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Abstract

Positive semidefinite matrix fields are becoming increasingly im-
portant in digital imaging. One reason for this tendency consists of
the introduction of diffusion tensor magnetic resonance imaging (DT-
MRI). In order to perform shape analysis, enhancement or segmenta-
tion of such tensor fields, appropriate image processing tools must be
developed. This paper extends fundamental morphological operations
to the matrix-valued setting. We start by presenting novel definitions
for the maximum and minimum of a set of matrices since these no-
tions lie at the heart of the morphological operations. In contrast to
naive approaches like the component-wise maximum or minimum of
the matrix channels, our approach is based on the Loewner order-
ing for symmetric matrices. The notions of maximum and minimum
deduced from this partial ordering satisfy desirable properties such
as rotation invariance, preservation of positive semidefiniteness, and
continuous dependence on the input data. We introduce erosion, di-
lation, opening, closing, top hats, morphological derivatives, shock
filters, and mid-range filters for positive semidefinite matrix-valued
images. These morphological operations incorporate information si-
multaneously from all matrix channels rather than treating them inde-
pendently. Experiments on DT-MRI images with ball- and rod-shaped
structuring elements illustrate the properties and performance of our
morphological operators for matrix-valued data.

Key Words: mathematical morphology, Loewner ordering, dilation,
erosion, opening, closing, top hats, morphological derivatives, shock
filter, mid-range filter, matrix-valued imaging, DT-MRI.

1 Introduction

1.1 Motivation and State-of-the-Art

For four decades, mathematical morphology has been able to respond ad-
equately to the needs of the image processing community: Starting with
Matheron’s and Serra’s pioneering work on binary morphology in the sixties
[39, 51], generalisations to greyscale morphology have been developed in the
eighties [29, 55]. Further progress has been achieved by proposals on how
to extend these concepts to vector-valued images [16, 37, 57] and image se-
quences [22]. In the meantime morphological operators and filters are used
for noise suppression, edge detection, shape analysis, image enhancement and
segmentation in a number of application fields ranging from medical imaging
to geological sciences. The numerous aspects of mathematical morphology
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are well documented in a number of monographs [32, 40, 52, 53, 54] and
conference proceedings [23, 33, 56]. However, one aspect of current image

processing that has not yet received sufficient attention by the morphologi-
cal community is the processing of tensor-valued images with morphological
methods. This is the goal of the present paper. Tensor fields gained signifi-
cant importance for at least three reasons:

• First, diffusion tensor magnetic resonance imaging (DT-MRI) [6] con-
stitutes a modern medical imaging technique that measures a 3×3 pos-
itive semidefinite matrix-field: A so-called diffusion tensor is assigned
to each voxel. This diffusion tensor describes the diffusive property of
water molecules and as such is intimately related to the geometry and
organisation of the tissue being examined. Water diffuses preferably
along ordered tissue. Hence the matrix field is a valuable source of
information for the diagnosis of multiple sclerosis and strokes [45].

• Second, tensor concepts have turned out to be very fruitful in image
analysis itself [24]: The structure tensor [19], for instance, (also called
Förstner interest operator, second moment matrix or scatter matrix) is
used for motion [8] and texture analysis [47], but also for corner detec-
tion [31]. Another example is tensor voting [41], which is an interesting
recent tool for segmentation and grouping.

• Third, in solid mechanics and civil engineering inertia, diffusion and
permittivity tensors and stress-strain relationships are important tools
to describe anisotropic behaviour in general.

