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Abstract

We prove local gradient bounds and interior Hélder estimates for
the first derivatives of functions u € Wlll oc(£2) which locally minimize
the variational integral I(u fQ f(Vu) dz subject to the side con-
dition ¥ < u < W, We estabhsh these results for various classes
of integrands f with nonstandard growth, for example, in the case of
smooth f the (s, u, ¢)—condition is sufficient, a second class consists of
all convex functions f with (p, ¢)—growth.

AMS Subject Classification: 49N60, 35J85, 49J40
Key words: nonstandard growth, (double) obstacle problems, apriori esti-
mates, regularity

1 Introduction

In this note we discuss the regularity properties of functions u € WY, which
locally minimize the variational integral I(u) = [, f(Vu)dz subject to the
constraint ¥; < u < WU, almost everywhere on Q (double obstacle problems).
Here Q denotes a bounded domain in R*, n > 2, and f: R* — [0,00)
is a given strictly convex function such that f(Z) grows faster than |Z| as
|Z| — oo. To be precise we briefly summmarize our setting. We consider
locally Lipschitz functions ¥, ¥y such that ¥y — ¥; > m holds for a positive
number m and we say that u € W ,,.(Q) is locally I-minimizing with respect
to the (double) side condition: ¥; < u < U, iff f(Vu) is in L}, (Q) and

I(u,spt(u—v)) = / ( )f(Vu) dz )
spt(u—v 1.1
< / f(Vv)dz = I(v,spt(u—v))
spt(u—wv)

holds for any v € W 10c(€2) such that spt(u—v) € Q and ¥; < v < W, almost
everywhere in €. Constrained problems of this type have been recently faced
by few authors under different assumptions, covering degenerate energy den-
sities f (see [C], [MUZ]), possibly with nonstandard growth conditions of a
particular type (see [LIE]). Here we investigate the smoothness of local min-
imizers under growth and differentiability assumptions on f which are quite
different from the standard hypotheses usually considered, proving new reg-
ularity results recovering and substantially extending most of the previous
ones available in the literature. Before going into details let us briefly out-
line the history of the regularity results for the single and double obstacle



problem. The most common case is the so—called p-growth behaviour of f
which means that f is of class C? satisfying

ZIP < f(Z2) < L((1+|27), (1.2)
p—2 p—2
v(1+12]7) 7 |Y]P < D (2)(Y,Y) < L(1+|2]°) > [Y[* (1.3)
for all Z, Y € R® with positive constants v, L and with a fixed exponent
p > 1, we refer the reader to the papers [MIZ], [CL], [LIN], [MUZ], [FU1,2]
and the references quoted therein. Of course it should be mentioned that the
classical case p = 2 is extensively treated in the monographs [KS], [FR]. Un-
der the assumptions (1.2) and (1.3) optimal smoothness of local minimizers
(depending on the structure of ¥; and W,) has been established, for example,
it is shown in [MUZ] that any solution u of (1.1) has Holder continuous first
derivatives provided that VW¥; and V¥, are Holder continuous functions.
In recent years integrands f with nonstandard growth became object of in-
tensive investigation. Ten years ago Marcellini (see [M1-4]) replaced (1.2)
by the so—called (p, ¢)-growth condition

7P < f(2) < L(1+|2)9) (1.4)

with 1 < p < ¢ and proved (using also an appropriate version of (1.3)) C%-
regularity of unconstrained local minimizers provided that ¢ < -*% holds in
case n > 2. For related results also in the vectorial setting we refer to the
papers [M4] and [AF2].

On the other hand, many problems in Mathematical Physics (see, for exam-
ple, [FS3] or [FS2]) motivate the study of functionals of nearly linear growth
like

L(u) = /|Vu\ln(1+ Vul) dz (1.5)
0
or its iterated version
Li(u) = / V| 1n(1 +In(1+...In(1 + |Vul).. .)) dr  (1.6)
Q

which are obviously not of (p,q)-growth for any 1 < p < ¢. Partial C%
regularity results for free minimizers of energies given by (1.5) and (1.6)
covering also the vector-valued case were presented first in [FS2], [FS1] and
[FOJ; later on these results were completed in [EM] and full regularity was
proved in [MS] (see also [FM]).



The first result in our paper adresses the double obstacle problem for func-
tionals given by (1.5) and (1.6) but also covers the case of integrands like
f(Z) = |Z|PIn(1 + |Z]), its iterated versions and in addition includes in-
tegrands of (p, ¢)—growth as studied by Marcellini. We can even consider
integrands f of (s, u, g¢)—growth which means that f has to satisfy the fol-
lowing set of hypotheses: let F': Rf — R{ denote a continuous function, fix
some real number s > 1 and assume
. F(t) s

tliglo — =X and F(t) > cot® for large values of t. (1.7)
The integrand f is required to be a non-negative function of class C?(R")
such that for all Z,Y € R™:

aF(Z) < f(2); (L8)
D) 1ZP < (4 f(2); 1.9)

A1+1ZP) VP < DPH2)(,Y) < AQ+]Z)2)" [V (1.10)

—~~

where 1 € R, ¢ > 1 and ¢g, ¢1, c2, A, A denote positive constants; if n > 3
we assume in addition that

n

¢ < 2-n) (111)

n—2
is satisfied. Note that on account of ¢ > 1 (1.11) gives the upper bound
2
po< 1+, (1.12)

which we also assume in case n = 2. Under these hypotheses, our results are
summarized in the following

THEOREM 1.1

(a.) Assume that f satisfies (1.7)-(1.12). Then any solution u of (1.1) is
locally Lipschitz continuous if so are the two obstacles Wi and Vo, If we
assume the obstacles to have Holder continuous gradients, then the solution
is of class CL%(Q) for some 0 < o < 1.

(b.) If condition (1.9) is dropped and if we replace (1.11) by the stronger
condition

