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On the slice map problem for H∞(Ω)
and the reflexivity of tensor products

Michael Didas

Let Ω ⊂ C
n be a bounded convex or strictly pseudo-

convex open subset. Given a separable Hilbert space K

and a weak∗ closed subspace T ⊂ B(K), we show that
the space H∞(Ω, T ) of all bounded holomorphic T -valued
functions on Ω possesses the tensor product representation
H∞(Ω, T ) = H∞(Ω)⊗T with respect to the normal spatial
tensor product. As a consequence we deduce that H∞(Ω)
has property Sσ. This implies that, if S ∈ B(H)n is a
subnormal tuple of class A on a strictly pseudoconvex or
bounded symmetric domain and T ∈ B(K)m is a commut-
ing tuple satisfying AlgLat(T ) = AT (where AT denotes
the unital dual operator algebra generated by T ), then the
tensor product tuple (S ⊗ 1, 1 ⊗ T ) is reflexive.

1 Property Sσ and the reflexivity of tensor

products

Given a complex Hilbert space H and an arbitrary family S ⊂ B(H) of
bounded linear operators, we define WS to be the smallest WOT-closed sub-
algebra of B(H) containing S and the identity 1H . As usual, we write Lat(S)
for the set of all closed subspaces of H that are invariant under each member
of S and we define AlgLat(S) to be the set of all operators C ∈ B(H) with
Lat(C) ⊃ Lat(S). Obviously AlgLat(S) is a WOT-closed unital subalgebra of
B(H) containing S (and hence WS). The family S is called reflexive if the
identity

AlgLat(S) = WS

holds. For many concrete examples of reflexive systems S, the algebra WS

coincides with the unital dual operator algebra

AS = alg(S ∪ {1H})
w∗

⊂ B(H)

generated by S, e.g. if S = {S} consists of a single von Neumann operator
S ∈ B(H), and hence in particular if S is subnormal (Conway and Dudziak
[1], Corollary 3.2), or if S = (S1, . . . , Sn) ∈ B(H)n is a von Neumann n-
tuple of class A ∩ A1,ℵ0

on a strictly pseudoconvex domain (see [2], Corollary
4.4.4). In what follows, such a family S ⊂ B(H) which is reflexive and satisfies
the identity AS = WS will be called strongly reflexive, for short. Observe
that a family S of operators is strongly reflexive if and only if the equality
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AlgLat(S) = AS holds or, equivalently, if AlgLat(AS) = AS .1 Clearly, the
family S is strongly reflexive if and only if so is the dual operator algebra AS.

If two commuting Hilbert-space multi-operators S ∈ B(H)n and T ∈ B(K)m

are (strongly) reflexive, then it is natural to ask for the (strong) reflexivity of
the tensor product tuple

(S ⊗ 1, 1 ⊗ T ) ∈ B(H ⊗K)n+m.

We will focus on the strong-reflexivity version of this question, namely if
A(S⊗1,1⊗T ) is strongly reflexive whenever so are AS and AT . Answering this
question turns out to be equivalent to solving a reflexivity problem for tensor
products of dual algebras. To point this out, we have to recall that the normal
spatial tensor product of two arbitrary weak∗ closed subspaces S ⊂ B(H) and
T ⊂ B(K) is defined by

S⊗T = S ⊗ T
w∗

⊂ B(H ⊗K),

where S ⊗ T = LH{x ⊗ y : x ∈ S, y ∈ T } stands for the algebraic tensor
product of S and T . It is a simple observation that the dual algebra generated
by any tensor product tuple splits with respect to the normal spatial tensor
product.

1.1 Lemma. For arbitrary commuting tuples S ∈ B(H)n and T ∈ B(K)m,
we have A(S⊗1,1⊗T ) = AS⊗AT .

Proof. Since the set on the right-hand side is a unital dual operator algebra
containing S ⊗ 1 and 1 ⊗ T , the inclusion ”⊂” follows by the minimality
of the algebra on the left. To prove the non-trivial inclusion ”⊃” first note
that all elementary tensors A ⊗ B with A ∈ C[S] and B ∈ C[T ] are clearly
contained in the set on the left-hand side. The weak∗ continuity of the mapping
B(H) → B(H ⊗K), A 7→ A ⊗ B, for each fixed B ∈ B(K) therefore implies
that the set of all elementary tensors A ⊗ B with A ∈ AS and B ∈ C[T ]
is contained in A(S⊗1,1⊗T ). By the same argument with the roles of the first
and second factor exchanged we may also replace the condition B ∈ C[T ]
by B ∈ AT . Passing to the linear hull, we deduce that the algebraic tensor
product AS ⊗ AT is contained in A(S⊗1,1⊗T ). This observation finishes the
proof. 2