The variety of applications requires the development of appropriate tools for
the processing and analysis of matrix-valued data. Just as in the scalar case
one has to remove noise, enhance structures and to detect edges and shapes
by appropriate filters.
The processing of matrix-valued images is a recent area of research. The
simplest strategy consists of treating all channels independently. For DT-
MRI, this has been done both for shift-invariant linear filters [63] as well
as for adaptive nonlinear filters [27]. Such strategies have the drawback of
ignoring any relation between the different matrix channels. More advanced
techniques have been proposed where derived joint expressions such as the
eigenvalues and eigenvectors of the tensor field [17, 46, 58] or its fractional
anisotropy [44] are smoothed. This comes down to scalar- or vector-valued
filtering again.
Matrix-valued image processing methods that truly exploit the interaction
of the different matrix channels have been introduced for nonlinear regulari-
sation methods and related diffusion filters [58, 61]. The resulting nonlinear
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structure tensor [61] has shown its use in motion estimation [11], texture
analysis [49] and unsupervised segmentation [10]. Level set ideas in terms of
mean curvature motion, self-snakes and geodesic active contour models have
been generalised to the matrix-valued setting in [18], and it was also possible
to design median filters [62] and homomorphic filters [15] for tensor fields.
In the present paper we will introduce a framework for tensor-valued mor-
phological operations such as dilation, erosion and a number of filters that
are based on them. Let us first discuss why this is a nontrivial task.

1.2 Difficulties

The concepts of scalar-valued morphology cannot be transferred directly even
to the vector-valued cases such as colour images: Component-wise perfor-
mance of standard morphological operations might result in the corruption
of information in the image, since the components in general exhibit a strong
correlation [2, 22].
All of the numerous attempts to develop satisfactory morphological operators
for colour images, as well as for other vector-valued data, have to struggle
with the difficulty that morphology is based on the notion of minimum and
maximum. Hence it seems to be essential to establish an ordering of colours
or vectors, but a generally accepted definition of such an ordering is not
available. Different types of orderings such as marginal or reduced ordering
[3] are reported to result in an unacceptable alteration of colour balance
and object boundaries in the image [16], or in the existence of more than
one maximum (minimum) creating ambiguities in the output image [37].
Relations between inf-sup operations, median filters and geometric partial
differential equations [25] were extended from the scalar to the vectorial case
in [14], while morphological filters relying on vector ranking concepts [3] have
been proposed in [30, 16] for noise suppression. Clearly, the development of
morphological operators for vector-valued images is decisively hindered by
the lack of appropriate orderings on vector spaces.
Interestingly, the situation in the matrix-valued setting is more promising on
a second glance since matrices have a richer analytic-algebraic or geometric
structure in comparison to vectors:

(a) One can multiply matrices, define polynomials and can even apply
functions to matrices by means of their eigenvalue decomposition.

(b) Real symmetric, positive definite matrices can be graphically repre-
sented by ellipses (2× 2-matrices) or ellipsoids (3× 3-matrices).

However, the morphological operations to be defined have to satisfy addi-
tional conditions such as:
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(i) Rotational invariance.

(ii) Preservation of the positive semidefinitenss of the matrix field since
DT-MRI data sets, for instance, posses this property.

(iii) Continuous dependence of the basic morphological operations on the
matrices used as input. This is of utmost importance for the definition
of morphological gradients for matrix fields.

Remarkably, the requirement of rotational invariance already rules out a
straightforward componentwise approach as it is shown already in [12].

1.3 Our Contributions

In this paper we will introduce a novel notion of the maximum/minimum
of a finite set of positive semidefinite matrices. This notion will exhibit the
above mentioned properties of rotational invariance, preservation of positive
semidefiniteness and continuity. In defining it we will be guided by the al-
gebraic and geometric properties of the matrices under consideration. The
concepts of minimum and maximum of matrices put us in the position to
generalise a number of fundamental morphological operations to the tensor-
valued setting. These matrix-valued morphological operations are then vali-
dated by applying them to DT-MRI images.
Two suggestions have been made on how to extend classical morphological
operations such as dilation, erosion, opening and closing to matrix-valued
data sets in [12]. However, lacking continuity properties of these approaches
forestalled the development of morphological derivatives for matrix fields. In
order to overcome this inadequacy a novel approach based on the so-called
Loewner ordering for 2× 2 matrices has been proposed in [13]. However, the
technique used in [13] cannot be extended directly to higher-order matrices.
In the present paper we use tools from convex analysis to investigate the
Loewner ordering for symmetric n× n-matrices with n ≥ 3 and its usage to
determine morphological operators.
The article is structured as follows: The next section is devoted to a brief
review of the grey scale morphological operations we aim to extend to the
matrix-valued setting: dilation, erosion, opening, closing, top hats, mor-
phological derivatives, shock filter, and mid-range filter. In Section 3 we
introduce the crucial max- and min-operations for matrix-valued data that
satisfy a number of useful properties. In Section 4 these notions are used for
generalising classical morphological operations to the tensor-valued setting.
We report on the results of our experiments with various morphological op-
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erators applied to real-world DT-MRI data in Section 5. In Section 6 we
conclude the paper with a summary.

