Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 190

On the slice map problem for $H^\infty(\Omega)$ and the reflexivity of tensor products

Michael Didas

Saarbrücken 2007

On the slice map problem for $H^\infty(\Omega)$ and the reflexivity of tensor products

Michael Didas

Saarland University Department of Mathematics Postfach 15 11 50 D-66041 Saarbrücken Germany didas@math.uni-sb.de

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/

On the slice map problem for $H^{\infty}(\Omega)$ and the reflexivity of tensor products

Michael Didas

Let $\Omega \subset \mathbb{C}^n$ be a bounded convex or strictly pseudoconvex open subset. Given a separable Hilbert space Kand a weak^{*} closed subspace $\mathcal{T} \subset B(K)$, we show that the space $H^{\infty}(\Omega, \mathcal{T})$ of all bounded holomorphic \mathcal{T} -valued functions on Ω possesses the tensor product representation $H^{\infty}(\Omega, \mathcal{T}) = H^{\infty}(\Omega) \otimes \mathcal{T}$ with respect to the normal spatial tensor product. As a consequence we deduce that $H^{\infty}(\Omega)$ has property S_{σ} . This implies that, if $S \in B(H)^n$ is a subnormal tuple of class \mathbb{A} on a strictly pseudoconvex or bounded symmetric domain and $T \in B(K)^m$ is a commuting tuple satisfying AlgLat $(T) = \mathcal{A}_T$ (where \mathcal{A}_T denotes the unital dual operator algebra generated by T), then the tensor product tuple $(S \otimes 1, 1 \otimes T)$ is reflexive.

1 Property S_{σ} and the reflexivity of tensor products

Given a complex Hilbert space H and an arbitrary family $S \subset B(H)$ of bounded linear operators, we define \mathcal{W}_S to be the smallest WOT-closed subalgebra of B(H) containing S and the identity 1_H . As usual, we write Lat(S)for the set of all closed subspaces of H that are invariant under each member of S and we define AlgLat(S) to be the set of all operators $C \in B(H)$ with $\text{Lat}(C) \supset \text{Lat}(S)$. Obviously AlgLat(S) is a WOT-closed unital subalgebra of B(H) containing S (and hence \mathcal{W}_S). The family S is called *reflexive* if the identity

$$\operatorname{AlgLat}(\mathcal{S}) = \mathcal{W}_{\mathcal{S}}$$

holds. For many concrete examples of reflexive systems S, the algebra \mathcal{W}_S coincides with the unital dual operator algebra

$$\mathcal{A}_{\mathcal{S}} = \overline{\operatorname{alg}(\mathcal{S} \cup \{1_H\})}^{w^*} \subset B(H)$$

generated by S, e.g. if $S = \{S\}$ consists of a single von Neumann operator $S \in B(H)$, and hence in particular if S is subnormal (Conway and Dudziak [1], Corollary 3.2), or if $S = (S_1, \ldots, S_n) \in B(H)^n$ is a von Neumann *n*-tuple of class $\mathbb{A} \cap \mathbb{A}_{1,\aleph_0}$ on a strictly pseudoconvex domain (see [2], Corollary 4.4.4). In what follows, such a family $S \subset B(H)$ which is reflexive and satisfies the identity $\mathcal{A}_S = \mathcal{W}_S$ will be called *strongly reflexive*, for short. Observe that a family S of operators is strongly reflexive if and only if the equality

AlgLat(S) = A_S holds or, equivalently, if AlgLat(A_S) = A_S .¹ Clearly, the family S is strongly reflexive if and only if so is the dual operator algebra A_S .

If two commuting Hilbert-space multi-operators $S \in B(H)^n$ and $T \in B(K)^m$ are (strongly) reflexive, then it is natural to ask for the (strong) reflexivity of the tensor product tuple

$$(S \otimes 1, 1 \otimes T) \in B(H \otimes K)^{n+m}.$$

We will focus on the strong-reflexivity version of this question, namely if $\mathcal{A}_{(S\otimes 1,1\otimes T)}$ is strongly reflexive whenever so are \mathcal{A}_S and \mathcal{A}_T . Answering this question turns out to be equivalent to solving a reflexivity problem for tensor products of dual algebras. To point this out, we have to recall that the normal spatial tensor product of two arbitrary weak* closed subspaces $\mathcal{S} \subset B(H)$ and $\mathcal{T} \subset B(K)$ is defined by

$$\mathcal{S}\overline{\otimes}\mathcal{T} = \overline{\mathcal{S}\otimes\mathcal{T}}^{w^*} \subset B(H\otimes K),$$

where $S \otimes T = LH\{x \otimes y : x \in S, y \in T\}$ stands for the algebraic tensor product of S and T. It is a simple observation that the dual algebra generated by any tensor product tuple splits with respect to the normal spatial tensor product.

1.1 Lemma. For arbitrary commuting tuples $S \in B(H)^n$ and $T \in B(K)^m$, we have $\mathcal{A}_{(S \otimes 1, 1 \otimes T)} = \mathcal{A}_S \otimes \mathcal{A}_T$.