The reflexivity problem for tensor products of dual operator algebras has been
studied intensively in a series of papers by Jon Kraus (see e.g. [6] and [7]).

1It should be remarked that the notion of reflexivity is not uniformly defined in the
literature. Operator algebraists often use the identity AlgLat(AS) = AS as the definition
for the reflexivity of the operator algebra AS (see e.g. [7]) while our definition, which
is commonly used in operator theory, says that the family AS is reflexive if the weaker
condition AlgLat(AS) = WAS

= WS holds (being equivalent to the reflexivity of the family
S itself). Therefore we introduced the new notion of strong reflexivity hoping to avoid a
misunderstanding.
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Kraus showed that the tensor product of two strongly reflexive dual opera-
tor algebras remains strongly reflexive if one of the factors satisfies a certain
(natural) splitting property (called Sσ).

Towards a precise formulation of property Sσ we have to recall the definition of
Tomiyama’s slice maps. Let C1(H) denote the space of all trace class operators
on the Hilbert space H. Recall that we may identify B(H) with the dual space
of C1(H) via the bilinear form C1(H)×B(H) → C, (C,A) 7→ trace(CA). The
right slice map RC associated with a given element C ∈ C1(H) now can be
defined as the adjoint of the continuous linear map

(RC)∗ : C1(K) −→ C1(H ⊗K), D 7→ C ⊗D.

The mapping RC obtained in this way is the unique weak∗ continuous linear
operator

RC : B(H ⊗K) → B(K) satisfying RC(A⊗ B) = 〈C,A〉B

for every A ∈ B(H) and B ∈ B(K), where 〈C,A〉 = trace(CA). Given
D ∈ C1(K), the assignment LD(A⊗B) = 〈D,B〉A, where A⊗B ∈ B(H⊗K),
can in a completely analoguous manner be extended to a weak∗ continuous
linear map LD : B(H ⊗K) → B(H), called the left slice map induced by D.
For further properties of slice maps, see Kraus [6] and the references therein.
Let us, for later use, just mention the intertwining property explicitly, which
can be easily verified by the reader and – in the context of right slice maps –
says that

RC((1 ⊗ V )X(1 ⊗W )) = V RC(X)W,

whenever V,W ∈ B(K) and X ∈ B(H ⊗ K). Analogously, for the left slice
maps we have LD((V ⊗ 1)X(W ⊗ 1)) = V LD(X)W for V,W ∈ B(H) and
X ∈ B(H ⊗K) (see the formulas (1.3) and (1.4) in Kraus [6]).

In order to define property Sσ, we associate with each pair of weak∗ closed
subspaces S ⊂ B(H) and T ⊂ B(K) the so-called Fubini product

F (S, T ) =

{
A ∈ B(H ⊗K)

∣∣∣∣
RC(A) ∈ T and LD(A) ∈ S

whenever C ∈ C1(H) and D ∈ C1(K)

}

which is easily seen to be a weak∗ closed subspace of B(H ⊗ K) containing
S⊗T . Now following Kraus [7] we say that a weak∗ closed subspace S ⊂ B(H)
satisfies property Sσ if the subspace tensor product formula

F (S, T ) = S⊗T

holds whenever T ⊂ B(K) is a weak∗ closed subspace of B(K) for any Hilbert
space K. As shown by Kraus in [6], it suffices to consider the case where K is
separable and infinite dimensional.

For later reference we remark that the Fubini product can be expressed using
right slice maps only. Theorem 1.9 in [6] guarantees that B(K) has property
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Sσ and, consequently, we have F (S, T ) ⊂ F (S, B(K)) = S⊗B(K). Using this
and the fact that LD(S⊗B(K)) ⊂ S we obtain the desired representation

F (S, T ) = {A ∈ S⊗B(K) : RC(A) ∈ T for all C ∈ C1(H)}.