2
qg < (2—,u)+sﬁ, (1.13)
then we also obtain the conclusion of (a.).
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Let us briefly comment on our conditions:
(i.) (1.7) together with the second part of (1.10) implies s < ¢ (compare
[AF1], Lemma 2.1, if ¢ < 2). For this reason (1.13) is more restrictive than
(1.11), and (1.13) reduces to (1.11) if s reaches the optimal value g.
(ii.) The case of integrands with nearly linear growth like (1.5) and (1.6) is
covered choosing s = 1.
(iii.) Since we may assume that 2 — p < s (obvious if g > 1 and if y <0, in
the case 0 < p < 1 again compare [AF1], Lemma 2.1) we get from (i.) the
lower bound ¢ > 2 — u being of interest only in the case p < 1.
(iv.) In Section 3 we will construct an example of an integrand f,, sat-
isfying (1.10) precisely with exponents p and ¢ for a given range of values
for ;1 and g. The balancing condition (1.9) is also satisfied, moreover, the
growth of f,, is exactly ¢g. Thus we obtain regularity under the condition
< (2= mp)n/(n-2).
For the unbalanced case described in Theorem 1.1, (b.), we give an example
of an integrand f depending also on the parameter s by the way demonstrat-
ing the importance of condition (1.13).
(v.) Suppose that we are given numbers ¢ > p > 1 and that (1.10) holds
with 4 = 2 — p. This case corresponds to the version of (p,q)-growth in-
troduced by Marcellini in the paper [M2], where the growth behaviour is
formulated in terms of the second derivatives. Marcellini then proved reg-
ularity of unconstrained local solutions v assuming (1.11) but without any
balancing condition. Instead of this he requires u to be of class W,,,.(9),
hence in our setting we can choose s = ¢ and get regularity under the same
condition on ¢ and p as in [M2]. Thus we recover Marcellini’s regularity
result and extend it to the constrained case.
(vi.) Now let us assume that just (1.10) is true with g > p > 1, p =2 — p.
Then we have (1.7) with s = p, and part (b.) of Theorem 1.1 implies reg-
ularity in case that ¢ < p(n + 2)/n. The latter condition also occurs in the
second part of the paper [M2], it turns out to be sufficient to obtain existence
for the kind of equations considered by Marcellini.
There exist some preliminary versions of Theorem 1.1: in [FL] it is considered
the case of a single obstacle ¥ of class W2 (Q) for the logarithmic energy
introduced in (1.5) and partial C'-regularity was proved provided n < 4.
Assuming condition (1.13) with s = 1, the nearly linear setting was studied
in [FM] and singular points where excluded for any dimension n still dealing
with a single obstacle ¥ and also under stronger hypotheses on ¥ than stated
in Theorem 1.1 above.
Observe that a modification of Moser’s iteration argument was applied in
[FM]. Here we use De Giorgi’s technique which turned out to be useful in
the case of linear growth studied in [GMS], [BF] and which now is seen to
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cover any of the above mentioned growth conditions.

Next, we turn our attention to the double obstacle problem in the context
of energies with (p, g)—growth as stated in (1.4) (thus exluding integrals as
in (1.5) or (1.6)): We now move in a different direction by weakening, with
respect to the cases considered in the literature, not only the growth as-
sumptions but also those regarding the smoothness of the integrand f. Very
recently (see [FF] and [ELM]) some surprising regularity properties like Lip-
schtiz continuity were proved without any differentiability assumption on f.
Here we want to prove similar results in the constrained situation. More
precisely we obtain Lipschitz regularity of solutions without assuming any
differentiability property for f, in particular, any ellipticity condition in-
volving D?f is dropped. In place of this a “qualified” form of convexity (see
(1.15)) is assumed while the obstacles ¥, ¥, have to satisfy a local Lipschitz
condition.

THEOREM 1.2 Let f € C°(R") be such that:

q
2

(*+12P)% < £(2) < L(o®*+|2P)" + L(o*+|2P)*, (1.19)

/ (F(Z + Do) — (2)) da
[0,1]" . (1.15)

2
> v [ (4127 + Do) T Dy da
[0,1]”

for any Z € R, ¢ € C&((0,1)"), 1 < p < q<p®™ v >0 L >1,
o €[0,1]. Then any solution u € W,,.(Q) to (1.1) is locally Lipschitz con-
tinuous if so are the two obstacles Vi and V.
In addition to (1.14) and (1.15) suppose that

(i.) f € C*(R") ifp>2 oro >0
or
(ii.) f € C*(R* ~ {0}) NC*»~{(R") when 1 < p <2 and o = 0.

Moreover, we assume that for c = 0 we have

D2
lim supm <L < +o0. (1.16)

Z0 |2[P72

Then u is in the space C’llof(Q) provided V., Wy have locally Holder continuous
gradients.

We remark that the result of Theorem 1.2, which is obtained using an appro-
priate modification of the approximation and (Moser—) iteration technique
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presented in [ELM], is completely new even in the standard case p = ¢ and
also includes the degenerate p—case treated in [MUZ] (that follows choosing
o = 0). Actually the degenerate case in [MUZ] is extended not only because
the functional has (p, ¢)—growth but also since no hypotheses has been made
on the growth of the second derivatives of f: (1.16) only controls the kind of
degeneration of D?f.

Let us give some further comments on the hypotheses of Theorem 1.2: con-
dition (1.15) requires a kind of uniform (quasi-) convexity of our integrand
f, and in [FF] it is shown that under suitable hypotheses on f inequality
(1.15) is equivalent to the usual pointwise condition. We will comment on
this during the proof of the second part of Theorem 1.2, see Lemma 4.3.
So, comparing the assumptions of Theorem 1.1 and Theorem 1.2 we remark:
according to Lemma 2.1 of [AF1] the right-hand side of (1.10) implies the
right—hand side of (1.14) whereas the left—-hand side of (1.10) gives (1.15).
So, if f is smooth then Theorem 1.2 is a consequence of Theorem 1.1, which
holds under even weaker assumptions relating p and ¢q. On the other hand,
despite its apparently involved formulation the convexity condition (1.15) is
very general; for example, all integrands f of the form

f(Z) = 2P + WZ),

are included, where h is a general convex function satisfying nothing but a
g-growth assumption of the type 0 < h(z) < L(1+ |z|?). However, according
to this generality, the relation between p and ¢ is more restrictive than the
one stated in Theorem 1.1.

With obvious changes in notation (see Theorem 1.1) it should of course be
possible to give a variant of Theorem 1.2 also for nonsmooth convex inte-
grands f of nearly linear growth. Since the iteration technique requires some
technical modifications, we did not include this aspect for the sake of clear-
ness and brevity.

2 Proof of Theorem 1.1

In the following ¢ and ¢ will denote two sequences of positive real numbers
such that ¢, § — 0. From time to time we shall pass to any subsequence that
will still be denoted by ¢, d respectively. Moreover ¢ will denote a finite, pos-
itive constant, not necessarily the same in any two occurencies, while only
the relevant dependeces will be highlighted. The proof of Theorem 1.1 is
organized in five steps: approximation, linearization, a priori L?-estimates,
a priori L*°—estimates and the conclusion.



Step 1. (Approximation) Let {¢;}i~0 be a family of smooth mollifiers.
We denote by u,, ¥y ,, and ¥y, the e-mollification with kernel ¢, of u, ¥,
and W, respectively. Furthermore, let m > 0 be such that ¥, — ¥; > m and
and fix £ > 0 such that ¥y, —W¥; . > m/2 whenever 0 < e < & Wefix R >0
and zy € Q with the property Bog C {z € Q : dist(z,00) > ¢}, ¢ < &, where
B, := B,(x9). Then we define K. = {w € u.+ W/ (Bag) : V1. <w < Uy, }
and v, 5 € K. as the unique solution of the following Dirichlet problem

Js(w) = fs(Vw)dx ~» min in K, (2.1)
Bar

where, for any § > 0,

q
2

f5(Z2) = f(Z2)+6(1+]|2)

Observe that we have by standard results (e.g. [MUZ],[CL] and the references
given at the end of the proof of Lemma 2.1)

(2.2)

v, 5 € CV*(Byg) N WqZ,loc(BZR)

for some 0 < a < 1. ;From now on we shall drop the subscript &, § just
denoting

ves = v, f5 = f, U. = U, i€f{l,2}, K = K.

