K and the underlying geometry of the finite element
mesh Ωh. The edges of the mesh correspond with the vertices of the matrix
graph G(E,W). One can assign geometrical information to ei ∈ E, i ∈ I, by
the coordinates of the midpoint of the underlying finite element edge and a
weight given by its length. W is given by the matrix entries. Our approach
of clustering S ⊂ I consists of two steps:
Geometrical bisection
For this, only the geometry of the degrees of freedom, i.e. the finite element
edges, of the cluster S is taken into account. If S has the cardinality k, the
centre of the cluster is given by the weighted sum

~xS =
1

gS

k∑

i=1

gi~xi,

where gS is the sum of all weights gi and ~xi are the coordinates of the midpoint
of edge ei. The eigenvectors of the covariance matrix

cov(S) =
k∑

i=1

gi(~xS − ~xi)(~xS − ~xi)T ∈ R3×3

are the axes of an enveloping ellipsoid. The plane orthogonal to the eigen-
vector ~v corresponding to the largest eigenvalue divides the indices in two
sets as follows:

S1
′ = {i ∈ I, ~v · (~xi − ~xS) < 0},

S2
′ = {i ∈ I, ~v · (~xi − ~xS) ≥ 0}.

Construction of the interface cluster
The underlying matrix graph of cluster S is denoted by G(ES,WS) with
ES ⊂ E and WS ⊂ W containing all interactions within the cluster S. Our
next aim is to find the set of indices SI such that the removal of SI and its
adjacent edges forms a disconnected graph G(ES1 ∪ ES2 ,WS

′), with

S1 = S1
′ \ SI, S2 = S2

′ \ SI, WS
′ = WS \ adj(ESI

),

∀i ∈ S1, j ∈ S2 : w = {ei, ej} /∈ WS
′.

11

SI should be as small as possible.
We now check S1

′ and S2
′ for connecting edges w = {ei, ej} ∈ WS, i ∈ S ′1, j ∈

S ′2 to construct the interface cluster SI. For this, an array sort subscripted
over all indices of S is used. Its initial entries are given by the geometrical
clustering:

sort[i] =

{
1, i ∈ S1

′

−1, i ∈ S2
′ .

This array is filled with zeros at all indices associated to the interface SI by
the following algorithm.

Algorithm 3 (set interface layer)

1. for all i - alternately chosen from S1
′ and S2

′ as index farthest from
the cutting plane

2. for all j ∈ S

3. if Kij 6= 0 and sort[j] 6= 0 and sort[i]6=sort[j]

4. sort[i]= 0
goto 1

5. move elements marked by zero into SI

Using the sparse matrix format, we do not have to pass over all elements
in loop 2. The cost is bounded by the maximum node degree in the matrix
graph, so the complexity of this algorithm is O(#S). By construction, there
are no more interactions between S1 and S2. The clustering process continues
recursively on cluster S1 and S2 while they are non-leaves. As mentioned
above, a cluster is a leaf if it is an interface, or its cardinality is less than b,
or the algorithm fails to find a further sub-clustering.
From the leaves of the cluster tree, we can create a vector of indices which
represents the permutation of the degrees of freedom to obtain a structure
as illustrated in Figure 1. This permutation of the system matrix allows the
application of the following exact Cholesky decomposition which exploits the
block structure.
In the context of the later discussed H-arithmetic for computing an approx-
imate Cholesky decomposition, the cluster tree is used for the construction
of the H-matrix.

12

4.3 Cholesky decomposition

From the cluster tree, a prediction of the sparse matrix pattern of the Cho-
lesky factor L is possible. Thus, we can already reserve space for the future
non-zeros in the sparse matrix.

����� �����

�����

��������

�����

���

Figure 2: A matrix graph on the left and on the right the elimination graph
after eliminating all vertices of S11 is shown.