2 Scalar-Valued Morphology

In this section we briefly review the definitions of some fundamental scalar-
valued morphological operators that we will generalise to the tensor-valued
setting.
In grey scale morphology an image is represented by a scalar function f(x, y)
with (x, y) ∈ IR2. The so-called structuring element is a set B ⊂ IR2 that
determines the neighbourhood relation of pixels with respect to a shape anal-
ysis task. Often convex sets such as disks, ellipses or squares are used as
structuring elements.
Grey scale dilation ⊕ replaces the greyvalue of the image f(x, y) by its supre-
mum/maximum within a mask defined by B:

(f ⊕ B) (x, y) := sup {f(x−x′, y−y′) | (x′, y′)∈B},

while erosion 	 is determined by taking the infimum/minimum:

(f 	 B) (x, y) := inf {f(x+x′, y+y′) | (x′, y′)∈B}.

The opening operation, denoted by ◦, is defined as erosion followed by dila-
tion:

f ◦B := (f 	 B)⊕ B .

Closing, indicated by the symbol •, consists of a dilation followed by an
erosion:

f •B := (f ⊕ B)	 B .

These operations form the basis of many other processes in mathematical
morphology [52, 54] such as the white top-hat which is the difference between
the original image and its opening:

WTH(f) := f − (f ◦B) .

Its dual, the black top-hat is the difference between the closing and the orig-
inal image,

BTH(f) := (f •B)− f ,
while the self-dual top-hat is the difference between closing and opening:

SDTH(f) := (f •B)− (f ◦B) .
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In an image the boundaries or edges of objects are the loci of high grey value
variations. These variations can be detected by derivative operators such as
the gradient or the Laplacian. Erosion and dilation are also the elementary
building blocks of the basic morphological gradients: The so-called Beucher
gradient [7] is the difference between the dilation and the erosion:

%Bf := (f ⊕B)− (f 	 B) .

It is an analog to the Euclidean norm of the gradient |∇f | if an image is re-
garded as a differentiable function. More precisely, for a differentiable image
f and disk-shaped structuring element Bh of radius h > 0 the expression

%Bh
f

2h
=

(f ⊕Bh)− (f 	 Bh)

2h

tends to |∇f | if h goes to zero. Observe that |∇f | equals the directional
derivative ∂ηf where η := ∇f/|∇f | gives the direction of the steepest ascent.
This can also be expressed as sup

ν∈S2

∂ν f . Here S2 denotes the unit circle in

IR3.
We also consider the internal gradient as the difference between the original
image and its erosion,

%−Bf := f − (f 	B) ,

and the external gradient as the difference between the dilation and the orig-
inal image:

%+

Bf := (f ⊕ B)− f .
In the differentiable case both one-sided gradients also approximate |∇f |.
It is also possible to define morphological analogs to the Laplacian ∆f =
∇>(∇f). The morphological Laplacian [59] we consider is given by the dif-
ference between external and internal gradient:

∆Bf := %+

Bf − %−Bf = (f ⊕B)− 2 · f + (f 	B) .

This operator is not exactly a Laplacian: It approximates the second direc-
tional derivative ∂ηηf where η denotes again the direction of the steepest
slope. It allows us to distinguish between influence zones of minima and
maxima: Regions with ∆Bf < 0 are regarded as influence zones of maxima,
while regions with ∆Bf > 0 are influence zones of minima. The zero-crossings
∆Bf = 0 can be interpreted as edge locations [38, 28, 35].
Morphological Laplacians are useful for designing so-called shock filters [36,
43, 26]. The idea behind this morphological image enhancement method is
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to apply dilations around maxima and erosions around minima:

SBf :=







f ⊕ B (∆Bf < 0),
f (∆Bf = 0),
f 	 B (∆Bf > 0).