The full notation will be recovered later, in step 5.

Step 2. (Linearization)

LEMMA 2.1 Under the assumptions of Theorem 1.1, v is of class W2 (Bag)
for any t < oo and

Df(V’U) € th,loc(BQR) . (23)

Moreover, the equation

Df(Vv)-Vodz =/ pgdx (2.4)
Bsr

Byr
is valid for any ¢ € C§(Bar), where
g = 1g (—div (D f(vqll)}) + 1 (—div (D f(wx?)}) .
Here we have set

Si = {iL'EBQR:’U:\IJZ‘}, 16{1,2}



Proof of Lemma 2.1: Following the lines of [FM], [FL], [F1,2] or [BF] we fix
0 < s <m/10 and consider a function A, : [0, +00) — [0,1] of class C* such
that hy = 1 on [0, s], hs = 0 on [2s,+00) and A, < 0. Given n € Cj(Bag),
n >0, we let

wy = v+itnhso(v—U)

which belongs to the class K' if the positive number ¢ satisfies

t n < —
su .

. From the minimum property of v we deduce
; Df(Vv)-V(nhso(v—Ty))dz > 0,
2R
hence there is a Radon measure \; = \;(s) such that
DF(Vo)-V(hso(v—0,)) = / 0 (s). (2.5)
Bir Bar

Actually A;(s) does not depend on s (use the comparison function w; =
v+tnlhso(v—U1)—hgo(v—")], s < s, ne Ci(Bar), n>0, |t| >0 small
enough), hence we may write \; in equation (2.5). In order to estimate i,
we fix n € C}(Bar), n > 0, and observe by (2.5)

/ nd\; = Df(Vv)-Vnhso (v — V) dx
BZR BZR

+ Df(V¥;)-nV(hso (v —¥)) d

Bar

+ /B (Df(Vv) = DF(VE)) - (Vo = VU )nh, o (v — ;) da

< Df(Vv)-Vnhso (v — V) dz

Bsr

m\

div (Df(V¥1))nhso (v — ;) dx

2R

Df(VU,)-Vnhso (v — V) dx

Al / —div (Df(V‘Ill))) dx .
ByrNv= \I!l



Therefore \; is of the form
A= l[U:\pl]@l(—div (Df(V\Iﬁ))) x Lebesgue measure (2.6)

for a density function ©1: Q — [0,1]. In a similar way, using w; = v — tnhg o
(U9 —v) with s, ¢, n as stated before (2.5), we get the equation

— [ DY) V(nhyo (Ts - v)) da :/B ndda  (27)

Bsr

for another Radon measure A, indepedent of s. In place of (2.6) we get
Ay = 1p—u,)09 (div (Df(V\IIQ))> x Lebesgue measure . (2.8)
Putting together (2.5)—(2.8) we arrive at
Df(Vv) - V{go[hs o (v—Wy) + hy o (T — )] } dz
- /Bm (p{@llsl (—div (Df(V\IJl))) (2.9)

+0,1g, (—div (D f(V%))) } dz

Bar

being valid for all ¢ € C§(Bag) and any s € (0,m/10). Let us fix s and ¢ as
above. Then, for ¢ € R such that |¢| supg || < s, the function

wy = U+tg0{1— [hso(v—\Ill)—i-hso(\Ilg—U)]}

is in the class K/, the minimality of v implies

Df(Vv)-V{cp(l — [hao (v = Wy) + hyo (T, —v)])}d:r - 0.

Bar

Thus, we deduce from (2.9) that v EV[O/;(Q) is a weak solution of the equation
—div (Df(Vv)) = ¢

with ¢ € L*®(Byg). Recalling the growth condition (1.10) for D?f we see
(compare [KS] or [FM] for details) that v € W?(Bag) for any finite ¢. Hence
we may integrate by parts in (2.5) and (2.7) to get (2.6) and (2.8) with den-
sities = 1 which finally proves the Lemma. O



REMARK 2.2 Of course Lemma 2.1 is valid under weaker assumptions as
stated in Theorem 1.1.

Step 3. (A priori L9-estimates) To obtain uniform L?-estimates for Vv
we fix

M > 14+ [V [Ty + 1Vl Foe (8,0) (2.10)
and for 0 < p < R we let UL := {z € Bry,: 1+ |Vv|? > 3}.

LEMMA 2.3 There is a constant ¢ = ¢(R), independent of €,9, such that
for any x> 2M andn € Cj(Bgry,), 0<n<1,n=1 on Bg, |Vn| < % then

/ n? (1 + |VU|2)
UL
Proof of Lemma 2.3: Fix ¢ > 2M and let for all t € R

h(t) == min{max[t —1,0],1}, h(t) = hu(t) = R(M7't), (2.11)

hence h(t) = 0if t < M and h(t) = 1 if ¢t > 2M. In (2.4) we may replace
¢ by 0sp, where s € {1,... ,n}. Integrating by parts and using (2.3), we
obtain

Bsgr

©
-£ Cc

V2ol de < — \D?f(Vv)| |[Vv|* dx .
BR+pNBR

D*f(Vv) <85Vv, V(p) dr = — / g0spdzx (2.12)

Bsp Bar

remaining valid for any ¢ €W, (Q). Then we introduce the quantity:
I' = T(Vv) := 14 |Vo]?, (2.13)

and, by Lemma 2.1, we may pick as test function in (2.12) ¢ := n?*d,v h(F).
Since Vv = VU, almost everywhere on S; it is seen by (2.11) that h(F) =0
almost everywhere on S;. Thus the right-hand side of (2.12) vanishes and
we obtain (from now on summation w.r.t. s =1,---,n)

0 = D?*f(Vv) (85VU,V{772851) h(T) }) dx

Br+yp

= D?f(Vv)(95Vv, 8;Vv)n® h(T) dx

BRr+p

+ D?f(Vv)(8,Vv, VR(T))n® Osv dz (2.14)

Br+p

+ D?f(Vv)(8,Vv, V*)dsv h(T) dx

Br+p

= A1+A2+A3.

10



Since (%-h(l“) = 2h’(F) Vv o;Vv and K’ > 0 we see that A, is positive on
account of

Ay, = D?f(Vv)(V|Vv]?, V|Vo) R (T)n*dz > 0.