Figure 2 shows a matrix graph G(E,W) with two levels of clustering and
the corresponding interfaces SI, S1I, S2I. The degrees of freedom associated
to the non-interface cluster S11 are permuted to the beginning of the ma-
trix. This means that the Cholesky factorisation starts with these columns.
It can be interpreted graph theoretically as forming the elimination graph
G′(E \ ei,W ∪ C(adj(ei))) of a respective vertex ei. The vertices of S11 can
produce interactions between vertices contained in S11 and in interface clus-
ters. However, there will never occur edges to other non-interface clusters.
We will consider fill-in by assuming the worst case of interactions caused by
elimination of S11. All vertices of S11 and all ej, j ∈ SI and S1I connected
by w = {ei, ej} (dotted edges) to S11 will cause fill-in. We assume that the
connections between them form a complete graph. This is, the elimination
of all columns according to S11 then results in a non-zeros matrix pattern
shown in Figure 3. In the elimination graph G′(E \ S11,W ∪ C(adj(S11)))
the complete graph of all respective interface vertices is contained.
The advantage of this worst case guess of fill-in lies in the same sparsity
structure of columns belonging to the same block. Thus, the sub-diagonal
non-zeros can be accumulated in the vectors cT1 , . . . , c

T
n forming the non-zero

rows of the block. The factorisation of the first block column only provides
Schur complement updates in the n× n grey coloured positions in the lower
right of Figure 3. We can merge the non-zero rows of the block in a dense

array KT
1∗ := (cT1

... . . .
... cTn). With this, the Cholesky factorisation can be

13

K11

. . .
...

...
...

. . .

. . .

. . .

c1

cT1

cT2

cTn

c2 cn

Figure 3: Block Cholesky elimination for columns belonging to K11 and
resulting fill-in.

done block-wise by dense matrix computations using time optimised BLAS-
3 library.

Algorithm 4 (block decomposition) Do for every block column i:

1. decompose Kii = LiiL
T
ii

2. D = L−1
ii Ki∗

3. compute DTD = KT
i∗L
−T
ii L

−1
ii Ki∗

4. update the Schur complement at the correct position of the sparse matrix

The clustering algorithm and the described decomposition form our exact
solver called HSLLT.

5 H-Matrix technique and an approximate

decomposition

The H-matrix technique is a way of approximating matrices. With the as-
sociated arithmetic [11, 10] one can perform matrix operations. For this, a
cluster tree as constructed in the previous section is needed.

14

The proof given in [3] states that Schur complements can be approximated
with H-matrices. With this, the hierarchical decomposition of sparse matri-
ces was described. We want to apply the described clustering method for
H-matrix construction and perform the hierarchical Cholesky decomposition
(HLLT). Our approach differs from [3] so a short description of the arithmetic
is given.
For a recursive approach in storing the H-matrix we provide four types of
matrices:

• Null – zero matrix of any dimension;

• Dense – fully populated matrix Rm×n;

• LowRank(r) – low-rank matrix with rank r stored as its QR decompo-
sition, i.e. Q ∈ Rm×r, R ∈ Rr×n, QTQ = I ∈ Rr×r, and R is the upper
triangular matrix

• H-matrix – Rm×n matrix separated by bm and bn lines into 4 blocks:
Rbm×bn , R(m−bm)×bn , Rbm×(n−bn), R(m−bm)×(n−bn). Each of them is again
represented as one of those types.

Inside of this class we establish binary operations: addition and multiplica-
tion. Furthermore, the following unary operations are implemented: the LLT

decomposition of H-matrix type, a Dense to LowRank(r) transformation,
the post-compression of LowRank(r) and the transformation of any type to
H-matrix type with predefined bm and bn.
Each matrix operation is designed to save space and computation costs, i.e. if
the input data contains only fully populated matrices, then a fully populated
result matrix is produced. The post-compression of the result matrix into
low-rank type is done only if both matrix dimensions are large. Only in this
case we can expect that the compression rate can be large enough.

5.1 The addition

If one of the input matrices is of Dense type, it will take at least nm arith-
metic operations to refer to it. The result is again stored in Dense type.
After that, a low-rank approximation can be applied in order to convert the
matrix into LowRank(r) with r being small enough. In case of two LowRank

matrices with rank r1, r2 we perform

Q1R1 +Q2R2 = (Q1, Q2)(RT
1 , R

T
2)T ,

The matrix (Q1, Q2) is no longer orthogonal. Hence, the post-compression
algorithm is applied.

15

The LowRank(r)+H-matrix-operation has less than nm data in the input
and could be represented in compact storage format at the output.
Since an H-matrix might have full rank, there is no reason to convert the
result to LowRank type. Hence we convert LowRank(r) to H-matrix type
and call the H-matrix+H-matrix operation.
In case of two H-matrices we have to ensure the same partitioning (bm, bn).
If they differ, we transform one of these matrices into the partitioning of the
other. After that the block sum is performed as usual [10].

