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Abstract

We consider local minimizers u: R
2 ⊃ Ω → R

N of variational integrals like∫
Ω[(1+ |∂1u|2)p/2 +(1+ |∂2u|2)q/2] dx or its degenerate variant

∫
Ω[|∂1u|p + |∂2u|q] dx

with exponents 2 ≤ p < q < ∞ which do not fall in the category studied in [BF2].
We prove interior C1,α- respectively C1-regularity of u under the condition that
q < 2p. For decomposable variational integrals of arbitrary order a similar result is
established by the way extending the work [BF3].

1 Introduction

This paper is devoted to the study of the interior regularity of local minimizers u: R
2 ⊃

Ω → R
N of anisotropic variational integrals of the form

(1.1) J [u, Ω] =

∫

Ω

f(∇u) dx,

where Ω denotes a bounded open set in the plane and where the energy density f : R
2N →

R satisfies the estimate

(1.2) a|Z|p − b ≤ f(Z) ≤ A|Z|q + B for all Z ∈ R
2N

with exponents 2 ≤ p ≤ q < ∞ and constants a, A > 0, b, B ≥ 0. Due to (1.2) it is natural
to discuss J on the local Sobolev space W 1

p,loc(Ω; RN ) (see, e.g., [Ad] for a definition of
these spaces) and to call a function u from this class a local J-minimizer iff J [u, Ω′] < ∞
and J [u, Ω′] ≤ J [v, Ω′] for all v ∈ W 1

p,loc(Ω; RN) such that spt(u − v) ⊂ Ω′, where Ω′ is
any subdomain of Ω with compact closure in Ω. As a matter of fact, (1.2) is not sufficient
for building up a regularity theory for locally J-minimizing functions, in place of (1.2) a
suitable ellipticity condition is needed: for example, the validity of

(1.3) λ(1 + |X|2) p−2

2 |Y |2 ≤ D2f(X)(Y, Y ) ≤ Λ(1 + |X|2) q−2

2 |Y |2

for all X, Y ∈ R
2N with constants λ, Λ > 0 guarantees the strict convexity of f and

clearly implies (1.2). Then, if u is a local J-minimizer and if for the moment Ω is a
domain in some R

n, n ≥ 2, (1.3) ensures the following regularity results:

i.) (full interior regularity in the scalar case) If N = 1, then u is of class C1,α(Ω) for
any α < 1.

ii.) (partial regularity in the vector case) If N > 1, then there is an open subset Ω0 of
Ω such that u ∈ C1,α(Ω0; R

N) for any 0 < α < 1. Moreover, Ω − Ω0 is of Lebesgue
measure 0.

AMS Subject Classification: 49 N 60, 35 J 50, 35 J 35
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We refer the reader, for instance, to the papers of Esposito, Leonetti and Mingione
[ELM1]–[ELM3], of Marcellini [Ma1]–[Ma3], of Acerbi and Fusco [AF], of Fusco and Sbor-
done [FS] and of the authors [BF1]. We also mention the monograph [Bi], where one can
find further references. We wish to emphasize that all these results are valid either under
a condition of the form

(1.4) q < c(n)p, c(n) → 1 as n → ∞,

or they require bounds like

(1.5) q < p + 2

together with the assumption u ∈ L∞
loc(Ω; RN) and with additional structural hypothesis

imposed on f . It is also important to remark that counterexamples of Giaquinta [Gi2]
and (later) Hong [Ho] show that the smoothness of local minimizers can only be expected
if q and p are not too far apart, i.e. some variant of (1.4) is necessary for local regularity.
Of course the “two-dimensional vector case” (i.e. n = 2, N > 1) is included in ii.) but
for this particular situation we proved in [BF2]:

iii.) If n = 2 and N ≥ 1, then (1.3) together with q < 2p implies u ∈ C1,α(Ω; RN),
0 < α < 1.

The counterexamples of Giaquinta [Gi2] and Hong [Ho] as well as the papers of Acerbi and
Fusco [AF] and of Fusco and Sbordone [FS] also suggest to study classes of anisotropic in-
tegrands, which are in some sense decomposable, which means that in our two-dimensional
case we have f(∇u) = F (∂1u) + G(∂2u) for functions F , G: R

N → R of class C2 which
satisfy separately the isotropic ellipticity conditions

λ(1 + |X|2) p−2

2 |Y |2 ≤ D2F (X)(Y, Y ) ≤ Λ(1 + |X|2) p−2

2 |Y |2,(1.6)

λ(1 + |X|2) q−2

2 |Y |2 ≤ D2G(X)(Y, Y ) ≤ Λ(1 + |X|2) q−2

2 |Y |2(1.7)

for all X, Y ∈ R
N . Note that (1.6) and (1.7) imply the (p, q)-growth of f stated in (1.2).