Proof. Since the set on the right-hand side is a unital dual operator algebra containing $S \otimes 1$ and $1 \otimes T$, the inclusion " \subset " follows by the minimality of the algebra on the left. To prove the non-trivial inclusion " \supset " first note that all elementary tensors $A \otimes B$ with $A \in \mathbb{C}[S]$ and $B \in \mathbb{C}[T]$ are clearly contained in the set on the left-hand side. The weak* continuity of the mapping $B(H) \to B(H \otimes K), A \mapsto A \otimes B$, for each fixed $B \in B(K)$ therefore implies that the set of all elementary tensors $A \otimes B$ with $A \in \mathcal{A}_S$ and $B \in \mathbb{C}[T]$ is contained in $\mathcal{A}_{(S \otimes 1, 1 \otimes T)}$. By the same argument with the roles of the first and second factor exchanged we may also replace the condition $B \in \mathbb{C}[T]$ by $B \in \mathcal{A}_T$. Passing to the linear hull, we deduce that the algebraic tensor product $\mathcal{A}_S \otimes \mathcal{A}_T$ is contained in $\mathcal{A}_{(S \otimes 1, 1 \otimes T)}$. This observation finishes the proof.

The reflexivity problem for tensor products of dual operator algebras has been studied intensively in a series of papers by Jon Kraus (see e.g. [6] and [7]).

¹It should be remarked that the notion of reflexivity is not uniformly defined in the literature. Operator algebraists often use the identity AlgLat($\mathcal{A}_{\mathcal{S}}$) = $\mathcal{A}_{\mathcal{S}}$ as the definition for the reflexivity of the operator algebra $\mathcal{A}_{\mathcal{S}}$ (see e.g. [7]) while our definition, which is commonly used in operator theory, says that the family $\mathcal{A}_{\mathcal{S}}$ is reflexive if the weaker condition AlgLat($\mathcal{A}_{\mathcal{S}}$) = $\mathcal{W}_{\mathcal{A}_{\mathcal{S}}}$ = $\mathcal{W}_{\mathcal{S}}$ holds (being equivalent to the reflexivity of the family \mathcal{S} itself). Therefore we introduced the new notion of strong reflexivity hoping to avoid a misunderstanding.

Kraus showed that the tensor product of two strongly reflexive dual operator algebras remains strongly reflexive if one of the factors satisfies a certain (natural) splitting property (called S_{σ}).

Towards a precise formulation of property S_{σ} we have to recall the definition of Tomiyama's slice maps. Let $C^{1}(H)$ denote the space of all trace class operators on the Hilbert space H. Recall that we may identify B(H) with the dual space of $C^{1}(H)$ via the bilinear form $C^{1}(H) \times B(H) \to \mathbb{C}$, $(C, A) \mapsto \text{trace}(CA)$. The right slice map R_{C} associated with a given element $C \in C^{1}(H)$ now can be defined as the adjoint of the continuous linear map

$$(R_C)_*: C^1(K) \longrightarrow C^1(H \otimes K), \qquad D \mapsto C \otimes D.$$

The mapping R_C obtained in this way is the unique weak^{*} continuous linear operator

$$R_C: B(H \otimes K) \to B(K)$$
 satisfying $R_C(A \otimes B) = \langle C, A \rangle B$

for every $A \in B(H)$ and $B \in B(K)$, where $\langle C, A \rangle = \text{trace}(CA)$. Given $D \in C^1(K)$, the assignment $L_D(A \otimes B) = \langle D, B \rangle A$, where $A \otimes B \in B(H \otimes K)$, can in a completely analoguous manner be extended to a weak^{*} continuous linear map $L_D : B(H \otimes K) \to B(H)$, called the left slice map induced by D. For further properties of slice maps, see Kraus [6] and the references therein. Let us, for later use, just mention the intertwining property explicitly, which can be easily verified by the reader and – in the context of right slice maps – says that

$$R_C((1 \otimes V)X(1 \otimes W)) = VR_C(X)W,$$

whenever $V, W \in B(K)$ and $X \in B(H \otimes K)$. Analogously, for the left slice maps we have $L_D((V \otimes 1)X(W \otimes 1)) = VL_D(X)W$ for $V, W \in B(H)$ and $X \in B(H \otimes K)$ (see the formulas (1.3) and (1.4) in Kraus [6]).

