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FUBINI-TONELLI THEOREMS ON THE BASIS

OF INNER AND OUTER PREMEASURES

HEINZ KÖNIG

Dedicated to Stephen Simons on the occasion of his 70th Birthday

Abstract. The present article obtains comprehensive Fubini-Tonelli
type theorems on the basis of the author’s work in measure and inte-
gration. The basic tools are the product theory and the complemental
pairs of inner and outer premeasures.

The theorem of Fubini-Tonelli is one of the most important and widespread
tool theorems in measure and integration. It is a deep theorem, manifested
in the basic requirement that the functions in it must be measurable with
respect to the relevant product formation. There are additional obstacles
which impede its formulation in both simple and universal manner: on the
one hand the relevant iterated integrals can be delicate as to their kind
of existence, and on the other hand the assertions require some sort of σ
finiteness of the data.

The present article wants to invoke the author’s work in measure and
integration, developed in his 1997 book [4] and subsequent papers and sum-
marized in [7] and [8], in order to obtain a transparent version of the field. In
this work the basic concepts are the inner and outer premeasures and their
maximal inner and outer extensions, and the basic devices are new inner
and outer envelopes of set functions. We combine these envelopes with the
concept of the Choquet integral, and thus ensure the existence of all relevant
integrals, at least for functions with values in [0,∞]. This limitation is no
loss, because the Choquet integral has powerful additive properties, and it
also removes the distinction between Fubini and Tonelli type theorems.

The present article then is based on two central points in our previous
development: Section 1 uses the product theory for set functions to obtain
the basic lower and upper estimations of the relevant iterated integrals.
The upper estimation has been known before in particular situations, but
in place of the Choquet integral with the less estimable conventional upper
integral. Section 2 then uses the method of complemental pairs of inner
and outer premeasures in order to pass from the fundamental inequalities to
equalities of the Fubini-Tonelli type theorem. This method has its roots in
the presentation of the Radon measure theory in Schwartz [11] part I. The
fact that both these procedures work in the present frame can be viewed as
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inner and outer envelopes of set functions, the Choquet integral, products of set functions,
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a remarkable support for the basic concepts of our new development. After
this then section 3 will be devoted to the connection with the traditional
Fubini-Tonelli theorems.

1. The Fundamental Inequalities

We refer to the previous work of the author in measure and integration
cited above. As a rule we shall make free use of the fundamentals of this
development.

Preliminaries on Set Functions

Let X be a nonvoid set and S be a lattice with ∅ ∈ S in X. We assume
• = στ .

1.1 Lemma. Let ϕ : S → [0,∞[ be isotone with ϕ(∅) = 0 and downward

• continuous. Define ξ := ϕ•|S•. Then

0) ξ : S• → [0,∞] is isotone with ξ(∅) = 0 and downward • continuous.

i) ξ = ϕ⋆|S• and ξ⋆ = ξ• = ϕ•.

ii) ϕ is modular ⇐⇒ ξ is modular.

iii) ϕ is an inner • premeasure ⇐⇒ ξ is an inner • premeasure.

Proof. 0)i) are from [7] 2.2.3)4), and ii) is from [7] 2.8.1). iii) If ϕ is an
inner • premeasure then ξ•|C(ξ•) = ϕ•|C(ϕ•) is an extension of ϕ•|S• = ξ,
so that ξ is an inner • premeasure. If ξ is an inner • premeasure then
ϕ•|C(ϕ•) = ξ•|C(ξ•) is an extension of ξ and hence of ϕ, so that ϕ is an
inner • premeasure. �

1.2 Lemma. Let ϕ : S → [0,∞] be isotone with ϕ(∅) = 0 and upward •
continuous. Define ξ := ϕ•|S•. Then

0) ξ : S• → [0,∞] is isotone with ξ(∅) = 0 and upward • continuous.

i) ξ = ϕ⋆|S
• and ξ⋆ = ξ• = ϕ•.

ii) ϕ is modular ⇐⇒ ξ is modular.

iii) ϕ is an outer • premeasure ⇐⇒ ξ is an outer • premeasure.

The proof is like the previous one. The proof of the next lemma is routine.

1.3 Lemma. Let ϕ : S → [0,∞] be isotone with ϕ(∅) = 0, and assume

that [ϕ < ∞] is a lattice (which is true when ϕ is submodular). Then

ϕ• = (ϕ|[ϕ <∞])•.

Preliminaries on the Choquet Integral

We consider the Choquet integral from [4] section 11 (at that place called
the horizontal integral) and [7] section 5. We first recall [4] theorem 11.16.