Clearly (1.3) does not give (1.6), (1.7), we just get the anisotropic versions of (1.6), (1.7)
with exponent p on the l.h. sides and exponent q the r.h. sides. If we start from (1.6)
and (1.7), then we arrive at (1.3) but with exponent 2 instead of p on the l.h.s., and iii.)
implies the weak result:

iv.) If (1.6), (1.7) hold with exponents 2 ≤ p ≤ q < 4, then any local minimizer has
Hölder continuous first derivatives in the interior of Ω.

The first goal of our paper is to improve iv.) in the spirit of iii.), i.e. we like to show that
even under the new hypothesis on f the condition q < 2p gives the regularity of local
minimizers, more precisely:

THEOREM 1.1. Suppose that u ∈ W 1
p,loc(Ω; RN) locally minimizes the energy J defined

in (1.1) (with Ω ⊂ R
2) and let

f(X1X2) = F (X1) + G(X2), X1, X2 ∈ R
N ,
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with functions F and G satisfying (1.6) and (1.7). Then, if 2 ≤ p ≤ q < ∞ and if in
addition

(1.8) q < 2p

holds, we have u ∈ C1,α(Ω; RN) for all 0 < α < 1.

REMARK 1.1. In [BFZ2] we recently showed that this result holds in the scalar case
even if q = 2p, and that the statement also can be extended to domains Ω ⊂ R

n, n ≥ 3,
provided we know u ∈ L∞

loc(Ω). Earlier results in this spirit are due to Ural’tseva and
Urdaletova [UU].

REMARK 1.2. It is not hard to prove Theorem 1.1 in the subquadratic case, we leave
the details to the reader.

REMARK 1.3. Of course it would also be possible to replace (1.6) as well as (1.7)
by anisotropic conditions with exponents p1 < q1 in (1.6) and p2 < q2 in (1.7). Then
appropriate relations between pi and qi will imply regularity.

REMARK 1.4. In [Ma1], Theorem A, Marcellini considers a class of decomposable
integrals defined for scalar functions. Then, if p = 2 and Ω = R

2, he obtains regularity
without any restriction on q. It would be interesting to see if this result can be extended
to two-dimensional vector problems.

Next we formulate an extension of Theorem 1.1 to the higher order case, i.e. we replace
(1.1) by the functional

(1.9) J̃ [u, Ω] :=

∫

Ω

f̃(∇ku) dx

for functions u: R
2 ⊃ Ω → R

N . Here k ≥ 2 is a fixed integer and ∇ku denotes the
tensor of all weak partial derivatives of order k. In [BF3] we showed: if f̃ satisfies an

ellipticity condition analogous to (1.3) and if u is a local J̃ -minimizer (from the natural
class W k

p,loc(Ω; RN )), then we have u ∈ Ck,α(Ω; RN) for all α ∈ (0, 1) provided

(1.10) q < min{p + 2, 2p}.

As in [BF3] it is easy to check that it is sufficient to study the case k = 2 together with
N = 1. Then ∇2u(x) can be seen as an element of R

4, and we will select l fixed entries,
1 ≤ l ≤ 3, of E ∈ R

4 and denote this vector in R
l by EI , whereas EII ∈ R

4−l denotes the
vector of the remaining components. Then we assume that

(1.11) f̃(E) = F̃ (EI) + G̃(EII), E ∈ R
4,

with functions F̃ : R
l → R, G̃: R

4−l of class C2 satisfying

λ(1 + |X|2) p−2

2 |Y |2 ≤ D2F̃ (X)(Y, Y ) ≤ Λ(1 + |X|2) p−2

2 |Y |2,(1.12)

λ(1 + |U |2) q−2

2 |V |2 ≤ D2G̃(U)(V, V ) ≤ Λ(1 + |U |2) q−2

2 |Y |2(1.13)

for all X, Y ∈ R
l, U , V ∈ R

4−l with constants λ, Λ > 0.
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THEOREM 1.2. Suppose that f̃ satisfies (1.11)–(1.13) for exponents 2 ≤ p < q < ∞,
and let u ∈ W 2

p,loc(Ω) denote a local J̃-minimizer. Then u is of class C2,α(Ω) for any
α ∈ (0, 1) provided

(1.14) q < 2p.

REMARK 1.5. If k ≥ 2, then under comparable conditions on the decomposition of f̃ ,
we get u ∈ Ck,α(Ω) if again (1.14) is satisfied.

REMARK 1.6. In contrast to (1.10), (1.14) does not require the additional bound q <
p + 2.