In order to define property S_{σ} , we associate with each pair of weak^{*} closed subspaces $S \subset B(H)$ and $T \subset B(K)$ the so-called Fubini product

$$F(\mathcal{S},\mathcal{T}) = \left\{ A \in B(H \otimes K) \middle| \begin{array}{c} R_C(A) \in \mathcal{T} \quad \text{and} \quad L_D(A) \in \mathcal{S} \\ \text{whenever} \ C \in C^1(H) \text{ and} \ D \in C^1(K) \end{array} \right\}$$

which is easily seen to be a weak^{*} closed subspace of $B(H \otimes K)$ containing $S \otimes \mathcal{T}$. Now following Kraus [7] we say that a weak^{*} closed subspace $S \subset B(H)$ satisfies property S_{σ} if the subspace tensor product formula

$$F(\mathcal{S},\mathcal{T}) = \mathcal{S}\overline{\otimes}\mathcal{T}$$

holds whenever $\mathcal{T} \subset B(K)$ is a weak^{*} closed subspace of B(K) for any Hilbert space K. As shown by Kraus in [6], it suffices to consider the case where K is separable and infinite dimensional.

For later reference we remark that the Fubini product can be expressed using right slice maps only. Theorem 1.9 in [6] guarantees that B(K) has property

 S_{σ} and, consequently, we have $F(\mathcal{S}, \mathcal{T}) \subset F(\mathcal{S}, B(K)) = \mathcal{S} \otimes B(K)$. Using this and the fact that $L_D(\mathcal{S} \otimes B(K)) \subset \mathcal{S}$ we obtain the desired representation

$$F(\mathcal{S},\mathcal{T}) = \{A \in \mathcal{S} \overline{\otimes} B(K) : R_C(A) \in \mathcal{T} \text{ for all } C \in C^1(H) \}.$$

Let us now turn back to the reflexivity problem for tensor product tuples. In Section 3 of [6], Kraus settles a link between property S_{σ} and the reflexivity of tensor products which, in our context, reads as follows.

1.2 Proposition. (Kraus) Let $S \in B(H)^n$ and $T \in B(K)^m$ be commuting tuples of bounded linear Hilbert-space operators which are strongly reflexive in the sense that $AlgLat(S) = \mathcal{A}_S$ and $AlgLat(T) = \mathcal{A}_T$. If \mathcal{A}_S has property S_{σ} , then the tensor product tuple $(S \otimes 1, 1 \otimes T) \in B(H \otimes K)^{n+m}$ satisfies

$$AlgLat(S \otimes 1, 1 \otimes T) = F(\mathcal{A}_S, \mathcal{A}_T) = \mathcal{A}_{(S \otimes 1, 1 \otimes T)}.$$

Proof. Let $M \in \text{Lat}(T)$ and let $P \in B(K)$ denote the orthogonal projection with range M. Since $H \otimes M$ is $(S \otimes 1, 1 \otimes T)$ -invariant, an operator $A \in$ AlgLat $(S \otimes 1, 1 \otimes T)$ clearly satisfies $(1 \otimes P)A(1 \otimes P) = A(1 \otimes P)$. Using the intertwining property of the right slice-map R_C , we deduce that

$$PR_C(A)P = R_C((1 \otimes P)A(1 \otimes P)) = R_C(A(1 \otimes P)) = R_C(A)P$$

and hence $R_C(A) \in \operatorname{AlgLat}(T)$, for every $C \in C^1(H)$. In a completely analogous fashion it can be shown that $L_D(A) \in \operatorname{AlgLat}(S)$ $(D \in C^1(K))$. Now, a look at the definition of the Fubini product immediately yields the inclusion

$$\operatorname{AlgLat}(S \otimes 1, 1 \otimes T) \subset F(\operatorname{AlgLat}(S), \operatorname{AlgLat}(T)),$$

where, by hypothesis, the right-hand side can be written as $F(\mathcal{A}_S, \mathcal{A}_T)$. Using property S_{σ} we further obtain that $F(\mathcal{A}_S, \mathcal{A}_T) = \mathcal{A}_S \otimes \mathcal{A}_T$. By Lemma 1.1, the latter space coincides with $\mathcal{A}_{(S \otimes 1, 1 \otimes T)}$, as desired.

Due to Kraus [7], Theorem 4.1, we know that the dual operator algebra \mathcal{A}_S generated by a single subnormal operator $S \in B(H)$ has property S_{σ} . By a classical theorem of Olin and Thomson, \mathcal{A}_S is strongly reflexive in this case. Hence Proposition 1.2 applies to every subnormal operator S. In the special case that S is the unilateral shift, i.e. $S = M_z$ on the Hardy space $H^2(\mathbb{D})$ over the unit disc, short proofs of the above proposition using elementary arguments have been given by M. Ptak ([9], Theorem 2') and J.E. McCarthy ([8], Lemma 6).

Our aim is to extend Kraus' result to the setting of subnormal tuples $S \in B(H)^n$ of class \mathbb{A} on sufficiently nice sets Ω for which $\mathcal{A}_S \cong H^{\infty}(\Omega)$. The dual algebra generated by a tensor product tuple of the form $(S \otimes 1, 1 \otimes T)$ then corresponds to some space of vector-valued H^{∞} -functions. The next section is therefore devoted to this kind of function spaces.