Let us now turn back to the reflexivity problem for tensor product tuples. In
Section 3 of [6], Kraus settles a link between property Sσ and the reflexivity
of tensor products which, in our context, reads as follows.

1.2 Proposition. (Kraus) Let S ∈ B(H)n and T ∈ B(K)m be commuting
tuples of bounded linear Hilbert-space operators which are strongly reflexive
in the sense that AlgLat(S) = AS and AlgLat(T ) = AT . If AS has property
Sσ, then the tensor product tuple (S ⊗ 1, 1 ⊗ T ) ∈ B(H ⊗K)n+m satisfies

AlgLat(S ⊗ 1, 1 ⊗ T ) = F (AS,AT ) = A(S⊗1,1⊗T ).

Proof. Let M ∈ Lat(T ) and let P ∈ B(K) denote the orthogonal projection
with range M . Since H ⊗ M is (S ⊗ 1, 1 ⊗ T )-invariant, an operator A ∈
AlgLat(S ⊗ 1, 1⊗ T ) clearly satisfies (1 ⊗ P )A(1⊗ P ) = A(1⊗ P ). Using the
intertwining property of the right slice-map RC , we deduce that

PRC(A)P = RC((1 ⊗ P )A(1 ⊗ P )) = RC(A(1 ⊗ P )) = RC(A)P

and hence RC(A) ∈ AlgLat(T ), for every C ∈ C1(H). In a completely analo-
gous fashion it can be shown that LD(A) ∈ AlgLat(S) (D ∈ C1(K)). Now, a
look at the definition of the Fubini product immediately yields the inclusion

AlgLat(S ⊗ 1, 1 ⊗ T ) ⊂ F (AlgLat(S),AlgLat(T )),

where, by hypothesis, the right-hand side can be written as F (AS,AT ). Using
property Sσ we further obtain that F (AS,AT ) = AS⊗AT . By Lemma 1.1, the
latter space coincides with A(S⊗1,1⊗T ), as desired. 2

Due to Kraus [7], Theorem 4.1, we know that the dual operator algebra AS

generated by a single subnormal operator S ∈ B(H) has property Sσ. By a
classical theorem of Olin and Thomson, AS is strongly reflexive in this case.
Hence Proposition 1.2 applies to every subnormal operator S. In the special
case that S is the unilateral shift, i.e. S = Mz on the Hardy space H2(D) over
the unit disc, short proofs of the above proposition using elementary arguments
have been given by M. Ptak ([9], Theorem 2’) and J.E. McCarthy ([8], Lemma
6).

Our aim is to extend Kraus’ result to the setting of subnormal tuples S ∈
B(H)n of class A on sufficiently nice sets Ω for which AS

∼= H∞(Ω). The dual
algebra generated by a tensor product tuple of the form (S ⊗ 1, 1 ⊗ T ) then
corresponds to some space of vector-valued H∞-functions. The next section is
therefore devoted to this kind of function spaces.
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2 A tensor product formula for H∞(Ω, T )

From now on suppose that ∅ 6= Ω ⊂ X is either a bounded convex open subset
of X = Cn or a relatively compact strictly pseudoconvex open subset of a
Stein submanifold X ⊂ C

n. By the latter we mean that there exist an open
subset U ⊂ X containing the boundary ∂Ω and a strictly plurisubharmonic
C2-function ρ : U → R such that Ω ∩ U = {z ∈ U : ρ(z) < 0}. To abbreviate
the description of these two cases, let us simply say in the following that Ω is
a ”bounded convex or strictly pseudoconvex open set”.