Our paper is organized as follows: in Section 2 we introduce a suitable local regu-
larization and recall some results on uniform local higher integrability and higher weak
differentiability, where we can follow the lines of, e.g., [BF1], [BF2] with minor modifica-
tions. Then it is no longer possible to benefit from the paper [BF2]: the approach towards
regularity based on techniques introduced by Frehse and Seregin [FrS], which was carried
out in [BF2], does not work if (1.3) is replaced by (1.6) and (1.7). In Section 3 we apply a
new tool, namely a lemma on the higher integrability of functions established in [BFZ1],
to overcome this difficulty and to complete the proof of Theorem 1.1. In Section 4 we
briefly indicate how to adjust the foregoing arguments in order to handle the situation
described in Theorem 1.2, and in Section 5 we give some comments concerning the de-
generate case. In the appendix we state the above mentioned (Gehring-type) lemma in a
form valid for any dimension.

2 Preparations for the proof of Theorem 1.1

Suppose that the assumptions of Theorem 1.1 are satisfied and consider a local J-
minimizer u. Fix two subdomains Ω1, Ω2 s.t. Ω1 ⋐ Ω2 ⋐ Ω, and denote by um, m ∈ N,
the mollification of u with radius 1/m, in particular ‖um − u‖W 1

p (Ω2) → 0 as m → ∞. We
let

ρm := ‖um − u‖W 1
p (Ω2)

[∫

Ω2

(1 + |∇um|2)q/2 dx

]−1

and introduce the functional

Jm[w, Ω2] := ρm

∫

Ω2

(1 + |∇w|2)q/2 dx + J [w, Ω2].

Finally, we consider the sequence um ∈ W 1
q (Ω2; R

N) of solutions of the minimization
problem

Jm[·, Ω2] → min in um+
◦

W
1
q(Ω2; R

N).

The following facts have been established for example in [BF1]–[BF3]:

LEMMA 2.1. We have as m → ∞:
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i) um ⇁ u in W 1
p (Ω2; R

N),

ii) ρm

∫

Ω2

(1 + |∇um|2)q/2 dx → 0,

iii)

∫

Ω2

f(∇um) dx →
∫

Ω2

f(∇u) dx.

From [BF1], Lemma 2.3, we deduce:

LEMMA 2.2. Let P ∈ R
2N and define u∗

m(x) := um(x)−Px. Then, for any η ∈ C∞
0 (Ω2)

and for γ = 1, 2, it holds that
∫

Ω2

D2fm(∇um)(∂γ∇um, ∂γ∇um)η2 dx

≤ c

∫

Ω2

D2fm(∇um)(∇η ⊗ ∂γu
∗
m,∇η ⊗ ∂γu

∗
m) dx,(2.1)

c being a positive constant independent of m.

In (2.1) ⊗ denotes the tensor product of vectors. We use (2.1) to prove

LEMMA 2.3. For any finite t we have that ∇um ∈ Lt
loc(Ω2; R

2N ) uniformly w.r.t. to m.

Proof. We use the interpolation and hole-filling trick originating in [ELM1]. Let h̃1,m :=
(1 + |∂1um|2)p/4, h̃2,m := (1 + |∂2um|2)q/4, fix a disc B2R = B2R(x0) ⋐ Ω2, select radii
r ∈ (R, 3

2
R), ρ ∈ (0, R/2) and choose η ∈ C∞

0 (Br+ρ/2), η ≡ 1 on Br, |∇η| ≤ c/ρ,
0 ≤ η ≤ 1. Finally, we let α := p

2
χ with χ sufficiently large. Then, if we take the sum

w.r.t. γ in (2.1) and choose P = 0, we get (by Sobolev’s inequality with t ∈ (1, 2) defined
through 2χ = 2t

2−t
)

∫

Br

(1 + |∂1um|2)α dx +

∫

Br

(1 + |∂2um|2)α dx

≤
∫

B2R

(ηh̃1,m)2χ dx +

∫

B2R

(ηh̃2,m)2χ dx

≤ c

[(∫

B2R

|∇(ηh̃1,m)|t dx

) 2χ

t

+

(∫

B2R

|∇(ηh̃2,m)|t dx

) 2χ

t
]

≤ c

[∫

B2R

|∇(ηh̃1,m)|2 dx +

∫

B2R

|∇(ηh̃2,m)|2 dx

]χ

≤ c

[∫

B2R

|∇η|2h̃2
1,m dx +

∫

B2R

|∇η|2h̃2
2,m dx

+

∫

B2R

η2|∇h̃1,m|2 dx +

∫

B2R

η2|∇h̃2,m|2 dx

]χ

≤ c

[
1

ρ2

∫

B2R

(h̃2
1,m + h̃2

2,m) dx +

∫

Br+ρ−Br

|D2fm(∇um)(∇η ⊗ ∂γum,∇η ⊗ ∂γum)| dx

]χ

.