5.2 The multiplication

Here, we only want to consider the multiplication of non-trivial kinds of
matrices.
If the LowRank(r) type is involved, for example AB, and A = QR, then

AB = (QR)B = Q(RB) = QZ.

This means, we multiply the Dense type matrix R to B and store the result
in Z, which is of Dense type. Then, we perform a post-compression of QZ.
To compute H-matrix times Dense, the matrix of Dense type is split into
two blocks, so that(

H11 H12

H21 H22

)(
D1

D2

)
=

(
H11D1 +H12D2

H21D1 +H22D2

)
,

The result is stored again in Dense type.
The remaining kind is the multiplication of two H-matrices. By ensuring the
same partitioning of the matrix, the block matrix multiplication is performed
as in [10].

5.3 LLT decomposition of H-matrix

Suppose we are going to compute the Cholesky decomposition of

H =

(
H11 H12

H21 H22

)
,

where H12 = HT
21, then:

H =

(
L11 0
L21 L22

)(
LT11 LT21

0 LT22

)
,

is computed by
H11 = L11L

T
11,

L21 = H21L
−1
11 ,

H22 − L21L
T
21 = L22L

T
22.

16

5.4 Dense to LowRank(r)

This algorithm is trying to compress the input matrix Rm×n to a product of
two matrices Rm×r and Rr×n so that r � mn

m+n
. The optimal method is the

singular value decomposition (SVD), but it requires O(mnmin(m,n)) arith-
metic operations. Hence we use truncated rank revealing method which only
takes O(mnr) arithmetic operations and produces the QR decomposition.
Other methods like Adaptive Cross Approximation (ACA) [4] can also be
useful. However, they have the same order of arithmetic complexity.

5.5 Post-compression of LowRank(r)

Suppose the matrix is presented as AB, A ∈ Rm×r, B ∈ Rr×n, and A is not
anymore orthogonal. This post-compression algorithm should find new Ã,
B̃ possibly with smaller rank, so that ||AB − ÃB̃||F < ε. There are several
ways to obtain Ã, B̃ [10]. In our algorithm we use the following method:

Algorithm 5 (Post-compression of LowRank(r))

1. Compute QR decomposition of A = QARA,

2. Compute C = RAB;

3. Compute truncated QR decomposition of C = QCRC

4. Compute Ã = QAQC , and assign B̃ = RC .

5.6 Transformation to H-matrix
If the Dense matrix has to be transformed into H-matrix type, we have to
find the corresponding blocks and copy them into H-matrix blocks.
If the LowRank(r) matrix is transformed to H-matrix type, then we can
construct four blocks of LowRank(r) type with the same rank. Then each
block in the H-matrix type has no orthogonal Q anymore. Moreover, it
could be the case that the rank is too big. Consider the block (1,1): if

r >
bmbn
bm + bn

then we should transform it to the dense format, otherwise, try

to post-compress it.
If the H-matrix H0 with b

(0)
m , b

(0)
n partitioning is transformed to H-matrix

H with a different partitioning bm, bn (bm 6= b
(0)
m or bn 6= b

(0)
n), the algorithm

works recursively. Suppose bm < b
(0)
m , bn < b

(0)
n ,

H0 =

(
H

(0)
11 H

(0)
12

H
(0)
21 H

(0)
22

)
,

17

H =

(
H11 H12

H21 H22

)
.

Let us define this operation Split(H0, bm, bn) in the following way. Suppose

Split(H
(0)
11 , bm, bn) =

(
H11

11 H11
12

H11
21 H11

22

)
,

Split(H
(0)
12 , bm, 0) =

(
H12

11

H12
21

)
,

Split(H
(0)
21 , 0, bn) =

(
H21

11 H21
12

)
,

then

Split(H0, bm, bn) =

H11
11

(
H11

12 H12
11

)
(
H11

21

H21
11

) (
H11

22 H12
21

H21
12 H

(0)
22

)

 .