Let us fix such a set Ω ⊂ X now. As a relatively compact submanifold of
Cn, the set Ω carries a natural volume measure. After normalization and
trivial extension we obtain a Borel probability measure λ on Ω with λ(Ω) = 1,
λ(∂Ω) = 0 and the property that λ(W ) > 0 for every non-empty open set
W ⊂ Ω. By H∞(Ω) we denote the Banach algebra of all bounded holomorphic
functions on Ω equipped with the supremum norm ‖f‖∞,Ω = supz∈Ω |f(z)|. As
a consequence of Montel’s theorem, the isometric embedding H∞(Ω) ↪→ L∞(λ)
has weak∗ closed range and thus turns H∞(Ω) into a dual algebra. Via the
representation

γ : L∞(λ) → B(L2(λ)), ϕ 7→Mϕ with Mϕf = ϕ · f (f ∈ L2(λ)),

which is a weak∗ continuous isometric ∗-homomorphism, we may identify
H∞(Ω) with the dual operator algebra

H
∞(Ω) = γ(H∞(Ω)) = {Mϕ : ϕ ∈ H∞(Ω))} ⊂ B(L2(λ))

of all multiplication operators with H∞-symbol.

Towards the vector-valud case, fix a separable Banach space E and consider the
Banach space L∞(λ,E ′) of all equivalence classes of bounded weak∗-measurable
functions f : Ω → E ′ equipped with the essential supremum norm. Via the
bilinear form 〈g, f〉 =

∫
Ω
〈g, f〉dλ, we can identify L∞(λ,E ′) with the dual of

the space L1(λ,E) of all equivalence classes of Bochner-integrable functions g :
Ω → E with ‖g‖1,λ =

∫
Ω
‖g‖dλ < ∞. In analogy with the C-valued case, the

Banach space of all E ′-valued bounded holomorphic functions H∞(Ω, E ′) with
the supremum norm can – via the canonical embedding – be thought of as a
weak∗-closed subspace of L∞(λ,E ′) (for details, see [3], Lemma 5.3). It should
be mentioned that a sequence (fk) in H∞(Ω, E ′) is a weak∗ zero sequence if
and only if (fk) is norm-bounded and (fk(z)) is a weak∗ zero sequence in E ′

for every z ∈ Ω.

If K is a separable Hilbert space and T ⊂ B(K) is a weak∗ closed subspace,
then H∞(Ω, T ) and L∞(λ, T ) fit into the above context, since T can then be
identified with the dual space of the separable Banach space E = C1(K)/ ⊥T .
If, in addition, T is a subalgebra of B(K), then H∞(Ω, T ) and L∞(λ, T ) are
dual algebras in a canonical way. If T ⊂ B(K) is even a W ∗-algebra, then so
is L∞(λ, T ).
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Again in analogy with the scalar-valued case we obtain a representation of
the W ∗-algebra L∞(λ,B(K)) via the weak∗ continuous and isometric ∗-homo-
morphism

Γ : L∞(λ,B(K)) → B(L2(λ) ⊗K)), ϕ 7→Mϕ,

where the operator Mϕ acts on the space L2(λ,K) ∼= L2(λ) ⊗ K as multipli-
cation with symbol ϕ.

2.1 Proposition. Let Ω be a bounded convex or strictly pseudoconvex open
set, and let T ⊂ B(K) be a weak∗ closed subspace. Then there is a unique
dual algebra isomorphism

ΓT : H∞(Ω, T ) −→ H
∞(Ω)⊗T ⊂ B(L2(λ) ⊗K)

mapping ϕ · T to Mϕ ⊗ T whenever ϕ ∈ H∞(Ω) and T ∈ T . In fact, ΓT can
be obtained by restricting the map Γ from above to H∞(Ω, T ).

Towards a proof of this result, consider the set

M = LH{ϕ · T : ϕ ∈ H∞(Ω), T ∈ T }

of elementary functions. From the properties of the map Γ described above
and the trivial fact that Γ(M) ⊂ H ∞(Ω) ⊗ T we deduce that the assertion
follows as soon as we know that M is dense in H∞(Ω, T ).

To realize this claim we first derive an intermediate result which is interesting
in its own right. In the following proposition O(Ω, E ′) stands for the space of
all E ′-valued functions that are holomorphic in some open neighbourhood of
Ω in Cn.

2.2 Proposition. Suppose that Ω is a convex or strictly pseudoconvex open
set and that E is a separable complex Banach space. Then

O(Ω, E ′)|Ω ⊂ H∞(Ω, E ′)

is sequentially weak∗ dense. More precisely, there is a constant c ≥ 1, such
that every function f in the unit ball of H∞(Ω, E ′) can be approximated (with
respect to the weak∗ topology) by a sequence (fk) with fk ∈ O(Ω, E ′)|Ω and
‖fk‖∞,Ω ≤ c (k ≥ 1).