5



If we estimate
∫

Br+ρ−Bρ
... roughly through 1

ρ2

∫
Br+ρ−Br

(1 + |∇um|2)q/2 dx, then we have

shown that
∫

Br

(1 + |∇um|2)α dx

≤ c
1

ρ2

[∫

B2R

(h̃2
1,m + h̃2

2,m) dx +

∫

Br+ρ−Br

(1 + |∇um|2)q/2 dx

]χ

.(2.2)

By Lemma 2.1 the first integral on the r.h.s. of (2.2) can be estimated by a local constant
independent of m. If we choose χ to satisfy pχ > q, then with Θ ∈ (0, 1) we can write
1
q

= Θ
p

+ 1−Θ
pχ

, hence

‖∇um‖Lq ≤ ‖∇um‖Θ
Lp‖∇um‖1−Θ

Lpχ ,

where the norms are calculated w.r.t. Tr,ρ := Br+ρ − Br, and therefore

(2.3)
1

ρ2

∫

Tr,ρ

|∇um|q dx ≤ 1

ρ2

( ∫

Tr,ρ

|∇um|p dx
)Θq/p(∫

Tr,ρ

|∇um|pχ dx
)(1−Θ) q

pχ

.

Now from (1.8) it follows that (1−Θ) q
p

< 1, provided we choose χ > p
/
(2p−q). Then we

can apply Young’s inequality on the r.h.s. of (2.3) with the result (s1, s2 denoting positive
exponents)

(2.4)
1

ρ2

∫

Tr,ρ

|∇um|q dx ≤ cρ−s1

[∫

B2R

|∇um|p dx

]s2

+ c

[∫

Tr,ρ

|∇um|pχ dx

]1/χ

.

Using (2.4) in inequality (2.2) and “filling the hole”, it follows that ∇um ∈ L2α
loc(Ω2; R

2N )
uniformly in m. But α can be chosen arbitrary large, and Lemma 2.3 is established. �

From Lemma 2.3 combined with (2.1) (and the choice P = 0) we immediately deduce
that

(2.5) h̃1,m, h̃2,m ∈ W 1
2,loc(Ω2) uniformly w.r.t. m,

since by (2.1)
∫

Ω2

η2
[
|∇h̃1,m|2 + |∇h̃2,m|2

]
dx

≤ c‖∇η‖2
∞

[
ρm

∫

Ω2

(1 + |∇um|2)
q

2 dx +

∫

spt η

|D2F (∂1um)||∇um|2 dx

+

∫

spt η

|D2G(∂2um)| |∇um|2 dx

]
≤ c(η) < ∞.

Clearly the same argument gives in addition to (2.5)

(2.6) ρ
1

2
m(1 + |∇um|2)

q

4 =: h̃3,m ∈ W 1
2,loc(Ω2) uniformly w.r.t. m.
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Since we assume p ≥ 2, the ellipticity estimates (1.6) and (1.7) imply that
λ
∫
Ω2

η2(|∇∂1um|2 + |∇∂2um|2) dx is bounded from above by the l.h.s. of (2.1), thus with
a repetition of the above argument we get as a further consequence of (2.1)

(2.7) um ∈ W 2
2,loc(Ω2; R

N) uniformly w.r.t. m.

Since we already know um ⇁ u in W 1
p (Ω2; R

N), we may pass to a subsequence to deduce
from (2.7)

(2.8) ∇um → ∇u a.e. on Ω2.

We wish to remark that (2.8) extends to the case that p < 2. The reader will find the
necessary adjustments in [BF1].

3 Proof of Theorem 1.1

We continue to use the notation introduced in the previous section and recall from [BF1]
the inequality

∫

Ω2

D2fm(∇um)(∂γ∇um, ∂γ∇um)η2 dx

≤ −2

∫

Ω2

ηD2fm(∇um)(∂γ∇um, ∂γu
∗
m ⊗∇η) dx, η ∈ C∞

0 (Ω2),(3.1)

where from now on summation w.r.t. to γ is used. Note that (3.1) implies (2.1) with
the help of the Cauchy-Schwarz inequality applied to the bilinear form D2fm(∇um). Let
B2R = B2R(x0) ⋐ Ω2 and choose η ∈ C∞

0 (B2R) according to η ≡ 1 on BR, |∇η| ≤ c/R,
0 ≤ η ≤ 1. We further introduce the following auxiliary functions:

H2
m := D2fm(∇um)(∂γ∇um, ∂γ∇um)

= ρmD2g(∇um)(∂γ∇um, ∂γ∇um) + D2F (∂1um)(∂γ∂1um, ∂γ∂1um)

+D2G(∂2um)(∂γ∂2um), ∂γ∂2um),

where g(Z) := (1 + |Z|2)q/2 for Z ∈ R
2N , moreover

h1,m := (1 + |∂1um|2)
p−2

4 ,

h2,m := (1 + |∂2um|2)
q−2

4 ,

h3,m := (1 + |∇um|2)
q−2

4

√
ρm.