Br+p

Now use Young’s inequality to handle A3 and observe that

D?f(Vv)(Vn, V) dsv h(T) da

Brtp
< = |D2f (V)| |Vol? dz.
Bri,~Br
Finally, (2.14), (1.10) and 3 > 2M imply the assertion (ignoring the “J-
part” on the left hand side). O

As an application we get

LEMMA 2.4 Let the assumptions of Theorem 1.1 hold and let x :=n/(n—
2), if n > 3. In case n = 2 define a number x > 1 through the condition

> — in case (a.) of Theorem 1.1,

2s
S+2—pu—gq
Then there are local constants ¢ = ¢(R), 8 = B(n, s,q, 1), independent of €
and 9, such that:

/BR(1+|W\2) e < c{/Bm(Hf(W)) d:v}ﬁ.

Note that our assumptions imply ¢ < (2 — u)x. The proof given below in
fact will show that in case n = 2 we can choose for x any finite number. Of
course the constants will depend on the quantity x.

in case (b.) of Theorem 1.1.

Proof of Lemma 2.4: (a.): Let p = R, fix ¢ > 2M and define h(t) = h,.(t)
and I' according to (2.11), (2.13). Then we have with 1 as in Lemma 2.3 and
using Sobolev’s inequality

2—p)

/ (1+ |Vv]?) R < c/ (nh(F) [1+|Vof] ™ >2de—|-c(%)
Bgr Bar

< c{l—i—/
Bar

< )1+ T+ T +T3)",

V(nh(F) 1+ |Vo|?] 2_4&)2‘ dm]x

11



where we abbreviated
T, = / [Vn|* *(T) [1+|VU|2}2_;de,
Bsgr
T, = / 7 |VAa(D)|* [1+ \WF]%Edag,
Bagr

1= [ )

The bound for T} follows from 25 < £ and (1.7)—(1.8). Since VA(T') =0 on
the complement of UE ~ UE we may estimate T5 by

2

2-p
V[1+|Vu]?] *| dao.

15

IN

c() / 7 |Vh(D)|* dz
UE~UE,

c(%)/ 7 (14 Vo) ¥ |V da
UBUR,

IA

< (s, R) /UR(l-I-f(VU)) dz,

since 14 |Vv|? is bounded on U ~ Uf | where we used Lemma 2.3 and the
balancing condition (1.9). For T3 observe
2— 2
‘v 1+ Vo] * ‘ < C[14]|Vol]7" V2P,

hence Lemma 2.3 and (1.9) also give the bound for T3, i.e. the first part of
the lemma.

(b.): Wefix R <r < 3R/2,0 < p < R/2 and consider 7] € Cj(B,4,/2), 1 =1
on By, |Vij| < 7. As above we obtain

2=p)x

/(1+|vv|2) P ar < c{l—i—%/ (14 Vo) da
” Bsr X

—I-c/ (1+ \Vv|2)7%|V2v|2da: .
Br+p/2mU>}¢?'

Now we apply Lemma 2.3, where we replace R by r + p/2 and p by p/2.
Observing the growth condition for D?f we arrive at

/(1+|Vv|2)(2_2”)x dr < c{1+l2/ (1+\VU‘2)2‘EHd:E
g 2’ Bar (2.15)

+— (1+\Vv\2)%dx}x.

2
P” JB,ip~By
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This corresponds to the inequality given after (4.6) in [ELM], where we now
can choose t = q. With this choice, the following interpolation procedure of
[ELM] reads as

IVull, < [IVullg[IVull?

— (2—-u)x >’

where 6 € (0,1) is such that 1 = ¢ + -1=¢_ Note that the arguments of
q s (2-px
[ELM] require the bound
q
—(1—-40 1
7,10 <

which for n > 3 is equivalent to (1.13). If n = 2, then the above inequality
reads as x > s/(s+2— pu—q) which clearly holds according to our choice of x.
Thus we may follow the lines of [ELM] again to get the claim of the lemma. (]

Step 4. (A priori L*—estimates) Now let us introduce the following
notation:

w = Wy = In(1+|Vv|?),

A(h,r) = A.s(hyr) = {z€B,:w>h}, h>0,

where we always assume in the following that the balls By, are compactly
contained in (2.

LEMMA 2.5 Consider n € Cj(Bg),0 < n < 1. Then we have for any
k > ko(M)

/ (1+ |VU|2)1_§|VU)|2772(1$+/ (1+ |Vv]?)
A(k,R) A(k,R)

b
2

(w—k)*n*|IV*0|* dx
< c/ (14 [Vol)? (w— k)2 |V da. (2.16)
A(k,R)

Here C < 400 only depends on the data and is independent of & and k;
ko(M) denotes a constant depending only on Uy, Wy through the quantity M
appearing in (2.10).

Proof of Lemma 2.5:
(i.) In (2.12) we pick ¢ = n*dsvmaxw — k,0]. On [v = ¥;] we have
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maxw — k,0] = max[In(1 + |V¥;|?) — k£,0] = 0, provided k > ko(M) :=
supp, max;_12In(1+ [V¥;|?). Thus (2.12) reduces to

/ D2f(Vv)(8va,V{n28sv(w—k)}) dz = 0, k> ko(M). (2.17)
A(k,R)

Next observe

/ D?f(Vv) (0,Vv, 00 Vw) n° dx
A(k,R)

_ ! / D?f(Vv) (Vw, Vw) (1 + |[Vv|?) n* dx (2.18)
2 Jaw,r

A B
> 3 [ Vo) el s,
2 Jaw,r)

where we neglected the é—part of f on the right-hand side. It remains to
estimate

/ D?f(Vv) (0,Vv,VOw) n? (w—k)dz > 0,
A(k,R)

/ D*f(Vv) (8,Vv 950, Vn®) (w — k) dz
A(k,R)

[ DT (99 (14 9) o )

IN

/A(k R) (sz(vv) (VU), Vw))é n (1 + |VU|2)%

[

(D2£(90) (V,Vm)* (@ — k) (1+[V0P)" da

< 5/ D?f(Vv) (Vw, Vw) n* (1 + |Vv|?) dz
A(k,R)

+1/ D?f(Vv) (Vn, V) (w—k)* (1 + [Vv|*) dz.
A(k,R)

€

For € small enough we get from (2.17)
/ D?f(Vv) (Vo, Vo) 12 (1 + | Vo) da
A(k,R)
< C [ DY) (V0.V0) L+ I90]) (w17 da,
A(k,R)
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and by (1.10), (2.18) we have bounded the first integral on the right hand-
side of (2.16).
(ii.) This time we pick ¢ = n? ;v max|w — k,0]? in (2.12). As in (i) we get
for k > ko(M)

/ D?f(Vv)(0,Vv, 8, Vv) (w — k)1 dx
Ak, R)
+/ D?f(Vv) (050 0,Vv, Vw) 2 (w — k) n* dx (2.19)
Ak, R)
= —/ D?f(Vv) (0,Vv,Vn) 2n (w — k)? O,v dx .
A(k,R)