2 A tensor product formula for $H^{\infty}(\Omega, \mathcal{T})$

From now on suppose that $\emptyset \neq \Omega \subset X$ is either a bounded convex open subset of $X = \mathbb{C}^n$ or a relatively compact strictly pseudoconvex open subset of a Stein submanifold $X \subset \mathbb{C}^n$. By the latter we mean that there exist an open subset $U \subset X$ containing the boundary $\partial\Omega$ and a strictly plurisubharmonic C^2 -function $\rho: U \to \mathbb{R}$ such that $\Omega \cap U = \{z \in U : \rho(z) < 0\}$. To abbreviate the description of these two cases, let us simply say in the following that Ω is a "bounded convex or strictly pseudoconvex open set".

Let us fix such a set $\Omega \subset X$ now. As a relatively compact submanifold of \mathbb{C}^n , the set Ω carries a natural volume measure. After normalization and trivial extension we obtain a Borel probability measure λ on $\overline{\Omega}$ with $\lambda(\Omega) = 1$, $\lambda(\partial\Omega) = 0$ and the property that $\lambda(W) > 0$ for every non-empty open set $W \subset \Omega$. By $H^{\infty}(\Omega)$ we denote the Banach algebra of all bounded holomorphic functions on Ω equipped with the supremum norm $||f||_{\infty,\Omega} = \sup_{z \in \Omega} |f(z)|$. As a consequence of Montel's theorem, the isometric embedding $H^{\infty}(\Omega) \hookrightarrow L^{\infty}(\lambda)$ has weak^{*} closed range and thus turns $H^{\infty}(\Omega)$ into a dual algebra. Via the representation

$$\gamma: L^{\infty}(\lambda) \to B(L^{2}(\lambda)), \qquad \varphi \mapsto M_{\varphi} \qquad \text{with } M_{\varphi}f = \varphi \cdot f \quad (f \in L^{2}(\lambda)),$$

which is a weak^{*} continuous isometric *-homomorphism, we may identify $H^{\infty}(\Omega)$ with the dual operator algebra

$$\mathscr{H}^{\infty}(\Omega) = \gamma(H^{\infty}(\Omega)) = \{M_{\varphi} : \varphi \in H^{\infty}(\Omega))\} \subset B(L^{2}(\lambda))$$

of all multiplication operators with H^{∞} -symbol.

Towards the vector-valud case, fix a separable Banach space E and consider the Banach space $L^{\infty}(\lambda, E')$ of all equivalence classes of bounded weak*-measurable functions $f: \Omega \to E'$ equipped with the essential supremum norm. Via the bilinear form $\langle g, f \rangle = \int_{\Omega} \langle g, f \rangle d\lambda$, we can identify $L^{\infty}(\lambda, E')$ with the dual of the space $L^1(\lambda, E)$ of all equivalence classes of Bochner-integrable functions $g: \Omega \to E$ with $\|g\|_{1,\lambda} = \int_{\Omega} \|g\| d\lambda < \infty$. In analogy with the \mathbb{C} -valued case, the Banach space of all E'-valued bounded holomorphic functions $H^{\infty}(\Omega, E')$ with the supremum norm can – via the canonical embedding – be thought of as a weak*-closed subspace of $L^{\infty}(\lambda, E')$ (for details, see [3], Lemma 5.3). It should be mentioned that a sequence (f_k) in $H^{\infty}(\Omega, E')$ is a weak* zero sequence if and only if (f_k) is norm-bounded and $(f_k(z))$ is a weak* zero sequence in E' for every $z \in \Omega$.

If K is a separable Hilbert space and $\mathcal{T} \subset B(K)$ is a weak^{*} closed subspace, then $H^{\infty}(\Omega, \mathcal{T})$ and $L^{\infty}(\lambda, \mathcal{T})$ fit into the above context, since \mathcal{T} can then be identified with the dual space of the separable Banach space $E = C^1(K)/{}^{\perp}\mathcal{T}$. If, in addition, \mathcal{T} is a subalgebra of B(K), then $H^{\infty}(\Omega, \mathcal{T})$ and $L^{\infty}(\lambda, \mathcal{T})$ are dual algebras in a canonical way. If $\mathcal{T} \subset B(K)$ is even a W^* -algebra, then so is $L^{\infty}(\lambda, \mathcal{T})$. Again in analogy with the scalar-valued case we obtain a representation of the W^* -algebra $L^{\infty}(\lambda, B(K))$ via the weak^{*} continuous and isometric *-homomorphism

$$\Gamma: L^{\infty}(\lambda, B(K)) \to B(L^2(\lambda) \otimes K)), \quad \varphi \mapsto M_{\varphi}$$

where the operator M_{φ} acts on the space $L^2(\lambda, K) \cong L^2(\lambda) \otimes K$ as multiplication with symbol φ .