Recalling (2.1) and Lemma 2.3 one more time we get

(3.2) Hm ∈ L2
loc(Ω2) uniform w.r.t. m,
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moreover, the ellipticity estimates (1.6) and (1.7) show that

c1

[
ρm(1 + |∇um|2)

q−2

2 |∇2um|2 + (1 + |∂1um|2)
p−2

2 |∇∂1um|2

+(1 + |∂2um|2)
q−2

2 |∇∂2um|2
]
≤ H2

m ≤ c2[. . .](3.3)

holds with constants c1, c2 > 0 being independent of m. With this observation we deduce
from (3.1)

∫

BR

H2
m dx ≤ −2

∫

B2R

η
[
ρmD2g(∇um)(∂γ∇um, ∂γu

∗
m ⊗∇η)

+D2F (∂1um)(∂γ∂1um, ∂1η∂γu
∗
m) + D2G(∂2um)(∂γ∂2um, ∂2η∂γu

∗
m)
]
dx

≤ c

R

∫

B2R

[
ρm(1 + |∇um|2)

q−2

2 |∇2um||∇um − P |

+(1 + |∂1um|2)
p−2

2 |∇∂1um||∇um − P |
+(1 + |∂2um|2)

q−2

2 |∇∂2um||∇um − P |
]
dx

≤

(3.3)
c

R

∫

B2R

Hm|∇um − P |{h1,m + h2,m + h3,m} dx

≤ c

R

∫

B2R

Hmhm|∇um − P | dx,(3.4)

where hm := (h2
1,m + h2

2,m + h2
3,m)1/2. Let s = 4/3 and apply Hölder’s inequality as well as

the Sobolev-Poincaré inequality to the last line of (3.4) in order to deduce from (3.4)

(3.5)

∫
−
BR

H2
m dx ≤ c

[ ∫
−

B2R

(Hmhm)s dx

] 1

s
[ ∫

−
B2R

|∇2um|s dx

] 1

s

.

Here
∫
−

BR
etc. denotes the mean value, and in (3.4) we take P :=

∫
−

B2R
∇um dx. Finally

we observe using p ≥ 2 and (3.3)

|∇2um| =
(
|∂1∇um|2 + |∂2∇um|2

)1/2 ≤ cHm ≤ cHmhm,

thus (3.5) implies

(3.6)

[ ∫
−
BR

H2
m dx

] 1

2

≤ c

[ ∫
−

B2R

(hmHm)s dx

] 1

s

,

and if for example we require B2R ⊂ Ω1, then c is uniform in B2R and also in m. In order
to apply Lemma A.1 we let d := 2/s = 3/2, f := Hs

m, g := hs
m in this lemma, so that
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(3.6) can be rewritten as [ ∫
−
BR

f
d
dx

]1/d

≤ c

∫
−

B2R

fg dx.

From (3.2) we get f ∈ Ld
loc(Ω2), and it remains to check if exp(βgd) ∈ L1

loc(Ω2) for
arbitrary β > 0, i.e. if

(3.7) exp(βh2
m) ∈ L1

loc(Ω2)

(of course everything is meant uniform in m). To prove (3.7) we let h̃m := (h̃2
1,m + h̃2

2,m +

h̃2
3,m)1/2 and observe that

|∇h̃m| ≤ 1

h̃m

(
h̃1,m|∇h̃1,m| + h̃2,m|∇h̃2,m| + h̃3,m|∇h̃3,m|

)

≤ |∇h̃1,m| + |∇h̃2,m| + |∇h̃3,m|,

and (2.5), (2.6) give |∇h̃m| ∈ L2
loc(Ω2) uniformly w.r.t. m. This implies by Trudinger’s

inequality (see [GT], Theorem 7.15)

(3.8)

∫

Bρ

exp
(
β0h̃

2
m

)
dx ≤ c(ρ) < ∞

for disks Bρ ⋐ Ω2 with β0 depending on the W 1
2 (Bρ)-norm of h̃m. From the definition of

the function hm it is immediate that

h2
m ≤ c h̃2(1−2/q)

m ,

so that by (3.8) for any β > 0
∫

Bρ

exp(βh2
m) dx ≤

∫

Bρ

exp
(
cβh̃2(1−2/q)

m

)
dx

≤
∫

Bρ

exp
(
β0h̃

2
m + c(β)

)
dx < ∞,

and (3.7) follows. Lemma A.1 implies

(3.9)

∫

Bρ

H2
m logc0β(e + Hm) dx ≤ c(β, ρ) .