Proof. Elementary arguments show that the assertion holds in the convex
case. (Translate Ω in such a way that it contains the origin and use radial
limits.) To treat the strictly pseudoconvex case we use the embedding theorem
of Fornaess saying that, up to a biholomorphic identification, the set Ω can be
represented as the intersection Ω ∼= Y ∩C of some closed complex submanifold
Y ⊂ Cm and a C2-strictly convex open subset C ⊂ Cm for some suitably
chosen m ≥ 1 (see Theorem 10 in [4]).
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Theorem 5.11 in [3] says that our assertion holds in the special case where
E ′ = H∞(Ω2). Following the proof of the cited theorem (setting there D1 = Ω
and replacing E by E ′), we deduce that it suffices to show that the restriction
map

H∞(C,E ′) −→ H∞(Y ∩ C,E ′)

is onto. Towards this end, note that the mapping

B : E ×H∞(Y ∩ C,E ′) → H∞(Y ∩ C), (x, f) 7→ 〈x, f(·)〉

is (norm-) continuous and bilinear.

By the remark following Theorem 4.11.1 in Henkin-Leiterer [5], there is a
bounded linear extension operator

θ : H∞(Y ∩ C) → H∞(C).

In order to lift this operator to the E ′-valued setting, we start with an arbitrary
function f ∈ H∞(Y ∩ C,E ′). By defining

f̂(z) : E → C, x 7→ EzθB(x, f) (for every z ∈ C),

where Ez : H∞(Ω, E ′) → E ′ denotes the (weak∗ continuous) point evaluation
at z, we obtain a family of vectors f̂(z) ∈ E ′ (z ∈ C) satisfying

〈x, f̂(z)〉 = θ(〈x, f(·)〉)(z) (x ∈ E, z ∈ C).

The function f̂ : C → E ′ constructed this way clearly extends f and is weak∗

holomorphic and hence holomorphic. Since the estimate

‖f̂(z)‖ ≤ ‖Ez‖‖θ‖ sup
‖x‖≤1

‖B(x, f)‖∞,Ω ≤ ‖θ‖‖f‖∞,Ω (z ∈ C)

holds, the assignment

θ̂ : H∞(Y ∩ C,E ′) → H∞(C,E ′), f 7→ f̂

yields a bounded linear extension operator in the vector-valued case. In par-
ticular, the corresponding restriction H∞(C,E ′) → H∞(Y ∩ C,E ′) is onto,
as desired. Hence the assertion of the proposition holds with approximation
constant c = ‖θ‖. 2

Now we are able to finish the proof of Proposition 2.1. We use the notation
O(W ) (O(W, T ), resp.) to denote the set of all C-valued (T -valued, resp.)
holomorphic functions on an open set W ⊂ X.

Proof of Proposition 2.1. As pointed out above, it remains to check that
the set M = LH{ϕ · T : ϕ ∈ H∞(Ω), T ∈ T } is weak∗ dense in H∞(Ω, T ).
Towards this end, fix an arbitrary function f ∈ H∞(Ω, T ). Then, by the

preceding proposition, there is a sequence (fk) in O(Ω, T )|Ω such that fk
k
→ f

7



pointwise weak∗ on Ω and supk ‖fk‖∞,Ω ≤ c‖f‖∞,Ω. For each k ≥ 1 we may
choose an open neighborhood Uk of Ω in such a way that fk can be extended
to a function in O(Uk, T ) again denoted by fk. In view of the well-known
identification O(Uk, T ) ∼= O(Uk)⊗̂T , there are elementary functions

gk =

rk∑

i=1

h
(k)
i ⊗ A

(k)
i ∈M with h

(k)
i ∈ H∞(Ω), A

(k)
i ∈ T (k ≥ 1)

satisfying ‖gk − fk‖∞,Ω < 1/k. The sequence (gk)k is norm-bounded and
converges to f pointwise weak∗. Therefore (gk) is the desired sequence in M
approximating f in the weak∗ topology of H∞(Ω, T ). 2

3 Property Sσ for H ∞(Ω) and applications

In the special case that Ω is the open unit disc D = {z ∈ C : |z| < 1}, Kraus
remarked in [7] (Example 3.3, p.399) that H∞(D) has property Sσ. Since
Kraus’ original proof involves W ∗-dynamical systems and makes use of the
group structure of ∂D = T, it cannot be extended to our situation. Via the
tensor product formula established in Proposition 2.1, we show directly and
with elementary arguments that H

∞(Ω) satisfies property Sσ.