Many variants of shock filters can be found in the literature [1, 21, 42, 48,
50, 60]. When they are applied iteratively, experiments show that their
steady state is given by a piecewise constant segmentation with discontinu-
ities (“shocks”) between adjacent segments.
Although not always considered as an morphological filter we include the
mid-range filter in our selection of operators:

midBf :=
1

2

(

(f ⊕ B) + (f 	B)
)

.

3 Supremum and Infimum of a Set of

Matrices

All morphological operations in the previous section result from suitable
combinations of dilations and erosions, i.e. they come down to maximum and
minimum operations. Thus, a suitable notion of maximum and minimum of
a set of symmetric matrices is the key to the definition of morphological
operations for tensor images. We start with a very brief account of some
notions from convex analysis necessary for the following.

3.1 Notions from Convex Analysis

A subset C of a vector space V is named cone, if it is stable under addition
and multiplication with a positive scalar. A subset B of a cone C is called
base if every y ∈ C, y 6= 0 admits a unique representation as y = r · x with
x ∈ B and r > 0. We will only consider a cone with a convex and compact
base.
The most important points of a closed convex set are its extreme points
characterised as follows: A point x is an extreme point of a convex compact
subset S ⊂ V of a vector space V if and only if S \ {x} is still convex.
The set of all extreme points of S is denoted ext(S). All extreme points are
necessarily boundary points, ext(S) ⊂ bd(S). According to the theorems of
Minkowski or Krein-Milman each convex compact set S in a space of finite
dimension can be reconstructed as the set of all convex combinations of its
extreme points [4, 34]:

S = convexhull(ext(S)).
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We will explore these notions in connection with Sym(n), the vector space
of symmetric n× n-matrices with real entries.

3.2 The Cone of the Loewner Ordering

Sym(n) is endowed with the scalar product 〈A,B〉 :=
√

trace(A>B). The

corresponding norm is the Frobenius norm for matrices: ‖A‖ =
n
∑

i,j=1

aij.

There is also a natural partial ordering on Sym(n), the so-called Loewner
ordering defined via the cone of positive semidefinite matrices Sym+(n) by

A,B ∈ Sym(n) : A ≥ B :⇔ A− B ∈ Sym+(n),

i.e. if and only if A− B is positive semidefinite.
Note that this partial ordering is not a lattice ordering, that is to say, the
notion of a unique supremum and infimum with respect to this ordering does
not exist [9].
The (topological) interior of Sym+(n) is the cone of positive definite matrices,
while its boundary bd(Sym(n)) consists of all matrices in Sym(n) with a
rank strictly smaller than n. It is easy to see that, for example, the set
{M ∈ Sym+(n) : trace(M) = 1} is a convex and compact base of the cone
Sym+(n). Furthermore, it is known [4] that the matrices v v> with unit
vectors v ∈ IRn, ‖v‖ = 1, are the extreme points of the set {M ∈ Sym+(n) :
trace(M) = 1} [4]. They have by construction rank 1 and for any unit vector
v we find v v>v = v · ‖v‖2 = v which implies that 1 is the only non-zero
eigenvalue. Hence trace(v v>)= 1 . Because of this extremal property the set
of matrices v v> with ‖v‖ = 1 carries the complete information about the
base of Loewner ordering cone:
convexhull({v v> : v ∈ IRn, ‖v‖ = 1}) is a base for the Loewner ordering
cone.
The penumbra P (M) of a matrix M ∈ Sym(n) is the set of matrices N that
are smaller than M w.r.t. the Loewner ordering:

P (M) := {N ∈ Sym(n) : N ≤M} = M − Sym+(n) ,

where we used the customary notation a + r S := {a + r · s : s ∈ S}
for a point a ∈ V , a scalar r and a subset S ⊂ V . Using this geo-
metric description the problem of finding the maximum of a set of matri-
ces {A1, . . . , Am} amounts to determining the minimal penumbra covering
their penumbras P (A1), . . . , P (Am). Its vertex represents the wanted max-
imal matrix A that dominates all Ai w.r.t the Loewner ordering. However,
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the cone itself is too complicated a structure to be handled directly. In-
stead we associate with each matrix M ∈ Sym(n) a ball in the subspace
{A : trace(A) = 0} of all matrices with zero trace as a completely descriptive
set. We will assume for the sake of simplicity that trace(M)≥ 0. This ball
is constructed in two steps: First, from the statements above we infer that
the set

{

M − trace(M) · convexhull{v v> : v ∈ IR, ‖v‖ = 1}
}

is a base for
P (M) contained in the subspace {A : trace(A) = 0}. We observe that the
identity matrix E is perpendicular to the matrices A from this subspace,
〈A,E〉 =

√

trace(A) = 0, and hence the orthogonal projection of M onto
{A : trace(A) = 0} is given by

m := M − trace(M)

n
E . (1)

Second, the extreme points of the base of P (M) are lying on a sphere with
center m and radius

r := ‖M − trace(M)v v> −m‖ = trace(M)

√

1− 1

n
. (2)

Consequently, if the center m and radius r of a sphere in {A ∈ Sym(n) :
trace(A) = 0} are given then the vertex M of the associated penumbra
P (M) is obtained by

M = m+
r

n

1
√

1− 1

n

E . (3)

With this information at our disposal, we can reformulate the task of finding
a suitable maximal matrix A dominating the matrices {A1, . . . , Am}: The
smallest sphere enclosing the spheres associated with {A1, . . . , Am} deter-
mines the matrix A that dominates the Ai. It is minimal in the sense, that
there is no smaller one w.r.t. the Loewner ordering which has this “covering
property” of its penumbra.
This is a non trivial problem of computational geometry and we tackle it by
using a sophisticated algorithm implemented by B. Gaertner [20]. Given a set
of points in IRd it is capable of finding the smallest ball enclosing these points.
Hence for each i = 1, . . . , m we sample within the set of extreme points
{Ai − trace(Ai)v v

>} of the base of P (Ai) by expressing v in 3d-spherical
coordinates, v = (sinφ cosψ, sinφ sinψ, cosφ) with φ ∈ [0, 2π[, ψ ∈ [0, π[.
It is quite instructive to consider the case n = 2 which can be visualised by
embedding Sym(2) in IR3 via

A = (aij)i,j=1,2 ←→
1√
2

(2a12, a22 − a11, a22 + a11)
>

9



as it is indicated in Figure 1(a). The transform is an isometry and maps
{A ∈ Sym(2) : trace(A) = 0} onto the x-y-plane. The extreme points are
the matrices vv> with v> = (cosϕ, sinϕ) where ϕ ∈ [0, 2π[. Hence the
aforementioned descriptive sets are discs in the x-y-plane determining the
penumbras associated with the set of matrices. The penumbras of the matri-
ces {A1, . . . , Am} are covered with the minimal penumbral cone whose vertex
represents the desired maximal matrix A. This minimal cone is found by cal-
culating the smallest circle, its descriptive set, enclosing the discs stemming
from the matrices {A1, . . . , Am}.
The geometric point of view allows us to justify the usage of the Loewner
ordering. To this end recall the formula

max(a1, a2) =
1

2
(a1 + a2) +

1

2
|a1 − a2| . (4)

valid for any real numbers a1 and a2. Let diag(α1, . . . , αn) denote a diagonal
matrix with entries α1, . . . , αn. We define for a symmetric matrix A ∈Sym(n)
with eigenvalue decomposition A = V diag(α1, . . . , αn)V

> the matrix |A| by

|A| := V diag(|α1|, . . . , |αn|)V >.