Let σ1,m := DF (∂1um). Then

|∇σ1,m|2 = ∂γ

(
DF (∂1um)

)
· ∂γσ1,m

= D2F (∂1um)(∂γ∂1um, ∂γσ1,m)

≤ c(1 + |∂1um|2)
p−2

2 |∇∂1um| |∇σ1,m|
≤ c Hmh1,m|∇σ1,m|,

9



and we get |∇σ1,m| ≤ cHmh1,m ≤ cHmhm. But as demonstrated in [BFZ1] (compare
the calculations after inequality (2.11)) the latter estimate together with (3.9) and the
inequality

∫
Bρ

exp(βh2
m) dx ≤ c(β, ρ) implies

(3.10)

∫

Bρ

|∇σ1,m|2 logα
(
e + |∇σ1,m|

)
dx ≤ c(α, ρ),

and (3.10) also holds with σ1,m replaced by σ2,m := DG(∂2um), where α is arbitrary large.
If α > 1, (3.10) shows that the vectors σ1,m, σ2,m are continuous uniformly w.r.t. m,
see, e.g., [KKM], Example 5.3. Alternatively, we may use Lemma A.2 (choose E as a
disc of radius ρ and apply a scaled version of (A3)) combined with the variant of the
Dirichlet-growth theorem given by Frehse [Fr], p.287, to deduce the uniform continuity
of σ1,m and σ2,m. Since DF and DG are isomorphisms R

N → R
N , we get the uniform

continuity of ∂1um, ∂2um, hence the sequence {∇um} is uniformly continuous. Recalling
(2.8) and using Arcela’s theorem, we have shown that u is in the space C1(Ω2; R

N). If we
let u = ∂γu, γ = 1, 2, then

0 =

∫

Ω

D2f(∇u)(∇u,∇ϕ) dx for allϕ ∈ C∞
0 (Ω; RN )

is an elliptic system for u with coefficients D2f(∇u) of class C0, thus u ∈ C0,α(Ω; RN),
0 < α < 1, follows from classical results (see e.g. [Gi1]). �

4 Proof of Theorem 1.2

In accordance with [BF3] we now let

ρm := ‖um − u‖W 2
p (Ω2)

[∫

Ω2

(
1 + |∇2um|2

)q/2

]−1

,

J̃m[w, Ω2] := ρm

∫

Ω2

(
1 + |∇2w|2

) q
2 dx + J̃ [w, Ω2]

for functions w ∈ W 2
q (Ω2), and denote by um the J̃m[·, Ω2]-minimizer in um+

◦

W 2
q(Ω2),

where um is defined as in Section 2. Lemma 2.1 remains valid with obvious modifications
and as a substitute for (2.1) we get (compare the inequality stated in Step 4 of Section 2
of [BF3])

∫

Ω2

η6D2fm(∇2um)(∂γ∇2um, ∂γ∇2um) dx

≤ −
∫

Ω2

D2fm(∇2um)
(
∂γ∇2um,∇2η6∂γu

∗
m + 2∇η6 ⊗∇∂γu

∗
m

)
.(4.1)

Here η ∈ C∞
0 (Ω2) is arbitrary and u∗

m(x) := u(x)− k(x), where k(x) is any polynomial of
degree ≤ 2. Choosing k = 0 in (2.1) we can adjust Step 3 in Section 2 of [BF3] along the

10



lines of Section 2 to deduce ∇2um ∈ Lt
loc(Ω2) uniformly w.r.t. m for any t < ∞. During

this procedure the quantities ∂1um, ∂2um have to be replaced by (∇2um)I , (∇2um)II ,
respectively, for example we now have h̃1,m = (1 + |(∇2um)I |2)p/4, etc. In the same spirit
we deduce (2.5) and (2.6), (2.7) has to be replaced by um ∈ W 3

2,loc(Ω2) uniformly w.r.t. to
m, and (2.8) now reads ∇2um → ∇2u a.e. on Ω2. In Section 3 we replace the old function
Hm by

H2
m := D2f̃m(∇2um)(∂γ∇2um, ∂γ∇2um),

and get from (4.1) (with an obvious new meaning of h1,m, h2,m, h3,m, hm)

(4.2)

∫

BR

H2
m dx ≤ c

∫

B2R

Hmhm

[
|∇2η6||∇um −∇k| + |∇η6| |∇2um −∇2k|

]
dx.