2.1 Proposition. Let Ω be a bounded convex or strictly pseudoconvex open set, and let $\mathcal{T} \subset B(K)$ be a weak^{*} closed subspace. Then there is a unique dual algebra isomorphism

$$\Gamma_{\mathcal{T}}: H^{\infty}(\Omega, \mathcal{T}) \longrightarrow \mathscr{H}^{\infty}(\Omega) \overline{\otimes} \mathcal{T} \subset B(L^{2}(\lambda) \otimes K)$$

mapping $\varphi \cdot T$ to $M_{\varphi} \otimes T$ whenever $\varphi \in H^{\infty}(\Omega)$ and $T \in \mathcal{T}$. In fact, $\Gamma_{\mathcal{T}}$ can be obtained by restricting the map Γ from above to $H^{\infty}(\Omega, \mathcal{T})$.

Towards a proof of this result, consider the set

$$M = LH\{\varphi \cdot T : \varphi \in H^{\infty}(\Omega), T \in \mathcal{T}\}$$

of elementary functions. From the properties of the map Γ described above and the trivial fact that $\Gamma(M) \subset \mathscr{H}^{\infty}(\Omega) \otimes \mathcal{T}$ we deduce that the assertion follows as soon as we know that M is dense in $H^{\infty}(\Omega, \mathcal{T})$.

To realize this claim we first derive an intermediate result which is interesting in its own right. In the following proposition $\mathscr{O}(\overline{\Omega}, E')$ stands for the space of all E'-valued functions that are holomorphic in some open neighbourhood of $\overline{\Omega}$ in \mathbb{C}^n .

2.2 Proposition. Suppose that Ω is a convex or strictly pseudoconvex open set and that *E* is a separable complex Banach space. Then

$$\mathscr{O}(\overline{\Omega}, E')|\Omega \subset H^{\infty}(\Omega, E')$$

is sequentially weak^{*} dense. More precisely, there is a constant $c \geq 1$, such that every function f in the unit ball of $H^{\infty}(\Omega, E')$ can be approximated (with respect to the weak^{*} topology) by a sequence (f_k) with $f_k \in \mathscr{O}(\overline{\Omega}, E')|\Omega$ and $||f_k||_{\infty,\Omega} \leq c \ (k \geq 1)$.

Proof. Elementary arguments show that the assertion holds in the convex case. (Translate Ω in such a way that it contains the origin and use radial limits.) To treat the strictly pseudoconvex case we use the embedding theorem of Fornaess saying that, up to a biholomorphic identification, the set Ω can be represented as the intersection $\Omega \cong Y \cap C$ of some closed complex submanifold $Y \subset \mathbb{C}^m$ and a C^2 -strictly convex open subset $C \subset \mathbb{C}^m$ for some suitably chosen $m \geq 1$ (see Theorem 10 in [4]).

Theorem 5.11 in [3] says that our assertion holds in the special case where $E' = H^{\infty}(\Omega_2)$. Following the proof of the cited theorem (setting there $D_1 = \Omega$ and replacing E by E'), we deduce that it suffices to show that the restriction map

$$H^{\infty}(C, E') \longrightarrow H^{\infty}(Y \cap C, E')$$

is onto. Towards this end, note that the mapping

$$B: E \times H^{\infty}(Y \cap C, E') \to H^{\infty}(Y \cap C), \qquad (x, f) \mapsto \langle x, f(\cdot) \rangle$$

is (norm-) continuous and bilinear.

By the remark following Theorem 4.11.1 in Henkin-Leiterer [5], there is a bounded linear extension operator

$$\theta: H^{\infty}(Y \cap C) \to H^{\infty}(C).$$

In order to lift this operator to the E'-valued setting, we start with an arbitrary function $f \in H^{\infty}(Y \cap C, E')$. By defining

$$\hat{f}(z): E \to \mathbb{C}, \qquad x \mapsto \mathcal{E}_z \theta B(x, f) \qquad \text{(for every } z \in C),$$

where $\mathcal{E}_z : H^{\infty}(\Omega, E') \to E'$ denotes the (weak^{*} continuous) point evaluation at z, we obtain a family of vectors $\hat{f}(z) \in E'$ ($z \in C$) satisfying

$$\langle x, \hat{f}(z) \rangle = \theta(\langle x, f(\cdot) \rangle)(z) \qquad (x \in E, z \in C).$$

The function $\hat{f}: C \to E'$ constructed this way clearly extends f and is weak^{*} holomorphic and hence holomorphic. Since the estimate

$$\|\hat{f}(z)\| \le \|\mathcal{E}_{z}\| \|\theta\| \sup_{\|x\| \le 1} \|B(x, f)\|_{\infty, \Omega} \le \|\theta\| \|f\|_{\infty, \Omega} \qquad (z \in C)$$

holds, the assignment

$$\hat{\theta}: H^{\infty}(Y \cap C, E') \to H^{\infty}(C, E'), \qquad f \mapsto \hat{f}$$

yields a bounded linear extension operator in the vector-valued case. In particular, the corresponding restriction $H^{\infty}(C, E') \to H^{\infty}(Y \cap C, E')$ is onto, as desired. Hence the assertion of the proposition holds with approximation constant $c = \|\theta\|$.