3.1 Theorem. For every bounded convex or strictly pseudoconvex open set
Ω ⊂ X, the dual operator algebra H ∞(Ω) has property Sσ.

Proof. Fix an arbitrary separable complex Hilbert space K and a weak∗

closed subspace T ⊂ B(K). We have to show that

F (H ∞(Ω), T ) ⊂ H
∞(Ω)⊗T .

Towards this end, we start with an arbitrary element A ∈ F (H ∞(Ω), T ),
which means by definition that

A ∈ H
∞(Ω)⊗B(K) and RC(A) ∈ T for all C ∈ C1(L2(λ)).

Proposition 2.1 says that, using the canonical weak∗ continuous isometry

Γ : L∞(λ,B(K)) → B(L2(λ) ⊗K),

the operator A can be written as A = Γ(fA) with some bounded holomorphic
function fA ∈ H∞(Ω, B(K)). Suppose for a moment that fA takes its values
in T only. Then we could again use Proposition 2.1 to finish the proof with
the observation that

Γ(fA) ∈ Γ(H∞(Ω, T )) ⊂ H
∞(Ω)⊗T .

Therefore, our aim is to show that fA(z) ∈ T for all z ∈ Ω.
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In view of the dual algebra isomorphism γ : H∞(Ω) → H
∞(Ω), ϕ 7→ Mϕ,

each g ∈ L1(λ) induces a weak∗ continuous linear form

H
∞(Ω) → C, Mϕ 7→ 〈g, ϕ〉 =

∫

Ω

gϕdλ,

which, by the Hahn-Banach theorem, can be extended from H ∞(Ω) to a weak∗

continuous linear form on all of B(L2(λ)). Hence via trace-duality we find an
operator Cg ∈ C1(L2(λ)) satisfying

〈Cg,Mϕ〉 =

∫

Ω

gϕdλ (ϕ ∈ H∞(Ω)).

From the very definition of the right slice map associated with Cg we deduce
that, for every D ∈ C1(K), every ϕ ∈ H∞(Ω) and every T ∈ B(K), the
identity

〈D,RCg
(Γ(ϕT ))〉 = 〈D, 〈Cg,Mϕ〉T 〉 = 〈D,

(∫

Ω

gϕdλ

)
T 〉 =

∫

Ω

g〈D,ϕT 〉dλ

holds. Since, according to Proposition 2.1, the linear span of H∞(Ω) ·B(K) is
weak∗ dense in H∞(Ω, B(K)), this implies that

〈D,RCg
(Γ(fA))〉 =

∫

Ω

g〈D, fA(·)〉dλ (D ∈ C1(L2(λ)), g ∈ L1(λ)).

By hypothesis, we have RC(A) ∈ T for every C ∈ C1(L2(λ)), and consequently

0 = 〈D,RCg
Γ(fA))〉 =

∫

Ω

g〈D, fA(·)〉dλ (D ∈ ⊥T , g ∈ L1(λ)).

From this we conclude that the scalar-valued H∞-function 〈D, fA(·)〉 vanishes
identically on Ω for every D ∈ ⊥T . But this means precisely that

fA(z) ∈ (⊥T )⊥ = T
w∗

= T (z ∈ Ω),

as was to be shown. 2

For the rest of this article, we specialize to the case where Ω ⊂ Cn is a bounded
symmetric and circled domain or a relatively compact strictly pseudoconvex
open subset Ω ⊂ X of a Stein submanifold X ⊂ Cn, and assume that the
closure Ω ⊂ Cn is polynomially convex.

Fix a subnormal tuple S ∈ B(H)n of class A over Ω. This means by definition
that S possesses an extension to a commuting tuple Ŝ ∈ B(Ĥ)n of normal
operators on some Hilbert space Ĥ ⊃ H and that there exists an isometric and
weak∗ continuous functional calculus Φ : H∞(Ω) → B(H) for S. Furthermore,
the normal extension Ŝ can be chosen to be minimal in the sense that ifM ⊂ Ĥ
is any reducing subspace for Ŝ containing H, then M = Ĥ.