6 Approximate decomposition without

H-matrix technique

The main disadvantage of the above described H-matrix technique lies in the
high number of post-compressions during Cholesky decomposition. Now we
introduce a new approach in order to reduce the number of these numerous
post-compressions.
Let us assume the permuted matrix given by the presented clustering algo-
rithm. By the leaf clusters, the columns of the matrix are partitioned into
block columns, as suggested by Figure 3. The number of leaves corresponds
to the number of block columns.
Let k1 be the block size, k2 the number of non-zero rows or columns of the sub-
diagonal block and n the dimension of the matrix. The elimination process
goes block-column-wise. In case of decomposing the first block-column,

(
K11 KT

∗1
K∗1 K

)
=

(
L11 0
L∗1 I

)(
I 0
0 K − L∗1LT∗1

)(
LT11 LT∗1
0 I

)

has to be computed, where KT
∗1 ∈ Rk1×(n−k1). In a complete decomposition

the sub-diagonal block LT∗1 is computed by LT∗1 = L−1
11 K

T
∗1. This result will

be approximated by reduced QR-decomposition, so that LT∗1 ≈ UV . This
is possible because the sub-diagonal block forms an admissible block. Here,
V ∈ Rr×(n−k1) and UTU = I with r being the approximate rank. This yields

(
K11 KT

∗1
K∗1 K

)
≈
(

L11 0
V TUT I

)(
I 0
0 K − V TV

)(
LT11 UV
0 I

)
.

18

The block KT
∗1 is column sparse, i.e., it has only k2 non-zero columns. This

results in a column sparse structure of V . The matrix can be stored as a
fully populated matrix together with the indices of the non-zero columns.
The important part of this decomposition is the computation of updates
arising from former Schur complements. Assume that the i-th diagonal block
is now in the elimination:

0
BBBBBBBBBB@

K1,1 KT∗,i

K∗,1

.
.
. . . .

.

.

.

Ki−1,i−1 KT∗,i−1

K∗,i−1

Ki,i KT∗,i

K∗,i
. .

.

1
CCCCCCCCCCA

=

0
BBBBBB@

L1,1 0

V T1 UT1

.
.
. 0

.

.

.
Li−1,i−1 0

V Ti−1U
T
i−1 I

1
CCCCCCA
Si,i

0
BBBBB@

L1,1 U1V1

0

.
.
. . . .

0
LTi−1,i−1 Ui−1Vi−1

0 I

1
CCCCCA
,

Si,i =

0
BBBBBBBBB@

I 0

0

.
.
. . . .

.

.

.

I 0

0

Ki,i KT∗,i

K∗,i
.
.
.

1
CCCCCCCCCA

−
„

0
V1

«„
0
V1

«T
− . . .−

0
BB@

0

.

.

.
Vi−1

1
CCA

0
BB@

0

.

.

.
Vi−1

1
CCA

T

.

We first have to find matrices V1, . . . , Vi−1 that change Ki,i and KT
∗,i. Addi-

tional non-zero columns can arise in KT
∗,i because of the fill-in. This fill-in is

reduced by the norm of columns. If its norm is smaller than the norm of the
diagonal block multiplied to a threshold, this column is set to zero.
The computation of the Schur complement in case of complete decomposition
amounts to k1k

2
2 operations, whereas in case of the approximate decomposi-

tion it takes rk2
2.

Algorithm 6 For every block column i, one has to do the following steps:

1. Compute updates arising from former Schur complements

2. Compute the Cholesky decomposition of the diagonal block Kii = LiiL
T
ii

3. Compute the sub-diagonal block

k2 < k1 : LiiL
T
∗i = KT

∗i
k2 ≥ k1 : with K∗i ≈ UiVi, U

T
i Ui = I

compute LT∗i = (LT∗i)
′ UT

i

by solving Lii(L
T
∗i)
′ UT

i = V T
i U

T
i → (LT∗i)

′ = L−1
ii V

T
i

19

4. Compute a low-rank approximation of LT∗i

k2 < k1 : LT∗i ≈ UV

k2 ≥ k1 : LT∗i = (LT∗i)
′ UT

i ≈ U(V UT
i)

Within this method, called HSILLT, one will process every block of the ma-
trix once, so that the number of low-rank approximations is rather low now.

7 Complexity estimates

Suppose Memn represents the total amount of memory required for storing
the Cholesky factors for the HSLLT algorithm. According to our clustering
method for 3D problems, the interface cluster has only O(n2/3) degrees of
freedom, so O(#SI) = O(n2/3) (see Figure 1) and O(#S1) = O(#S2) =

O
(
n− n2/3

2

)
. Thus, a fully populated decomposed block requires

Memn = n4/3 + 2Memn−n2/3

2

≤ n4/3 + 2Memn/2.