Now we are able to finish the proof of Proposition 2.1. We use the notation $\mathscr{O}(W)$ ($\mathscr{O}(W, \mathcal{T})$, resp.) to denote the set of all \mathbb{C} -valued (\mathcal{T} -valued, resp.) holomorphic functions on an open set $W \subset X$.

Proof of Proposition 2.1. As pointed out above, it remains to check that the set $M = LH\{\varphi \cdot T : \varphi \in H^{\infty}(\Omega), T \in \mathcal{T}\}$ is weak^{*} dense in $H^{\infty}(\Omega, \mathcal{T})$. Towards this end, fix an arbitrary function $f \in H^{\infty}(\Omega, \mathcal{T})$. Then, by the preceding proposition, there is a sequence (f_k) in $\mathscr{O}(\overline{\Omega}, \mathcal{T})|\Omega$ such that $f_k \stackrel{k}{\to} f$ pointwise weak^{*} on Ω and $\sup_k ||f_k||_{\infty,\Omega} \leq c ||f||_{\infty,\Omega}$. For each $k \geq 1$ we may choose an open neighborhood U_k of $\overline{\Omega}$ in such a way that f_k can be extended to a function in $\mathscr{O}(U_k, \mathcal{T})$ again denoted by f_k . In view of the well-known identification $\mathscr{O}(U_k, \mathcal{T}) \cong \mathscr{O}(U_k) \widehat{\otimes} \mathcal{T}$, there are elementary functions

$$g_k = \sum_{i=1}^{r_k} h_i^{(k)} \otimes A_i^{(k)} \in M \qquad \text{with } h_i^{(k)} \in H^\infty(\Omega), \ A_i^{(k)} \in \mathcal{T} \quad (k \ge 1)$$

satisfying $||g_k - f_k||_{\infty,\Omega} < 1/k$. The sequence $(g_k)_k$ is norm-bounded and converges to f pointwise weak^{*}. Therefore (g_k) is the desired sequence in M approximating f in the weak^{*} topology of $H^{\infty}(\Omega, \mathcal{T})$.

3 Property S_{σ} for $\mathscr{H}^{\infty}(\Omega)$ and applications

In the special case that Ω is the open unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, Kraus remarked in [7] (Example 3.3, p.399) that $H^{\infty}(\mathbb{D})$ has property S_{σ} . Since Kraus' original proof involves W^* -dynamical systems and makes use of the group structure of $\partial \mathbb{D} = \mathbb{T}$, it cannot be extended to our situation. Via the tensor product formula established in Proposition 2.1, we show directly and with elementary arguments that $\mathscr{H}^{\infty}(\Omega)$ satisfies property S_{σ} .

3.1 Theorem. For every bounded convex or strictly pseudoconvex open set $\Omega \subset X$, the dual operator algebra $\mathscr{H}^{\infty}(\Omega)$ has property S_{σ} .

Proof. Fix an arbitrary separable complex Hilbert space K and a weak^{*} closed subspace $\mathcal{T} \subset B(K)$. We have to show that

$$F(\mathscr{H}^{\infty}(\Omega), \mathcal{T}) \subset \mathscr{H}^{\infty}(\Omega) \overline{\otimes} \mathcal{T}.$$

Towards this end, we start with an arbitrary element $A \in F(\mathscr{H}^{\infty}(\Omega), \mathcal{T})$, which means by definition that

 $A \in \mathscr{H}^{\infty}(\Omega) \overline{\otimes} B(K)$ and $R_C(A) \in \mathcal{T}$ for all $C \in C^1(L^2(\lambda))$.

Proposition 2.1 says that, using the canonical weak^{*} continuous isometry

$$\Gamma: L^{\infty}(\lambda, B(K)) \to B(L^2(\lambda) \otimes K),$$

the operator A can be written as $A = \Gamma(f_A)$ with some bounded holomorphic function $f_A \in H^{\infty}(\Omega, B(K))$. Suppose for a moment that f_A takes its values in \mathcal{T} only. Then we could again use Proposition 2.1 to finish the proof with the observation that

$$\Gamma(f_A) \in \Gamma(H^{\infty}(\Omega, \mathcal{T})) \subset \mathscr{H}^{\infty}(\Omega) \overline{\otimes} \mathcal{T}.$$

Therefore, our aim is to show that $f_A(z) \in \mathcal{T}$ for all $z \in \Omega$.

In view of the dual algebra isomorphism $\gamma : H^{\infty}(\Omega) \to \mathscr{H}^{\infty}(\Omega), \varphi \mapsto M_{\varphi}$, each $g \in L^{1}(\lambda)$ induces a weak^{*} continuous linear form

$$\mathscr{H}^{\infty}(\Omega) \to \mathbb{C}, \quad M_{\varphi} \mapsto \langle g, \varphi \rangle = \int_{\Omega} g \varphi d\lambda,$$

which, by the Hahn-Banach theorem, can be extended from $\mathscr{H}^{\infty}(\Omega)$ to a weak^{*} continuous linear form on all of $B(L^2(\lambda))$. Hence via trace-duality we find an operator $C_g \in C^1(L^2(\lambda))$ satisfying

$$\langle C_g, M_{\varphi} \rangle = \int_{\Omega} g \varphi d\lambda \qquad (\varphi \in H^{\infty}(\Omega)).$$