Then an elementary calculation in the case n = 2 (providing the smallest
enclosing circle of two circles) reveals that the maximal matrix dominating
A1 and A2 obtained through

max(A1, A2) =
1

2
(A1 + A2) +

1

2
|A1 − A2|

indeed coincides with the maximal matrix induced by the Loewner ordering.
This demonstrates that it is the Loewner ordering that stands behind the
natural generalisation of this “algebraic maximum” in (4) to symmetric ma-
trices. Note that an extension of this algebraic approach to sets of symmetric
matrices with more than two elements is not feasible.
We summarise the above construction in four steps: In order to determine
the maximal matrix A to a given set of matrices {A1, . . . , Am}

1. calculate their projections ai, i = 1, . . . , m according to (1),

2. determine the radii ri, i = 1, . . . , m, of the bases of their penumbras
through (2),

3. determine the centre and radius of the smallest ball enclosing these
bases,

4. recover the vertex of the associated penumbral cone via formula (3).
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This definition is in fact rotationally invariant, that means, it satisfies

max(V A1V
>, . . . , V AmV

>) = V max(A1, . . . , Am)V >

for any orthogonal matrix V .
To see this we first recall that

trace(VMV >) = trace(M)

for any orthogonal matrix V . Hence the radii of the bases are unaltered by
the V according to (2). In view of (1) the orthogonal projection mi, the
centres of the spheres, undergo the same transformation. Therefore their
smallest enclosing ball evolves from the original one by the same rotational
transformation. Finally, the vertex of the associated penumbral cone is just a
rotated version of the original vertex as (3) indicates. Also positive semidef-
initeness is preserved by construction:

max(A1, . . . , Am) ≥ Ai ≥ 0 for i = 1, . . . , m .

Finally, the above maximum of symmetric matrices depends continuously on
the input matrices since the associated projections and radii do so as the
formulas (1) and (2) show. By its very definition the smallest enclosing ball,
that is its centre and radius, as well as the associated penumbra with its
vertex (3) depend continuously on its input points.

We do not rely on the relation min(a1, a2) = 1

2
(a1 + a2) − 1

2
|a1 − a2|

with real numbers a1, a2 for the definition of an minimum, because it would
lead to a notion which does not preserve positive semidefiniteness. Instead
we take advantage of the relation

min(A1, . . . , Am) =
(

max
(

A1
−1, . . . , Am

−1
))−1

which is the matrix-valued counterpart of a readily established connection
between maximum and minimum for positive real numbers a1, . . . , am.

The rotational invariance of this notion of an maximum carries over from the
maximum since inversion of a matrix is a rotationally invariant operation:

(V >MV )−1 = V −1M−1(V >)−1 = V >M−1V ,

due to the orthogonality of the rotation matrix V .
Inversion also preserves the positiveness of matrices: If the eigenvalues λ1,...,λn

of a matrix M are positive, then so are the eigenvalues λ−1

1 ,...,λ−1
n of M−1.

At last, the continuity of the matrix inversion ensures the continuity of the
minimum of matrices defined above.
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4 Tensor-Valued Morphology

With these notions of minimum and maximum at our disposal the definitions
of the morphological operations from Section 2 carry over essentially verbatim
with one exception: The morphological Laplacian ∆B as defined in Section
2 gives a matrix in the tensor-valued setting. We make use of the trace of
the morphological Laplacian to steer the tensor-valued shock filter

SBfi,j :=











f ⊕ B (trace(∆Bf) < 0),

f (trace(∆Bf) = 0),

f 	 B (trace(∆Bf) > 0),

where subscripts i, j = 1, 2 indicate the components of the corresponding
matrices. It should be noted that unlike in the scalar-valued setting the
minimum/maximum definitions are not associative in the tensor case. Thus a
semi-group property of the derived dilation and erosion cannot be guaranteed.
However, this has no effects as long as these morphological operations are
not iterated. It is also worth noting that the matrix-valued morphological
gradient approximates Supν∈S2(∂νf) although it is no longer a particular
directional derivative.

Positive definite matrices A ∈ IR3×3 can be visualised as ellipsoids

{x ∈ IR3 : x>A−2x = 1} ,

that is as a level set of the quadratic form x>A−2x. In this geometric context
the minimum is represented by an ellipse that is contained in each of the
ellipses of the given set of matrices. The ellipse representing the maximum
surrounds all ellipse of the matrix set.
There is a natural interpretation of this ellipsoid in the context of diffusion
tensors: Assuming that a particle is initially located in the origin and is
subject to the diffusivity A, then the ellipsoid encloses the smallest volume
within which this particle will be found with some required probability after
a short time interval. The minimum and maximum of two positive definite
2× 2 matrices are displayed in Figure 1.