Assume that Mem1 = 1, then

Memn ≤ n4/3 + 2Memn/2 ≤ n4/3 + 2
(n

2

)4/3

+ 4
(n

4

)4/3

+ . . . =

n4/3
(

1 + 2−1/3 +
(
2−1/3

)2
+ . . .

)
≤ n4/3 1

1− 2−1/3
≤ 5n4/3.

For HSILLT, suppose that the m×m block associated to the interface degrees
of freedom is further divided in several blocks

D1 BT
1

B1

D2 BT
2

B2

D3 BT
3

B3
D4 BT

4

B4 . . .

.

Each diagonal block Di is stored as a fully populated matrix and the blocks
Bi are approximated by a low-rank matrix with rank at most r. Suppose,
that each block Di is of dimension k×k. With this, the memory requirement
for storing the interface block is km words for the diagonal blocks Di and

mr(1 +
m

2k
) words for the sub-diagonal blocks. Assume k ' √m, then the

total memory requirement for storing the interface block is O(rm3/2). Since

20

#SI = n2/3, this block needs O(rn) words of memory, and, in analogy to
(11)

Memn ≤ rn+ 2Memn/2 ≤ rn+ 2
(rn

2

)
+ 4

(rn
4

)
+ . . . ≤ rn log2 n.

Hence the approximated LLT has an almost linear memory requirement.

The arithmetic complexity of the computation of HSLLT is not linear. We
need to compute the Cholesky factorisation for the dense subblocks, so the
complexity for the factorisation of the interface block with #SI = n2/3 de-
grees of freedom amounts to O(n2) arithmetic operations, hence

Opn ≤ n2 + 2Opn/2 ≤ n2 + 2
(n

2

)2

+ 4
(n

4

)2

+ . . . = (11)

n2
(

1 + 2−1 +
(
2−1
)2

+ . . .
)
≤ 2n2.

In the approximate Cholesky factorisation we have to compute LLT for the
diagonal k × k blocks and do QR decomposition of the sub-diagonal blocks.
It leads to

• m

k
Cholesky decompositions of k× k block: O(mk2) arithmetic opera-

tions,

• QR/low rank approximation of (m−k)×k, . . . , (m−m+k)×k blocks:
O(rm2) arithmetic operations,

• update the Schur complement of each block m2r+. . .+(m−m+k)2r =
O(m2kr) arithmetic operations,

then, in case of k = const, the complexity of the factorisation of one block
(#SI = n2/3) is O(rn4/3) arithmetic operations. The total arithmetic com-
plexity for HSILLT is

Opn ≤ rn4/3 + 2Opn/2 ≤ rn4/3 + 2r
(n

2

)4/3

+ 4r
(n

4

)4/3

+ . . . =

rn4/3
(

1 + 2−1/3 +
(
2−1/3

)2
+ . . .

)
≤ rn4/3 1

1− 2−1/3
≤ 5rn4/3.

If we make a cutoff of non-diagonal entries by threshold and reduce k we can
expect that the fill-in will be constant time larger than the system matrix.
In this case the arithmetic complexity can be estimated as:

• m

k
Cholesky decomposition of k × k block: O(mk2) arithmetic opera-

tions,

21

• QR/low rank approximation of
m

k
blocks of constk × k sizes: O(rmk)

arithmetic operations,

• update the Schur complement of each block O(rk2) arithmetic opera-

tions for each
m

k
blocks,

hence, again with constant k, it leads to O(rn2/3) arithmetic operations for
the factorisation of one block. The total complexity is then

Opn ≤ rn2/3 + 2Opn/2 ≤ rn2/3 + 2r
(n

2

)2/3

+ 4r
(n

4

)4/3

+ . . . =

rn2/3
(

1 + 21/3 +
(
21/3

)2
+ . . . n1/3

)
≤ 10rn.

8 Numerical examples

The three presented algorithms are based on the interface clustering of the
degrees of freedom using the geometry and the structure of the sparse matrix
(cf. 4). The resulting permutation reduces the number of non-zeros in the
Cholesky factor and one obtains a block structure of the matrix. Figure 4
shows these modifications of the structure. The structure of the reordered
singular matrix Q and the regularised matrix K are pictured in order to
show the influence of additional entries arising from regularisation (cf. 3).
The number of non-zeros in the system matrix doubles and the matrix stays
sparse.