This is exactly (2.18) in [BF3], and with the same calculations as in this paper we get from
(4.2) after appropriate choice of k the validity of (3.6). The hypothesis of Lemma A.1

are still valid, so that we can deduce (3.9). Next we let σI,m := DF̃
(
(∇2um)I

)
, σII,m :=

DG̃
(
(∇2um)II

)
and get the uniform continuity of σI,m, σII,m, from which now the con-

tinuity of ∇2u follows. For the higher regularity of u we can quote Section 2, Step 5, of
[BF3].

5 Remarks on the degenerate case

In order to simplify our exposition and to benefit from our earlier work we have stated our
results for the non-degenerate case by the way excluding the example

∫
Ω
[|∂1u|p+|∂2u|q]dx,

2 ≤ p < q < ∞, or more general densities f(∇u) = F (∂1u) + G(∂2u) for which

λ|X|p−2|Y |2 ≤ D2F (X)(Y, Y ) ≤ Λ(1 + |X|2) p−2

2 |Y |2 ,(5.1)

λ|X|q−2|Y |2 ≤ D2G(X)(Y, Y ) ≤ Λ(1 + |X|2) q−2

2 |Y |2(5.2)

is true with constants λ, Λ > 0 and for all X, Y ∈ R
N . Under these assumptions we have

a regularity result which is slightly weaker than the conclusion formulated in Theorem
1.1:

THEOREM 5.1. Suppose that u ∈ W 1
p,loc(Ω; RN) locally minimizes the energy J from

(1.1) and let f(X1X2) = F (X1)+G(X2), X1, X2 ∈ R
N , with F and G satisfying (5.1) and

(5.2) for exponents 2 ≤ p ≤ q < ∞. Then, if (1.8) holds, u is continuously differentiable
in Ω.

REMARK 5.1. Of course a corresponding version of Theorem 1.2 is valid, if we replace
(1.12) and (1.13) by their degenerate variants.

Sketch of the proof of Theorem 5.1. The following calculations have to be made precise
by approximation, which we leave to the reader. We have (compare (3.1))

(5.3)

∫

Ω

D2f(∇u)(∂γ∇u, ∂γ∇u)η2 dx ≤ −2

∫

Ω

D2f(∇u)(∂γ∇u, ∂γu
∗ ⊗∇η) dx

11



for any η ∈ C∞
0 (Ω). Again we use summation w.r.t. γ. In (5.3) u∗ denotes the function

u − Px for a matrix P ∈ R
2N . We let

H2 := D2f(∇u)(∂γ∇u, ∂γ∇u),

h1 := (1 + |∂1u|2)
p−2

4 ,

h2 := (1 + |∂2u|2)
q−2

4 ,

h := (h2
1 + h2

2)
1

2

and get from (5.3), if η ≡ 1 on a disc BR = BR(x0), η ≡ 0 outside of B2R ⋐ Ω, 0 ≤ η ≤ 1
and |∇η| ≤ c/R (see (3.4))

(5.4)

∫

BR

H2 dx ≤ c

R

∫

B2R

Hh|∇u − P | dx.

Clearly (5.4) implies the “starting inequality” (compare (3.6))

(5.5)

[ ∫
−
BR

H2 dx

] 1

2

≤ c

[ ∫
−

B2R

(hH)
4

3 dx

] 3

4

,

and in order to combine (5.5) with the lemma from the appendix we have to check
the validity of (3.7) for the function h in place of hm. Introducing h̃1 := |∂1u|p/2,
h̃2 := |∂2u|q/2 and h̃ := (h̃2

1 + h̃2
2)

1/2 we have as before |∇h̃| ≤ |∇h̃1| + |∇h̃2|, and
since the functions h̃1, h̃2 are of class W 1

2,loc, we arrive at (3.8) for the function h̃,
which implies (3.7) with minor changes in the calculation. The same arguments as
used in Section 3 then give continuity of ∂1u and ∂2u, so that we deduce u ∈ C1(Ω; RN). �

REMARK 5.2. Due to the degeneracy of the problem we cannot use the hole-filling
argument originating in [FrS] and successfully applied in [BF4] in order to deduce from
∇u ∈ C0(Ω; R2N) the local Hölder continuity of the gradient for some exponent 0 < α < 1.

Appendix. A lemma on the higher integrability of

functions

The following result has been established in [BFZ1], Lemma 1.2.

LEMMA A.1. Let d > 1, β > 0 be given numbers. Consider functions f , g, h from a
domain G ⊂ R

n, n ≥ 2, being non-negative and satisfying

f ∈ Ld
loc(G), exp(βgd) ∈ L1

loc(G), h ∈ Ld
loc(G).