As for (2.18), by ellipticity the second integral on the left-hand side is > 0.
The right-hand side of (2.19) is bounded via

/ (D2 F(V)(8,V0, asvu)) %n(DQ F(V0)(Vn, Vn))% Vol (w— k)2 dz
A(k,R)
< C {6 / D?f(Vv) (0,Vv,0,Vv) n* (w — k) dz
A(k,R)

1

[V D) (V0 V) (o - B )
€ JA®,R)

and by choosing ¢ properly we get
/ D?f(Vv) (0;Vv,0,Vv) n* (w — k) dz
A(k,R)
< C [ VP D) (Y, V) (w0 = B o,
As k

which completes the proof of Lemma 2.5. O

Finally we introduce the notation
a(h,r) = ac5(h,r) = /
A

T(h,r) = T.5(h,r) = / (1+ |Vv|2)% (w—h)dz
A

to obtain

15



LEMMA 2.6 Let x > 1 as defined in Lemma 2.4 and h > ko(M) and
0 <r < R. Then we have

x=1

(2.) 7(h,7) < Ca(h,r)’x (R—r)"27(h,R)
(11.) a(h,r) < (h—=k)271(k,7), h>k>ko(M).

Proof of Lemma 2.6: (ii.) is immediate.

(i.): We consider n € C§(Bg) such that n =1 on B,, 0 < n < 1,|Vp| <
C(R—r)"". Again we let I' = I'(Vv) = 1+ |[Vv|* and select § € [0, £) to be
fixed later. Then by Sobolev’s inequality (for simplicity we let n > 3)

/ I (w—h)?de = / I'3f (w—h)>IPd
A(h,r) A(h,r)

< ( / P(-P)x (w—h)Qde)X
A(h,r)

x—1

(fr#4)°
A(h,r)

[\ J/

([,
A(h,R)

< CX/ ‘V(n(w—h)F
A(h,R)

~8) (1 — h)}QX dm) :
(g,@)

N

IN

2
dx

M

and the remaining integral splits into the sum of the following terms:

[P =Pt < o= (R,
A(h,R)

/ | Vw? T 7 dg < r.-hs. of inequality (2.16),
A(h,R)
ded 1_g<1-E
provided B < 5

/ n? (w—h)?T2 2|V dz
A(h,R)

< C/ n? (w—h)?T37 P71 V22 de < r-hs. of (2.16),
A(h,R)
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if again the above inequality holds for 5. So let us define g = %(q—i— pu)—1>0.
Finally

X < a(h, 7°)X>%1

follows from assumption (1.11) and altogether we have proved Lemma 2.6. O]

From Lemma 2.6 we deduce as in [GMS], Lemma 3.7, (compare [GI], Propo-
sition 5.1) the existence of a positive number d, d > ko(M)), such that

a(d,R/2) 7(d,R/2) = 0,
hence |A(d, R/2)| = 0
and in conclusion A (d, R/2) = (). This implies
Vo> < e on Bgp. (2.20)
By construction d is bounded in terms of the quantities 7(0, R) and a(0, R),

thus on account of Lemma 2.4 and (2.20) we have proved the gradient bounds
for v = v, 4,

Ve s

Lo(Br) < c, C =20 ( f5(Vues) dx) ) (2.21)
Bgr
Step 5. (Conclusion) Recovering the full notation we finally choose

—1 2q -t
§ = 6(e) = (1+e +||Vus||Lq(BzR>)

and let v. = v 4(), fe = fs(c). Using the minimality of v. and Jensen’s
inequality we have

/ F(|Vu|)dz < f(Vve)dx < fe(Vue) dz
B:zr Bar Bar (2_22)

< f(Vu)dx + o(e) .

Bagr

On one hand, (2.22) proves together with (2.21) uniform gradient bounds on
Bpg/2, on the other hand we may suppose on account of (2.22) that

v, —: v weakly in Wll(B2R)
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and almost everywhere in Bpg, thus ¥; < v < W,. Letting ¢ — 0 and using
lower semicontinuity we get

f(Vv)dz < liminf f(Vve)dz < f(Vu)dzx,
Bsr €20 By Bsr
and the minimality of u gives
f(Vu)dx = f(Vv)dz,
Bsg Bsgr

i.e. v = u by the uniqueness of minimizers. So far it is proved, via a stan-
dard covering argument, that the solution u is locally Lipschitz if so are the
obstacles. Once Vu is known to be bounded the type of growth of f becomes
irrelevant and the whole theorem follows (compare again [FM] and [MUZ]). O

3 Examples

Starting with the nearly linear case we construct an example satisfying (1.8)—
(1.10) with optimal exponents in (1.10): for u > 1 let

p(r) = / / (1+t%)"2 dtds, reRy,
0o Jo
1zl ps
(7)) = / / (1+t2)_% dtds = ¢(|Z]), Z€eR".
0o Jo
LEMMA 3.1 The function ® satisfies

(i.) D®(Z) = Z/01(1+t2|Z|2)5dt,

0P
VA
W) a7z ?

= |[0ap — 12| *ZaZg] /01(1 + 2| ZP)h dt
HZ| 2 ZaZs(1+ |2]7) 75

(i) D®Z)(V,Y) > VP0+|ZP)E,

() |[D*®(2)]|Z]> < C|Z]

forall Z, Y € R" with a suitable constant C' > 0.

18



Proof of Lemma 3.1: Using a linear transformation, the proof of (i.) and
(ii.) is obvious. Moreover, (iii.) is a consequence of (ii.) and follows by
considering the cases |Y - Z| < L|Y||Z| and |Y - Z| > 1|Y||Z]| respectively.
We like to remark that the exponent —p/2 occuring on the right—hand side
of (iii.) is the best possible which can be seen by considering Y parallel to
Z. Next we are going to prove (iv.): observing

D*%(Z)| = sup D*®(2)(Y,Y) < 2/0 (1+2[2]) >

|Y|:1

we get

1Z| 00
ZP’|D*®(Z)| < 2 |Z|/ (1+s%)5ds < 2 |Z|/ (1+5%)% ds,
0 0
the last integral being finite on account of y > 1. O

JFrom ¢'(r) < [7°(1 +¢%)#/2dt < oo it follows that ¢ is at most of linear
growth, thus we have to modlfy our construction.
Let ¢ > 1 and define p(t) = (1+1%)%/2. The function / is given for all n € Ny,
t € [2n,2n+ 2) by p(t) if 2n <t < 2n+ 1 and by

p(2n+1) + (t — 2n+1]) (p(2n + 2) — p(2n + 1))

if 2n+1 <t < 2n+2. We extend j to the whole line by setting 5(—t) = p(t),
t > 0, and consider a mollification (p). with some small &€ > 0.