From the very definition of the right slice map associated with C_g we deduce that, for every $D \in C^1(K)$, every $\varphi \in H^{\infty}(\Omega)$ and every $T \in B(K)$, the identity

$$\langle D, R_{C_g}(\Gamma(\varphi T)) \rangle = \langle D, \langle C_g, M_{\varphi} \rangle T \rangle = \langle D, \left(\int_{\Omega} g\varphi d\lambda \right) T \rangle = \int_{\Omega} g \langle D, \varphi T \rangle d\lambda$$

holds. Since, according to Proposition 2.1, the linear span of $H^{\infty}(\Omega) \cdot B(K)$ is weak^{*} dense in $H^{\infty}(\Omega, B(K))$, this implies that

$$\langle D, R_{C_g}(\Gamma(f_A)) \rangle = \int_{\Omega} g \langle D, f_A(\cdot) \rangle d\lambda \qquad (D \in C^1(L^2(\lambda)), g \in L^1(\lambda)).$$

By hypothesis, we have $R_C(A) \in \mathcal{T}$ for every $C \in C^1(L^2(\lambda))$, and consequently

$$0 = \langle D, R_{C_g} \Gamma(f_A) \rangle = \int_{\Omega} g \langle D, f_A(\cdot) \rangle d\lambda \qquad (D \in {}^{\perp}\mathcal{T}, g \in L^1(\lambda)).$$

From this we conclude that the scalar-valued H^{∞} -function $\langle D, f_A(\cdot) \rangle$ vanishes identically on Ω for every $D \in {}^{\perp}\mathcal{T}$. But this means precisely that

$$f_A(z) \in ({}^{\perp}\mathcal{T})^{\perp} = \overline{\mathcal{T}}^{w^*} = \mathcal{T} \qquad (z \in \Omega),$$

as was to be shown.

For the rest of this article, we specialize to the case where $\Omega \subset \mathbb{C}^n$ is a bounded symmetric and circled domain or a relatively compact strictly pseudoconvex open subset $\Omega \subset X$ of a Stein submanifold $X \subset \mathbb{C}^n$, and assume that the closure $\overline{\Omega} \subset \mathbb{C}^n$ is polynomially convex.

Fix a subnormal tuple $S \in B(H)^n$ of class \mathbb{A} over Ω . This means by definition that S possesses an extension to a commuting tuple $\hat{S} \in B(\hat{H})^n$ of normal operators on some Hilbert space $\hat{H} \supset H$ and that there exists an isometric and weak^{*} continuous functional calculus $\Phi : H^{\infty}(\Omega) \to B(H)$ for S. Furthermore, the normal extension \hat{S} can be chosen to be minimal in the sense that if $M \subset \hat{H}$ is any reducing subspace for \hat{S} containing H, then $M = \hat{H}$.

Spectral theory for the minimal normal extension \hat{S} of S then yields a regular Borel probability measure μ on $\overline{\Omega}$ having the following properties (see e.g. [3]): (a) There is an isometric and weak^{*} continuous algebra homomorphism

$$r_{\mu}: H^{\infty}(\Omega) \to L^{\infty}(\mu)$$

extending the canonical map $\mathbb{C}[z] \to L^{\infty}(\mu), p \mapsto [p|\Omega]$. In other words, μ is a faithful Henkin measure.

(b) The normal tuple \hat{S} possesses an isometric, weak^{*} continuous and involutive functional calculus

$$\Psi: L^{\infty}(\mu) \to B(\hat{H}).$$

The mappings Φ , r_{μ} and Ψ will be used now to show that \mathcal{A}_{S} has property S_{σ} .

3.2 Corollary. Suppose that Ω is a bounded symmetric and circled domain in \mathbb{C}^n or a relatively compact strictly pseudoconvex open subset of a Stein submanifold $X \subset \mathbb{C}^n$ possessing polynomially convex closure $\overline{\Omega} \subset \mathbb{C}^n$. Then the dual algebra \mathcal{A}_S generated by a subnormal tuple $S \in B(H)^n$ of class \mathbb{A} over Ω has property S_{σ} .