Suppose further that there is a constant C > 0 such that

(A.1)

[ ∫
−
BR

f
d
dx

] 1

d

≤ C

∫
−

B2R

fg dx + C

[ ∫
−

B2R

h
d
dx
] 1

d

12



holds for all balls B2R = B2R(x0) ⋐ G. Then there exists a real number c0 = c0(n, d, C)
as follows: if

(A.2) h
d
logc0β(e + h) ∈ L1

loc(G),

then the same is true for f .

It follows from Lemma A.1 (see Corollary 1.3 in [BFZ1])

LEMMA A.2. Suppose that f , g, h are the same as in Lemma A.1, and that (A.1) is

true for all balls B2R = B2R(x0) ⋐ B1(0) ⊂ R
n. Suppose also that h

d
logc0β(e + h) ∈

L1
loc(B1(0)), where c0 is as in Lemma A.1. Then

(A.3)

∫

E

f
d
dx ≤ c log−c0β

(
e +

1

Ln(E)

)

for all measurable sets E ⊂ B1/2(0), where the constant c depends only on n, d, C, β, f ,

g and h but not on the set E, and Ln(E) denotes the n-dimensional Lebesgue measure of
the set E.

References

[Ad] Adams, R. A., Sobolev spaces. Academic Press, New York-San Francisco-London
1975.

[AF] Acerbi, E., Fusco, N., Partial regularity under anisotropic (p, q) growth condi-
tions. J. Diff. Equ. 107, no. 1 (1994), 46–67.

[Bi] Bildhauer, M., Convex variational problems: linear, nearly linear and anisotropic
growth conditions. Lecture Notes in Mathematics 1818, Springer, Berlin-
Heidelberg-New York, 2003.

[BF1] Bildhauer, M., Fuchs, M., Partial regularity for variational integrals with
(s, µ, q)-growth. Calc. Var. 13 (2001), 537–560.

[BF2] Bildhauer, M., Fuchs, M., Two-Dimensional anisotropic variational problems.
Calc. Var. 16 (2003), 177–186.

[BF3] Bildhauer, M., Fuchs, M., Higher-order variational problems on two-dimensional
domains. To appear in Ann. Acad. Sci. Fenn. math.

[BF4] Bildhauer, M., Fuchs, M., Smoothness of weak solutions of the Ramberg/Osgood
equations on plane domains. To appear.

[BFZ1] Bildhauer, M., Fuchs, M., Zhong, X., A lemma on the higher integrability of
functions with applications to the regularity theory of two-dimensional general-
ized Newtonian fluids. Manus. Math. 116 (2005), 135–156.

13



[BFZ2] Bildhauer, M., Fuchs, M., Zhong, X., Variational integrals with a wide range of
anisotropy. To appear.

[ELM1] Esposito, L., Leonetti, F., Mingione, G., Regularity results for minimizers of
irregular integrals with (p,q)-growth. Forum Math. 14 (2002), 245–272.

[ELM2] Esposito, L., Leonetti, F., Mingione, G., Regularity for minimizers of functionals
with p-q growth. Nonlinear Diff. Equ. Appl. 6 (1999), 133–148.

[ELM3] Esposito, L., Leonetti, F., Mingione, G., Sharp regularity for functionals with
(p,q) growth. J. Diff. Eq. 204 (2004), 5–55.

[Fr] Frehse, J., Two dimensional variational problems with thin obstacles.
Math. Z. 143 (1975), 279-288.

[FrS] Frehse, J. Seregin, G., Regularity of solutions to variational problems of the
deformation theory of plasticity with logarithmic hardening. Proc. St. Petersburg
Math. Soc. 5 (1998), 184-222. English translation: Amer. Math. Soc. Transl. II,
193 (1999), 127–152.

[FS] Fusco, Sbordone, Some remarks on the regularity of minima of anisotropic inte-
grals. Comm. P.D.E. 18, 153–167 (1993).

[Gi1] Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear
elliptic systems. Ann. Math. Studies 105, Princeton University Press, Princeton
1983.

[Gi2] Giaquinta, M., Growth conditions and regularity, a counterexample.
Manus. Math. 59 (1987), 245–248.

[GT] Gilbarg, D., Trudinger, N.S., Elliptic partial differential equations of second or-
der. Grundlehren der math. Wiss. 224, second ed., revised third print., Springer,
Berlin-Heidelberg-New York 1998.

[Ho] Hong, M.C., Some remarks on the minimizers of variational integrals with non
standard growth conditions. Boll. U.M.I. (7) 6-A (1992), 91–101.
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