8.1 Performance rating – exact solver

In Section 4 an exact linear system solver called HSLLT was described. The
approach of HSLLT can be compared with super-nodal techniques [12]. They
try to find columns with the same sparsity structure in a graph theoretical
way by the so called elimination tree. Forming dense block matrices allows
the usage of BLAS-3.
For the performance evaluation of our algorithm two freely available solver
packages are chosen. One of them is a library called Pardiso1 (Parallel sparse
direct linear solver). It was developed by Olaf Schenk from the University
of Basel. The package provides decomposition methods for different kinds
of sparse matrices. For our symmetric positive definite test problems we

1cf. http://www.computational.unibas.ch/cs/scicomp/software/pardiso/ and provided
publications

22

Figure 4: Structure of the reordered singular system matrix Q (left) and the
reordered regularised matrix K (right).

selected a sequential left- and right-looking super-nodal Cholesky factorisa-
tion. Different graph theoretical methods are available for reordering, e.g.
a multiple minimum degree algorithm (MMD) and a nested-dissection re-
ordering provided by the Metis library (G. Karypis). The latter is based on
nested-dissection strategies similar to our permutation.
Another solver package is Taucs 2, which comes from the University of Tel
Aviv. Sivan Toledo also created one of the leading available solvers. It offers
numerous routines for exact decomposition of sparse matrices. They use
super-nodal and multi-frontal methods. Several reordering methods provide
reduced fill-in. For our comparison, the AMD method by T. Davis and again
the Metis library were selected. In a later subsection we return to Taucs and
its methods of incomplete factorisation to construct a preconditioner.
In summary, three factorisation methods were appropriate for comparison:
HSLLT, the super-nodal method by Pardiso (PLLT) and by Taucs (TLLT).
Our test matrices are based on the finite element discretisation of magne-
tostatic problems. At first we chose simple meshes of a cube consisting of
uniformly distributed hexahedrons. An example more representative of real
applications is that of a simple magnetic valve. With the described reg-
ularisation, all these examples provide symmetric positive definite matrices
because of their trivial topology. In more general topologies it is necessary to
deal with cohomology aspects to find the bigger kernel of the matrix, which
will be done in future work.

2cf. http://www.tau.ac.il/∼stoledo/taucs and provided publications

23

name kE element type
cube1 26460 hexahedrons
cube2 45000 hexahedrons
cube3 70644 hexahedrons
cube4 104544 hexahedrons
cube5 147852 hexahedrons
cube6 201720 hexahedrons
valve 72672 tetrahedrons

Table 1: Models used for the comparison of the different solvers

The reordering algorithms in Pardiso and Taucs are graph theoretical, so that
they only need information about the matrix structure. However, HSLLT
requires additional information about the geometry of the degrees of freedom.
Because of the edge based formulation, the degrees of freedom correspond
to the edges of the mesh. An edge will be represented by its midpoint and
length.
The three algorithms are compared by the time required for the decompo-
sition of the reordered system matrix. The memory used for storing the
triangular sparse decomposition factor is another important aspect. The
tests were carried out on an Intel Xeon processor (3.06GHz) and 2GByte of
core memory.
In Table 2 the factorisation time and memory requirement of the three exact
solvers are compared. Before computing the Cholesky factor, the reordering
is done. Because computation times for the reordering are negligible, we only
state the time required for the factorisation in Table 2. The columns signed
over with Mem(L) include information about the memory needed for storing

HSLLT PLLT TLLT
name N tLLT Mem(L) tLLT Mem(L) tLLT Mem(L)

cube1 26460 12s 154MB 13s 146MB 10.5s 119MB
cube2 45000 36s 332MB 39s 315MB 30s 249MB
cube3 70644 93s 650MB 100s 602MB 74s 477MB
cube4 104544 200s 1128MB 214s 1032MB 155s 812MB
valve 72672 183s 900MB 100s 630MB 80s 500MB

Table 2: Comparison of factorisation time tLLT and memory for storing the
factor Mem(L) for the decomposition methods HSLLT, PLLT and TLLT and
different problem sizes.