Spectral theory for the minimal normal extension Ŝ of S then yields a regular
Borel probability measure µ on Ω having the following properties (see e.g. [3]):
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(a) There is an isometric and weak∗ continuous algebra homomorphism

rµ : H∞(Ω) → L∞(µ)

extending the canonical map C[z] → L∞(µ), p 7→ [p|Ω]. In other words,
µ is a faithful Henkin measure.

(b) The normal tuple Ŝ possesses an isometric, weak∗ continuous and invo-
lutive functional calculus

Ψ : L∞(µ) → B(Ĥ).

The mappings Φ, rµ and Ψ will be used now to show that AS has property Sσ.

3.2 Corollary. Suppose that Ω is a bounded symmetric and circled domain
in Cn or a relatively compact strictly pseudoconvex open subset of a Stein
submanifold X ⊂ Cn possessing polynomially convex closure Ω ⊂ Cn. Then
the dual algebra AS generated by a subnormal tuple S ∈ B(H)n of class A

over Ω has property Sσ.

Proof. From the hypothesis on Ω to have polynomially convex closure we
deduce that the polynomials C[z]|Ω are dense in O(Ω) with respect to the
supremum norm ‖ · ‖∞,Ω. Combining this with the assertion of Proposition 2.2
(with E ′ = C) we see that C[z]|Ω ⊂ H∞(Ω) is weak∗ dense. Consequently, we
have Φ(H∞(Ω)) = AS and Ψ ◦ rµ(H

∞(Ω)) = AŜ. In particular, the composi-
tion Φ ◦ r−1

µ ◦ Ψ−1|AŜ yields a dual algebra isomorphism

τ : AŜ → AS with Ψ(rµ(f)) 7→ Φ(f) (f ∈ H∞(Ω)).

In view of the identity
Φ(f) = Ψ(rµ(f))|H,

extending from f ∈ C[z] to all of H∞(Ω) by a weak∗ density argument, the
mapping τ is nothing else than the restriction map τ(A) = A|H, for A ∈ AŜ.
This shows that τ is completely bounded. Since the range of τ−1 is contained
in the abelian C∗-algebra W ∗(Ŝ), the inverse of τ is also completely bounded.

Next observe that the two isometric and weak∗ continuous embeddings

ψ : H∞(Ω)
rµ◦Ψ
−→ AŜ ⊂ W ∗(Ŝ) and γ0 : H∞(Ω)

γ
−→ H

∞(Ω) ⊂ W ∗(Mz)

both induce the same operator space structure on H∞(Ω) as their ranges both
are contained in abelian C∗-algebras. The composition

∆ : H
∞(Ω)

γ−1

0−→ H∞(Ω)
ψ

−→ AŜ

τ
−→ AS

therefore is a completely bounded dual algebra isomorphism having a com-
pletely bounded inverse. Proposition 4.2 in Kraus [7] now guarantees that, via
∆, property Sσ carries over from H ∞(Ω) to AS. 2
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3.3 Corollary. Suppose that Ω is a bounded symmetric and circled domain
in Cn or a relatively compact strictly pseudoconvex open subset of a Stein
submanifold X ⊂ Cn possessing polynomially convex closure Ω ⊂ Cn. Given
a subnormal tuple S ∈ B(H)n of class A over Ω and a commuting tuple
T ∈ B(K)m which is strongly reflexive (i.e. AlgLat(T ) = AT ), the tensor
product tuple

(S ⊗ 1, 1 ⊗ T ) ∈ B(H ⊗K)n+m

is strongly reflexive.

Proof. Theorem 1.4 in [3] says that AS is strongly reflexive. Hence the
assertion follows from the preceding corollary and Proposition 1.2. 2

The last corollary in particular applies to the tuple S = (Mz1 , . . .Mzn
) of

multiplication with the coordinate functions on the classical Hardy or Bergman
spaces, H = H2(Ω) or H = A2(Ω), on a strictly pseudoconvex or a bounded
symmetric and circled domain Ω.
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