LEMMA 3.2
(i.) (p)e is an N—function, i.e. conver with the additional property

lim ¢ (p).(t) = +oo.

t—+o00
(ii.) Let g(Z) = (p):(|Z]), Z € R". Then we have for all Z, Y € R"
0 < D*(2)(V,Y) < c(1+4]Z] ) |Y|2
(ii.) g satisfies for any Z € R"
ZPID%(2)] < e(g(Z) +1).

Here c denotes a positive constant.
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Proof of Lemma 3.2: By construction we have (i.). Now fix e = 1/10 and
consider the mollification

(p)e(s) = sl/_+ook (S_t) p(t) dt .

0o 3

We fix ng € N and sketch (ii.) and (iii.) for a given s € U(ty), where U(tp)

is some small neighbourhood of ¢y = 2ng + 1: to this purpose we let ¢ = =%
and compute
~\I! . * ]f /! _ d k(a’) 1 ~! _ 1 ~!
(p)2(s) = () p"(s —ey) dy + — { lim §'(t) — lim 5'(¢) | . (3.1)
a 9 tito tTto
Now p is strictly convex implying
limp'(t) < p'(2n+2) and limp'(t) > p'(2n),
tlto t1to
thus by (3.1) there is a constant (depending on ¢) such that
(P):(s) < (pL(s)+c(p(2n+2)—p(2n))
(3.2)
= (p(s)+cp'(§), £€(2n,2n+2).
With (3.2) the lemma is proved by direct computations. O

Given Lemma 3.2, we finally let

[(2) = 9(2)+9(2), ZeRr,
F(t) = () +¢(t), tER.

If we choose p, g € (1,2) then f satisfies (1.8)—(1.10), (1.7) with s = ¢ and
due to the degeneracy of D?g the lower bound in (1.10) can not be improved.
Thus, if we also impose (1.12), then f is admissible in Theorem 1.1.

Suppose we are given numbers ¢ > p > 1, then we replace i by 2—p and ob-
tain completly analogous results with balancing condition |Z|? |D?*®(Z)| <
c¢(1+ |ZJ?). The function g remains unchanged. In particular, if we now
choose p and q to satisfy ¢ < pn/(n — 2), then regularity of local minimizers
follows from Theorem 1.1 but can not be deduced by Theorem 1.2.
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Finally, we modify our example in order to demonstrate the flexibility of
condition (1.13). Supppose that we are given numbers 1 < s < ¢, p € R
Let p = 2 — 1 and assume for simplicity that n = 3. Suppose further that

p < s. We let
F2) = (3).(12]) + (5. (\/zz +) ,

where (p5). and (p,). are defined as before Lemma 3.2 with respect to the
exponents s and g. We have

0 < D*f(Z2)(Y,Y) < C(1+\Z\2)%|Y\2 (3.3)
c(1+12P)F < f(z) < c(1+|2P)*

for all Z, Y € R® with positive constants ¢ and C'. Note that the exponents
in (3.3) and (3.4) can not be improved, moreover, due to the degeneracy of
D2f, the lower bound in (3.3) is the best possible.

Finally we let f(Z) = ®(Z) + f(Z) which only in the limit case s = ¢ is of
balanced type. In case u > 1, ® is of lower growth than any power |Z|'*?,
9 >0, for p < 1 we get ®(2) < C(1+ |Z\2)%, the exponent p being optimal.
Moreover, we have inequality (iii.) from Lemma 3.1, and regularity of local
solutions follows if

g < p+s ; . (3.5)
(From (3.5) it is evident in which way the parameter s improves regularity.
The quantities 4 and ¢ in the above example describe the behaviour of the
second derivative D?f, and as a matter of fact the upper bound for D?f
implies the corresponding upper bound for f itself. In contrast to this the
lower growth order s of f is quite strong and can not be deduced from the
lower bound on D?f. By incorporating s as an additional quantity in the
condition for regularity we obtain better results as for example in [FM] where
regularity for the above example would follow provided that ¢ < p+2/3, and
the latter condition does not take care of the choice of s.

4 Proof of Theorem 1.2

We start by making some preliminary reductions. Let us observe that, since
both ¥; and ¥, are of class C’loo’c1 (©2) and since the argumentation is purely

local, we may suppose with loss of generality that ¥, ¥, € W (Q) and after
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translation that 0 < ¥y < W,. Moreover, again without loss of generality we
may suppose that

X = [IDW1[[Loe(q) + 1DV Loy < (4.1)

1

10
This last point (4.1) may be needs some comments. Suppose that X > 0
(otherwise we are trivially done) and pick A := [10X]~'. We observe that u
is a solution to the original problem iff the function % := Au is a solution to a
similar obstacle problem with f(Z), ¥, and ¥, replaced by f(Z) = f(Z/N),
U, := A\, and Uy := \U, respectively. Moreover we observe that f satisfies
hypotheses (1.14) and (1.15) with different constants of ellipiticity and growth

7 = p(v,X) and L = L(L,X). (4.2)

Therefore, up to passing to @ proving our theorem for % and going back to
u, we may assume (4.1). Of course, an explicit dependence on the quantity
X will not appear, the dependence will only appear through (4.2).
Adjusting the constants L and v we finally suppose that

s < 1. (4.3)

- 10

Now we really start proving Theorem 1.2, again organizing the proof in sev-
eral steps: approximation, linearization, apriori estimates and conclusion.
We shall keep the same notation as introduced in the proof of Theorem 1.1.
Steps 1-2. (Approximation and Linearization) The approximation
procedure has to be refined, so let us recall the following approximation
result taken from [ELM].

LEMMA 4.1 Let f: R* — R be a continuous function satisfying (1.14)
and (1.15). Then there is a family of { fs}ocs<1 of C* functions fs: R* — R
such that fs — [ uniformly on compact subsets of R*. Moreover, we have

p
2

Js(Z

fs(Z
\Dfs(Z)|
|D*f5(Z)|
D*f5(Z)(Y,Y)

AL (0 + 62+ |Z]2)? + CT (02 + 6% + | Z]2)
C*(02+62+|Z\)% (o— +8°+|2P)"

) (4.4)
) (4.5)
C*(02+52+|Z|) +C(0 —|—<52+|Z|)2(46)
(4.7)
(4.8)

(
(

IN

IN

)
)

IN

A(o® + 6% +|Z]?) = +A
C, (o +52+\Z|) |Y|2
+A(o” + 6% +|Z)? )T\Y\Q

v
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for any Z,Y € R*. Here we have

C. = Ci(n,q,p,L,v) independent of 0,9,
A = A(n,p,q,L,v,d) independent of o.

Now, the approximation we are going to use follows the same ideas as in the
proof of Theorem 1.1: B = Bg(zy) € Q, u, V1., ¥y, and v, have the
same meaning but this time, when defininig v, 5, in (2.1), we shall use the
approximating sequence { f5}o<s<1 provided by Lemma 4.1 above to regular-
ize the energy density f, instead of the functions in 2.2. Note that, with a
slight change of notation, we now consider balls By instead of Bap as done
in thr previous sections. With these definitions also the linearization proce-
dure works and we come up with the statement of Lemma 2.1. In the same
manner as outlined in Section 2, it is seen that v, 5 € CH*(Bg) N W3 ,.(Br)-
Again we drop the indexes €, § for a moment.