24

the lower triangular matrix of the decomposition L.
For the examples listed, one finds comparable calculation times. The main
reason lies in the high performance of level 3 BLAS routines, which all meth-
ods are using. Thereby calculation speeds of 1GFlop/s are reached. The
comparison of required memory shows that HSLLT needs 20-40% higher stor-
age. The reason is inherent in the padding of the sparse structure in order to
reach fully populated rows in the sub-diagonal block. For this, more mem-
ory due to fill-in than necessary is occupied. The super-nodal approach only
combines columns with the same sparsity structure of the factor L without
additional storage.
The minimum degree based fill-in reducing ordering was also tested for TLLT
and PLLT. We found, that in this case the performance is worse than of
HSLLT. This shows the efficiency of nested dissection in comparison to min-
imum degree strategy. Because this is not the main topic, the table showing
this result is not stated here.

8.2 Comparison of approximate decompositions
as preconditioner

In Section 5 we introduced two methods providing an approximate decompo-
sition by low-rank approximation. For HLLT we are using interface cluster-
ing in order to create the recursive H-matrix structure. The second method
HSILLT acts on a block-wise column storage scheme by means of interface
clustering. With this approach we benefit from the reduction of fill-in in
combination with low-rank approximation.
In order to characterise the performance, we chose an incomplete Cholesky
factorisation (ILLT) provided by the Taucs library, which is very fast in case
of low accuracy. For this, the sparsity structure of L is reduced by dropping
entries so that

l̃ij =

{
0, aij = 0 and i 6= j and lij < εdrop||Li||
lij, otherwise

.

Here, aij is the associated entry of the original matrix, εdrop the chosen ac-
curacy and ||Li|| the ith row norm of the exact factor.
All three methods HLLT, HSILLT and TILLT provide a preconditioner ap-
plicable for iterative methods. The accuracy of such a preconditioner arises
in the number of iterations which a preconditioned GMRES method requires
to reach a relative residual below 10−6. We will compare the performance of
the different methods by factorisation time and memory requirement for the
construction of preconditioners with similar accuracy. This means, approxi-
mate factorisations yielding the same number of iterations can be compared.

25

8.2.1 HLLT versus TILLT

In Table 3 we state the performance of both methods for problems of different
matrix dimension. Parameter ε of the low-rank approximation differs within
[6 · 10−3, 10−3], in order to fix the number of iterations at 30. The maximal
block size is 30. The incomplete factorisation TILLT requires the accuracy
εdrop which is varied within [3 · 10−3, 6 · 10−4].
One can see in Table 3, that TILLT is very fast and needs much less memory
than HLLT. A big part of the calculation time in HLLT is used for truncation
of blocks in order to reveal the rank after arithmetic operations. Additionally
the administration effort of H-matrix operations has to be mentioned. How-
ever, the trend for higher dimensions shows that the performance properties
approach each other.

HLLT TILLT
name N tLLT Mem(L) tLLT Mem(L)

cube1 26460 20s 54MB 2.9s 22MB
cube2 45000 47s 102MB 7.9s 48MB
cube3 70644 102s 186MB 24s 109MB
cube4 104544 191s 313MB 51s 201MB

Table 3: Performance of HLLT and TILLT under variation of problem size

HSILLT TILLT
name N tLLT Mem(L) tLLT Mem(L)

cube1 26460 2s 20MB 2.9s 22MB
cube2 45000 5s 49MB 7.9s 48MB
cube3 70644 10s 97MB 24s 109MB
cube4 104544 22s 179MB 51s 201MB
cube5 147852 40s 279MB 88s 316MB
cube6 201720 83s 496MB 234s 553MB

Table 4: Performance of HSILLT and TILLT under variation of problem size

8.2.2 HSILLT versus TILLT

The more promising method is given by HSILLT. We fix the number of
iterations again at 30. The parameters of the cluster generation now differ
from HLLT. We distinguish between maximum cluster sizes of non-interface

26

and interface leaf clusters. For interface clusters a maximum size of nmin = 15
is assumed. In Table 4, the performance is summarised for the cube examples.
In Figure 5 one can see that HSILLT is faster than TILLT especially at
higher dimensions. Due to low-rank approximation the computational costs
of HSILLT increases almost linear with the dimension of the problem.