5 Experimental Results

For our numerical experiments we use a 128× 128× 30 field of 3-D tensors
originating from a positive definite 3-D DT-MRI data set of a human head.
For detailed information about the acquisition of this data type the reader
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Figure 1: (a) Left: The cone corresponding to the Loewner cone depicted in
IR3. (b) Middle: Penumbras of various matrices together with the smallest
covering penumbra. The tip of this penumbra marks the maximum of the
matrices under consideration. (c) Right: The maximum (largest ellipse)
and minimum (smallest ellipse) of two 2× 2-matrices.

is referred to [5] and the literature cited there.
Figure 2 (a) exhibits a 128 × 128 layer of these data while (b) displays an
enlarged section near the upper right corner of (a). We will visualise the
effect of the various morphological operations mentioned above by having a
closer look at this very section.
The data are represented as ellipsoids via the level sets of the quadratic form
{x>A−2x : x ∈ IR3} associated with a matrix A ∈ Sym+(3). In using A−2

the length of the semi-axes of the ellipsoid correspond directly with the three
eigenvalues of the positive definite matrix. A technical issue is that our data
set contains not only positive definite matrices. Because of the quantisation
there are singular matrices (particularly, a lot of zero matrices outside the
head segment) and even matrices with negative eigenvalues. The negative
values are of very small absolute value, and they result from measurement
imprecision and quantisation errors. While such values do not pose a problem
in the dilation process, the erosion, relying on inverses of positive definite
matrices, has to be regularised. Instead of the exact inverse A−1 of a given
matrix A we use (A+ εI)−1

Figure 3 shows dilations while Figure 4 displays erosions with three different
structuring elements, a stencil approximating a disk of radius 2, indicated
by BSE(2), a rod-shaped stencil in y-direction of length 3 and “thickness”
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1, and a similar stencil in z-direction, denoted by y-RSE(3) and z-RSE(3),
respectively. The z-direction is perpendicular to the image plane. Hence the
morphological operations utilizing z-RSE(3) and BSE(2) involve layers not
displayed here.
As known from scalar-valued morphology, the shape of details in the di-
lated and eroded images mirrors the shape of the structuring element. In
agreement with the scalar valued case we observe dilation to result in an
extension of areas with matrices having relatively large eigenvalues, that is,
large semi-achses of the representing ellipsoids. Clearly this extension is more
prominent for the structuring element BSE(2) in comparison with y-RSE(3)
and z-RSE(3).
We will observe this effect in general: the impact of a morphological operation
is more pronounced when BSE(2) is used than in the case of y-RSE(3) and
z-RSE(3) since the first structuring element contains more voxels.
As expected mid-range filtering results in blurring of the original image, see
Figures 5. Generally speaking, the larger the structuring element, the more
pronounced the blurring effect.
Figures 6 and 7 display the results of opening and closing operations with the
three structuring elements. In good analogy to their scalar-valued counter-
parts, both operations restitute the coarse shape and size of structures while
eliminating small-scale details formed by small (closing) or large (erosion)
values, respectively.
The top hat filters can be seen in Figures 8, 9, and 10. As in the scalar-
valued case, the white top hat (Figure 8) is sensitive for small-scale details
formed by values of high magnitude, i.e. matrices with generally large eigen-
values. At locations where such details are present, the matrices in the white
top-hat image are quite large. The black top hat (figure 9) exhibits con-
trary behaviour, responding with high values to small-scale details involving
matrices with relatively high anisotropy.
That they correspond indeed to two complementary classes of details becomes
clear from the third top-hat filter, the self-dual top-hat. It is the sum of
the white and black top hats which is also apparent from Figure 10. Note
that each of the three top hats eliminates the matrices in the prominent and
homegenous area in the northern central part of the original image 2(b). This
relatively large area violates the condition of being a “small-scale detail“,
hence the top hats output matrices that are too small to be displayed.
Figures 13, 12, and 11 show morphological derivative operators. Just as their
scalar analogs, internal and external morphological gradients behave similar,
both reveal a sensitivity for edge-like structures. The Beucher gradient is the
sum of the external and internal gradient. This washes out the information
provided by the “one-sided“ gradients. A similar effect is observed in scalar
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Figure 2: (a) Left: A slice of a 3-D tensor field extracted from a DT-MRI
data set of a human head. (b) Right: Enlargement of a section in the upper
right corner of (a).