Step 3. (A priori estimates)
LEMMA 4.2 Assume that 6 < 10~ and that

n

4q — 2
X = 2ifn>2;x>max{ p q p}

3p—2¢° p

if n=2.

Then there is a constant § = (n, p, q) and a local constant ¢ = ¢(n,p, q, L,v),
both being independent of € and § such that for all 0 < p < R

B
sup [Vo| < ¢ { f(Vv)dz + 1} , (4.9)
Bry2 Br
B
/ VolPXdx < ce(p) { f(Vv)dz + 1} : (4.10)
B, Br

Proof of Lemma 4.2. Testing the linearized equation (2.4) with ¢ = 1?0,1),
n € C§°(Bgr), ¥ € C*(Bg), we obtain by a partial integration

D?f(Vv)(0,Vv, V) dz

Bg

= 2 Df(Vv)-Vnn85¢dx—/ gn* 0,0 dx (4.11)
Bg

Bpg

=2 | Df(Vv)-Vinosmdz,

Bg
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and via an approximation argument this is also true for all ¢y € Wy (Bg).
Now choose 15 < 2 < £ such that (recall (4.1))

P
”V\Ijl“%OO(BR) + ||V\P2||%®(BR) < 2

let (compare (2.11))
h(t) = min{max[t — 1,0],1}, h(t) = h.(t) = h(>7 '),
and finally define (compare (2.13))
I = ['(Vv) = 0°+6 +|Vo].

Now we fix v > 0 and choose, in (4.11) ¢ := 0J;v "7 h(I'). As in Section
2, the integral on the right-hand side of (4.11) which is generated by the
obstacles vanishes and we obtain (using summation with respect to s =
1,...,n)

I+ 1T+111

= D?f(Vv) (0, Vv, 8, V)T h(T) n* dx

Br

+y [ D?f(Vv)(0;Vv, V|Vu[))["! h(T) 8,vn° dz

Br

+ | D*f(Vv)(0,Vv, V|Vu[))I7 I (T) O,v 0 d
Br (4.12)

< c/B |DF(V0)| V| 0|V do

IN

¢ [ n19al[D7(7)]|[[ 77|17 h(r)
Br
+ T (Vo] [VIV0 2 A(T) + [Vl [V[Vof2| 7 1(T)| do

=: IV.
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Now we use the ellipticity and growth properties (4.4)—(4.8) stated in Lemma
4.1:

I > 0;1/ %47 V2> () 7 da;
Br
I :g D? (Vo) (V| Vo], V|V 2)T7 1 A(T) 1 da
Bg
> 10*—1/ F%2+7_1‘V|Vv|2‘h(F)n2dw;
2 Br (4.13)
]. p—2
Irr > —0*1/ | V|Vl B(T) 9 da;
2 B
v < cC | nlvy [r%w”%}[w%wm(r)

Br
+y D71 Vol V|V |R(T) + [Vo| [V [Vo[?| T7 h’(F)} d .

Thus, (4.12) and (4.13) prove the existence of a real number ¢, independent
of €, 6 and o such that

S 4 = / %247 (V20 B(T) o da
- Bgr
—|—7/ L5527 9| Vol?| (L) 7P da
Br
+/ P54 |9|Vof?| H(D) 7 da
Br (4.14)
< c/ n|Vn| 0% +1%] [|VZUIF7 h(T)y 71
Bgr
Vol |V[Vo]?|h(T) + [Vo||V| Vo2 T h'(r)} dz
2 3
L YyE
j=1 <=1
We start estimating B{ using Young’s inequality and letting 7 := ¢ — p:

1 p=2 o
Bl < Z/ PT+7\VZU|2h(P)n2dx+4/ L2477 p(T) |Vn|? dx
Bpr Bg
1 2
< —A1—|—4/ L2t |p|? da ;
4 Br

1 P
B? < ZA1+4/B [zt |Vntds.
R
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Clearly Bj can be handled in the same way. For Bg we observe

Bl < / U7 TT |V|Vo]?| B(T) 7|V dz

Br
]- p— P

< 3 [ TGP RO e [ DT (90P do
4 Br Bpr

1 P
< Las4u / PR+ (D) |Vipl? da
4 Br

1 P
B% < ZA;; +4 /l; F§+7+1 h'(F) |V7’]‘2 dx .
R

Subtracting 1/2 )" A; in (4.14) and then neglecting A3 we have proved the
existence of a constant ¢ = ¢(n, p, q, L, v) such that

/ D%+ V20 h(D) n? dz + 4 / D77 V|Vl A(T) o da
Br Br
< clr1) [ [PE B v (415)
Bgr
+e / [DEH7E L DE T () [T de
Br

As in Section 2 the integrand of the second term on the right hand-side of
(4.15) is supported on 3¢ < I' < 23¢, on the left-hand side we observe

F%+7_1‘V|V1}\2‘2 < CFP%Z+7‘VZU|2,

hence there is a constant ¢ = ¢(n, p, ¢, L, v) such that

/ F%+7_1‘V|Vv|2‘2h(f‘)n2daz < c/
Bg

[Fgﬂ + F%J’Tﬂ} \Vn|* d .
Bpg

(4.16)

Now we let

G(s) = 1+ /O S\/t%ﬂ—lh(t)dt

and claim the existence of a real number ¢ = ¢(p, ») such that for all s > 0

NS
+
(13

< G(s) < c(1+siT2), (4.17)
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In fact, the second inequality follows by the elementary calculation

S
G(s) < 1+/tp12+”51dt = 1+
0

For the first inequality we first consider the case 0 < s < 3¢ recalling that
x<1/5:

G(s) > 1 > 1+ —3/5)F > (1-¢3/5) (1+5413).

s _ _ £+l_ 2 AT
G(s) > 1+/ £ dt > 145 2pif)4 :
25 1T3
it — (25/3)it3 1—/2/3
> 14 SO I VB st
+_ z £
4 2 4 2

and (4.17) is established. The left-hand side of (4.17) implies
c(y+1) (A +TG) < c(y+1) X(1+TEH)™ < GI)>

the right-hand side of (4.17) gives with (4.16) and Sobolev’s inequality in
the case n > 3:

(/BR n°XG(T)*X dx)% < ¢ /BR

< c/ |Vn\2G(F)2dx+c/ 2|vG ()| de
Br

+c/ n 2t +r- "h(D) |VIVoP| da
Bg

2

V(nG(T))