Proof. From the hypothesis on Ω to have polynomially convex closure we deduce that the polynomials $\mathbb{C}[z]|\overline{\Omega}$ are dense in $\mathscr{O}(\overline{\Omega})$ with respect to the supremum norm $\|\cdot\|_{\infty,\overline{\Omega}}$. Combining this with the assertion of Proposition 2.2 (with $E' = \mathbb{C}$) we see that $\mathbb{C}[z]|\Omega \subset H^{\infty}(\Omega)$ is weak^{*} dense. Consequently, we have $\Phi(H^{\infty}(\Omega)) = \mathcal{A}_{S}$ and $\Psi \circ r_{\mu}(H^{\infty}(\Omega)) = \mathcal{A}_{\hat{S}}$. In particular, the composition $\Phi \circ r_{\mu}^{-1} \circ \Psi^{-1}|\mathcal{A}_{\hat{S}}$ yields a dual algebra isomorphism

 $\tau: \mathcal{A}_{\hat{S}} \to \mathcal{A}_S \quad \text{with} \quad \Psi(r_\mu(f)) \mapsto \Phi(f) \qquad (f \in H^\infty(\Omega)).$

In view of the identity

$$\Phi(f) = \Psi(r_{\mu}(f))|H,$$

extending from $f \in \mathbb{C}[z]$ to all of $H^{\infty}(\Omega)$ by a weak^{*} density argument, the mapping τ is nothing else than the restriction map $\tau(A) = A|H$, for $A \in \mathcal{A}_{\hat{S}}$. This shows that τ is completely bounded. Since the range of τ^{-1} is contained in the abelian C^* -algebra $W^*(\hat{S})$, the inverse of τ is also completely bounded.

Next observe that the two isometric and weak^{*} continuous embeddings

$$\psi: H^{\infty}(\Omega) \xrightarrow{r_{\mu} \circ \Psi} \mathcal{A}_{\hat{S}} \subset W^{*}(\hat{S}) \text{ and } \gamma_{0}: H^{\infty}(\Omega) \xrightarrow{\gamma} \mathscr{H}^{\infty}(\Omega) \subset W^{*}(M_{z})$$

both induce the same operator space structure on $H^{\infty}(\Omega)$ as their ranges both are contained in abelian C^* -algebras. The composition

$$\Delta: \mathscr{H}^{\infty}(\Omega) \xrightarrow{\gamma_0^{-1}} H^{\infty}(\Omega) \xrightarrow{\psi} \mathcal{A}_{\hat{S}} \xrightarrow{\tau} \mathcal{A}_S$$

therefore is a completely bounded dual algebra isomorphism having a completely bounded inverse. Proposition 4.2 in Kraus [7] now guarantees that, via Δ , property S_{σ} carries over from $\mathscr{H}^{\infty}(\Omega)$ to \mathcal{A}_{S} . **3.3 Corollary.** Suppose that Ω is a bounded symmetric and circled domain in \mathbb{C}^n or a relatively compact strictly pseudoconvex open subset of a Stein submanifold $X \subset \mathbb{C}^n$ possessing polynomially convex closure $\overline{\Omega} \subset \mathbb{C}^n$. Given a subnormal tuple $S \in B(H)^n$ of class \mathbb{A} over Ω and a commuting tuple $T \in B(K)^m$ which is strongly reflexive (i.e. $\operatorname{AlgLat}(T) = \mathcal{A}_T$), the tensor product tuple

$$(S \otimes 1, 1 \otimes T) \in B(H \otimes K)^{n+m}$$

is strongly reflexive.

Proof. Theorem 1.4 in [3] says that \mathcal{A}_S is strongly reflexive. Hence the assertion follows from the preceding corollary and Proposition 1.2.

The last corollary in particular applies to the tuple $S = (M_{z_1}, \ldots, M_{z_n})$ of multiplication with the coordinate functions on the classical Hardy or Bergman spaces, $H = H^2(\Omega)$ or $H = A^2(\Omega)$, on a strictly pseudoconvex or a bounded symmetric and circled domain Ω .

References

- J.B. Conway, J.J. Dudziak (1990). Von Neumann operators are reflexive. J. reine angew. Math. 408, 34-56.
- [2] M. Didas (2004). Dual algebras generated by von Neumann n-tuples over strictly pseudoconvex sets. Dissertationes Math. 425.
- [3] M. Didas, J. Eschmeier (2005). Subnormal tuples on strictly pseudoconvex and bounded symmetric domains. Acta Sci. Math. (Szeged) 71, 691-731.
- [4] J. E. Fornaess (1976). Embedding strictly pseudoconvex domains in convex domains. Amer. J. Math. 98, 529-569.
- [5] G. M. Henkin, J. Leiterer (1984). Theory of functions on complex manifolds. Monogr. Math. 79, Birkhäuser, Basel.
- [6] J. Kraus (1983). The slice map problem for σ -weakly closed subspaces of von Neumann algebras Trans. Amer. Math. Soc. 289, 357-376.
- [7] J. Kraus (1985). Abelian operator algebras and tensor products. J. Operator Theory 14, 391-407.
- [8] J. E. McCarthy (1993). Reflexivity of subnormal operators. Pacific J. Math. 161(2), 359-370.
- [9] M. Ptak (1986). Reflexivity of pairs of isometries and of tensor products of some operator algebras. Studia Math. 83, 47-55.

[10] M. Takesaki (2001). *Theory of operator algebras I.* Springer-Verlag, Berlin-Heidelberg-New York.

Michael Didas Fachrichtung Mathematik Universität des Saarlandes Postfach 15 11 50 D-66041 Saarbrücken, Germany email: didas@math.uni-sb.de