TILLT
HSILLT

problem size [103]

fa
ct

or
is

at
io

n
ti

m
e

[s
]

20018016014012010080604020

250

200

150

100

50

0

Figure 5: Factorisation time over the different problem sizes for HSILLT and
TILLT

Since, the presented algorithm is quite fast for our examples, we consider the
magnetic valve problem with a non-uniform geometry. The performance is
compared under changing accuracy ε. The maximum size of interface clusters
is fixed at nmin = 30. For illustrating this, in Figure 6 a plot of the factori-
sation time respective the number of iterations is shown. A smaller iteration
number indicates a preconditioner with higher accuracy. The comparison
between HSILLT and the dashed line of TILLT demonstrates the difference
in needed time. Only for high iteration numbers, i.e. low accuracy, TILLT
is a little faster.
The memory requirement of HSILLT and TILLT is comparable in the pre-
sented examples. For the magnetic valve with the chosen parameters, the
memory requirement of HSILLT is higher than that of TILLT. Because of
low time requirement some additional considerations for improving the clus-
ter tree can be implemented.
HSILLT is a way creating an approximate (incomplete) factorisation by using

27

TILLT
HSILLT

number of iterations

fa
ct

or
is

at
io

n
ti

m
e

[s
]

50454035302520151050

250

200

150

100

50

0

Figure 6: Comparison of factorisation time of HSILLT and TILLT for the
magnet valve example

time optimised dense matrix computations. This is the reason of the accel-
eration in the factorisation time in comparison with TILLT. The low-rank
approximation is responsible for the almost linear complexity.

8.3 Conclusion

In this paper we have investigated the solution of linear systems of equations
arising from the discretisation of curl-curl-equation. The described regular-
isation yields a sparse symmetric positive definite system matrix. Under
application of hierarchical interface clustering, we analysed an exact decom-
position method which is in the stated examples comparable to other solvers.
The evaluation of the approximate factorisation HLLT leaded to the result
that recursive hierarchical structures do not perform as well as TILLT for
the tested examples. The most promising result of our paper is the HSILLT.
It allows the calculation of an approximate factorisation by dense matrix
computations with almost linear complexity and performs better than the
incomplete factorisation provided by Taucs.

28

References

[1] Patrick R. Amestoy, Timothy A. Davis, and Iain S. Duff. An approxi-
mate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl.,
17(4):886–905, 1996.

[2] B. Auchmann, S. Kurz, O. Rain, and S. Russenschuck. Algebraic Proper-
ties of BEM-FEM Coupling with Whitney elements. 11th International
IGTE Symposium, 2003.

[3] M. Bebendorf. Why approximate LU decomposition of finite element
discretisations of elliptic operators can be computed with almost linear
complexity. preprint, 2005.

[4] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of
collocation matrices. Computing, 70(1):1–24, 2003.

[5] A. Bossavit. Computational Electromagnetism. Academic Press series
in Electromagnetism. Academic Press, 1997.

[6] Alan George. Nested dissection of a regular finite element mesh. SIAM
J. Numer. Anal., 10:345–363, 1973.

[7] Alan George and Joseph W.H. Liu. An automatic nested dissertion
algorithm for irregular finite element problems. SIAM J. Numer. Anal.,
15:1053–1070, 1978.

[8] Alan George and Joseph W.H. Liu. The evolution of the minimum
degree ordering algorithm. SIAM Rev., 31(1):1–19, 1989.

[9] John R. Gilbert, Gary L. Miller, and Shang-Hua Teng. Geometric mesh
partitioning: Implementation and experiments. SIAM J. Sci. Comput.,
19(6):2091–2110, 1998.

[10] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. I.
Introduction to H-matrices. Computing, 62(2):89–108, 1999.

[11] W. Hackbusch and B. N. Khoromskij. A sparse H-matrix arithmetic.
II. Application to multi-dimensional problems. Computing, 64(1):21–47,
2000.

[12] E. G. Ng and B. W. Peyton. Block sparse cholesky algorithms on ad-
vanced uniprocessor computers. SIAM J. Sci. Comp., 14:1034–1056,
1993.

29

[13] Sergio Pissanetsky. Sparse Matrix Technology. Academic Press, London,
1984.

[14] Y. Saad. Iterative methods for Sparse Linear Systems. PWS Publishing,
Boston, 1996.

30

Authors

Ilgis Ibragimov
Department of Mathematics
Saarland University
Postfach 15 11 50
66041 Saarbrücken
Germany
ilgis@num.uni-sb.de

Sergej Rjasanow
Department of Mathematics
Saarland University
Postfach 15 11 50
66041 Saarbrücken
Germany
rjasanow@num.uni-sb.de

Katharina Straube
Robert Bosch GmbH
Postfach 10 60 50
70049 Stuttgart
Germany
katharina.straube@de.bosch.com

31