morphology.
The Laplacian ∆m which is computed as the difference of the external and
internal gradient, produces positive definite matrices as well as indefinite
and negative definite ones. This is the explanation for the void areas in the
images 14: non-positive definite matrices cannot be displayed as ellipsoids
and hence are omitted. Figure 15 demonstrates how the Laplacian can be
used to control a shock filter. While applying dilation in pixels where the
trace of the Laplacian is negative, it uses erosion wherever the trace of the
Laplacian is positive. The result is an amplification of the structures present
in the original image 2(b) leading to a segmentation-like output.
All the examples of morphological operators feature strong dependence on
the type and shape of the employed structuring element. This is typical for
morphology both in the scalar- and in the matrix-valued case. And it is this
feature that constitutes the versatility of morphological techniques.

6 Conclusions

In this paper we have extended fundamental concepts of mathematical mor-
phology to the case of 3-dimensional matrix-valued data. Based on the
Loewner ordering for symmetric matrices novel notions of maximum and
minimum of a set of symmetric 3 × 3-matrices have been proposed. These
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Figure 3: (a) Left: Dilation with BSE(2) stencil. (a) Middle: Same with
y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.

Figure 4: (a) Left: Erosion with BSE(2) stencil. (a) Middle: Same with
y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.

Figure 5: (a) Left: Mid-range filter with BSE(2) stencil. (a) Middle: same
with y-RSE(3) stencil. (b) Right: same with z-RSE(3) stencil.
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Figure 6: (a) Left: Opening with BSE(2) stencil. (a) Middle: Same with
y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.

Figure 7: (a) Left: Closing with BSE(2) stencil. (a) Middle: Same with
y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.

Figure 8: (a) Left: White top hat with BSE(2) stencil. (a) Middle: Same
with y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.
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Figure 9: (a) Left: Black top hat with BSE(2) stencil. (a) Middle: Same
with y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.

Figure 10: (a) Left: Self-dual top hat with BSE(2) stencil. (a) Middle:
Same with y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.

Figure 11: (a) Left: Beucher-gradient with BSE(2) stencil. (a) Middle:
Same with y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.
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Figure 12: (a) Left: Internal-gradient with BSE(2) stencil. (a) Middle:
Same with y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.

Figure 13: (a) Left: External-gradient with BSE(2) stencil. (a) Middle:
Same with y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.

Figure 14: (a) Left: Morphological Laplacian with BSE(2) stencil. (a)
Middle: Same with y-RSE(3) stencil. (b) Right: Same with z-RSE(3)
stencil.
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Figure 15: (a) Left: Shock filtering with BSE(2) stencil. (a) Middle: Same
with y-RSE(3) stencil. (b) Right: Same with z-RSE(3) stencil.

notions extend the corresponding scalar-valued concept. They exhibit invari-
ance, positivity, and continuity properties essential for their use in the design
of morphological operations for matrix-valued data. For this reason we have
succeeded to generalise not only standard morphological operations but also
morphological derivatives and shock filters to the matrix-valued setting. The
technique developed for this purpose is considerably more general and sus-
tainable than former approaches for the case of 2× 2-matrices introduced in
[12]. The extended approach holds the potential to cope with 4× 4-matrices
or larger.
In the experimental part we have contrasted three types of structuring el-
ements with respect to their effect on actual 3D-DT-MRI data. Very sat-
isfyingly they feature the same characteristics as their scalar-valued coun-
terparts. In future investigations we will explore the filtering capabilities of
various operators within the wide framework of morphology. In doing so we
will apply morphological operators not only to positive definite matrix fields
but also to indefinite/negative definite matrix data sets.
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