< c/ IVn2(1+ 574 da.
Br

Thus we have proved the existence of a real number ¢ = ¢(n, p, ¢, L,v) such
that

(/ > (1+r )d:v)x < c(*y+1)2/ VP03 dr . (4.18)
Bp Bg
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We observe that (4.18) is exactly inequality (4.11) of [ELM]. What is more,
the case v = 0 corresponds to the equation after (4.6) in [ELM] and directly
gives (4.10) (compare Proposition 4.1 of [ELM]). Once this is known we
proceed from (4.18) with the iteration given in [ELM]|, Proposition 4.2, Step
2, to prove (4.9) and the whole Lemma. O

Step 4. (Conclusion) Again recovering the full notation and using the
minimality of v, 5 it is known so far

/ Vo sPde < C, f5(Vu,) dz, (4.19)
Br Br
B
sup [Vues| < ¢ (1 + f5(Vue) dm) , (4.20)
Bry2 Bpr
B
/ Vv 5/PXdz < ¢(p, R) (1 + fs(Vue) dx) : (4.21)
B, Bpr

For fixed ¢ > 0 we have by construction f; — f uniformly on compact sets
as 0 — 0, thus

fs(Vu,) — f(Vu.) in L'(Bg) as § — 0.
Then (4.19) and (4.21) yield a suitable subsequence such that for § — 0
Ves —t we in W, (Br) N Wy 10e(Br), (4.22)
Vey — w. almost everywhere on Bpg,

where the latter convergence immediately proves that the limit w, respects
the mollified obstacles ¥;., ¢ = 1,2. Now we proceed exactly as in the
conclusion of Theorem 1.1 (compare (2.22)) to obtain as € — 0
w, —: w in Wpl(BR) and almost everywhere on By,
U, < w < WP, almost everywhere on Bpg,
B

sup [Vw| < ¢ (1 + f(Vu) dm) . (4.23)

Br/2 Br
We finally claim that for all ¢ > 0

f(Vw,)dz < lirglui)nf/ f5(Vuves) dx. (4.24)
Bg

We first note that lower semicontinuity and (4.22) give for fixed p < R
f(Vw,)dz < hmmf/ f(Vves)d (4.25)

By
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On the other hand we have

f5(Vves)doz > f5(Vues) da
o Be (4.26)

F(Vo.s) do + / (5(Voes) — F(Voos)] da.

B, B,

Given M > 0, the second integral I on the right hand side of (4.26) is
estimated from above by

/ \f(;(Vve,(;) — f(VvE,(;)\ dr +c / (1 + |VU5,5|q) dx
B,N[|ve s|<M] BoN[|ve,51<M]

where the second part 17 is handled in the following way: by equiintegrability
(since we have (4.10), ¢ > 0 is fixed and g < px) fix t > 0 and choose M (t)
large enough such that I7 <t for all § > 0. Thus

limsup |I| <t
510

holds true on account of uniform convergence of fs on compact sets. With
(4.25) and (4.26) we obtain

liminf [ f5(Voes)de+t > f(Vw,) dz

5¢0 BR Bp

and letting first ¢ | 0 and then p T R, (4.24) is proved. At this point, arguing
as for Theorem 1.1 it turns out that u = w so that the local boundedness of
Vu and hence the local Lipschtiz continuity of u follows.

Next we prove local Holder continuity of Vu. Since our arguments are purely
local, we may assume that |Vu| < M < 400 a. e. on €2 for some number M.

LEMMA 4.3 Under the hypotheses imposed on f stated in the second part
of Theorem 1.2 the convezity condition (1.15) implies

D?f(Z)(Y,Y) > 21/(a2+|Z\2)%|Y\2 (4.27)

for allY, Z € R™, where in the case p < 2 together with o =0 z # 0 has to
be assumed.

The proof of Lemma 4.3 is elementary, for example we may follow the ar-
guments used by Morrey for the proof of [MO], Theorem 4.4.3. We briefly
sketch the ideas: let

o) := /Q(f(Z—Hngo )da:—l//Q (t,2)t* |Vo|*dz,

N

h(t,z) = (0”4 |Z] +t*|Ve]? )_
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By condition (1.15) © reaches its minimum at ¢t = 0, hence ©”(0) > 0 which
means that

/ D’f(Z)(Ve,Vy) > 2w / (0> +12P) 7 Vol da. (4.28)
Q Q

Next consider 1) € C3(Q), ¥ > 0, and n € C*(R) such that n and n’ are of
class L. For £ € R" let ¢(z) :=n(sz-&)(x) , s > 0. We then have

Vo(z) = n'(sz-&)s&p(x) +n(sz- &) Vi(z).

Inserting this into (4.28), dividing by s? and then letting s — oo we get
p—2
(D1(2)(6.6) = 20(0" + 2P) T 1P ) timint | 6@ (o' (s0-9)*dz 20,
§—00 o)

Using this inequality for n = sin, cos and adding the results we deduce (4.27)
from the arbitrariness of . O

To proceed further let us first consider the case o > 0. Letting a(Z) :=
Df(Z) we quote [KS], Lemma 4.3, p. 97, noting that a(Z) is locally coer-
cive on account of (4.27): there exists a strongly coercive vector field ([KS],
Definition 4.1, p. 94) @ such that a(Z) = a(Z) for |Z] < M. a is of class
C'(R") and it is easy to check (using the formula for @) that a satisfies the
hypotheses (1.4)—(1.6) of [MUZ] with p = 2. Observing that

/&(Vu)-Vgoda: >0
Q

for any ¢ with compact support such that ¥; < u+¢ < Wy, Holder continuity
of Vu follows from [MUZ], Theorem 2.8.
In case o0 = 0 we let

i(Z) = Y(Z)a(2) + kg(1Z)) |27 Z

with 9, k, g exactly as in [KS], pp. 97. With the help of (1.16) we deduce
(1.5) of [MUZ]. Condition (1.6) in [MUZ] trivially holds for a. Using ¢’ > 0
together with (4.27) we get

(Z:Y) (o
S (@(2)-7)

+hg(|Z) [|1Z2P2 Y+ (p—2) |2 (Z - Y)’]

Va(Z)Y Y = 2wy(|Z) 2P Y]+ ¢(1Z)
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with

1Z|P2Y?, if p>2,
ZP2Y P+ (p—2) | ZP~4(Z-Y)? >

(p—1)|ZP4Y]?, if 1<p<?2.

In case ¥'(|Z]) # 0 we have |Z| € [2M,3M], hence

(Z-Y)

V7))

(a(2)-Y)| < clp, M) |Y|*|Z]P7,

and (observe g > ¢g > 0 on [2M, o0])
kg(1Z)) [1ZP2 Y + (0= 2) | 2P (Z - Y)?] > keoclp) 1272V
So, if we choose k large enough, we get
va(Z)Y Y > [ay(|Z]) +Bg(1Z))] 2P~ Y ]?

with positive numbers «, 8. This implies (1.4) of [MUZ], and the proof can
be finished as before. 0
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