1.4 Proposition. Let ϕ : S → [0,∞] be isotone with ϕ(∅) = 0. For

f : X → [0,∞] then
∫

−fdϕ⋆ = sup{

∫

−udϕ : u ∈ S(S) with u ≦ f}.

We turn to the outer counterpart of the assertion, which is more involved.
We present two versions, of which the second one will be used later on.
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1.5 Proposition. Let ϕ : S → [0,∞] be isotone with ϕ(∅) = 0. If

f : X → [0,∞[ is bounded above and has ϕ⋆([f > 0]) <∞ then
∫

−fdϕ⋆ = inf{

∫

−udϕ : u ∈ S(S) with u ≧ f}.

Proof. 1) Fix 0 < b <∞ with f < b, and 0 < C <∞ with ϕ⋆([f > 0]) <
C. Then

∫

−fdϕ⋆ =

→∞
∫

0←

ϕ⋆([f ≧ t])dt =

b
∫

0←

ϕ⋆([f ≧ t])dt ≦ Cb <∞.

Next fix 0 < c < ∞ with
∫

−fdϕ⋆ < c, and then ε > 0 with
∫

−fdϕ⋆ < c − ε.
At last fix 0 < a < b with Ca < ε.

2) From
b
∫

a

ϕ⋆([f ≧ t])dt ≦
∫

−fdϕ⋆ < c−ε and the definition of the Riemann

integral there exists a decomposition a = t(0) < t(1) < · · · < t(r) = b such
that

r
∑

l=1

ϕ⋆
(

[f ≧ t(l − 1)]
)

(t(l)− t(l − 1)) < c− ε.

Then fix S(l) ∈ S (l = 1, · · · ) with S(l) ⊃ [f ≧ t(l − 1)] and

r
∑

l=1

ϕ(S(l))(t(l)− t(l − 1)) < c− ε.

Also fix S(0) ∈ S with S(0) ⊃ [f > 0] and ϕ(S(0)) < C. Because of
[f > 0] ⊃ [f ≧ t(0)] ⊃ · · · ⊃ [f ≧ t(r−1)] we can replace S(p) (p = 1, · · · , r)

by S(0) ∩
p
⋂

l=1

S(l), and hence assume that S(0) ⊃ S(1) ⊃ · · · ⊃ S(r). Now

define

u := aχS(0) +
r

∑

l=1

(t(l)− t(l − 1))χS(l) ∈ S(S).

From [4] 11.8.1) we obtain

∫

−udϕ = aϕ(S(0)) +
r

∑

l=1

(t(l)− t(l − 1))ϕ(S(l)) < Ca+ c− ε < c.

3) It remains to show that u(x) ≧ f(x) for all x ∈ X. This is clear
when x ∈ [f = 0], so we can assume that x ∈ [f > 0] ⊂ S(0). Since
x ∈ [f ≧ b] = [f ≧ t(r)] does not happen, we are left with the two cases

i) 0 < f(x) < t(0) = a and hence u(x) ≧ a > f(x), and
ii) t(p− 1) ≦ f(x) < t(p) for some 1 ≦ p ≦ r. Then for 1 ≦ l ≦ p we have

f(x) ≧ t(l − 1) and hence x ∈ S(l). It follows that u(x) ≧ t(p) > f(x). �

Now define Inn(S) and Out(S) to consist of the functions f : X → [0,∞]
with [f ≧ t] ∈ S and [f > t] ∈ S respectively for all 0 < t <∞, the former
UM(S) and LM(S) of [4] section 11. Thus S(S) ⊂ Inn(S) ∩Out(S) from
[4] 11.4.
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1.6 Proposition. Assume that S = Sσ. Let ϕ : S → [0,∞] be isotone

with ϕ(∅) = 0, and modular and upward σ continuous. For f : X → [0,∞]
then

∫

−fdϕ⋆ = inf{

∫

−udϕ : u ∈ (S(S))σ = Out(S) with u ≧ f}.

Note that in the present case S = Sσ we have (S(S))σ ⊂ Out(Sσ) =
Out(S), which after [4] 22.1 is⊂ (S(S))σ, so that in fact (S(S))σ = Out(S).

Proof. 1) We can assume that
∫

−fdϕ⋆ =
→∞
∫

0←

ϕ⋆([f ≧ t])dt < ∞, so that

ϕ⋆([f ≧ t]) < ∞ for 0 < t < ∞. Fix 0 < c < ∞ with
∫

−fdϕ⋆ < c. For each
two-sided sequence (t(l))l∈Z in ]0,∞[ with t(l − 1) < t(l) and with t(l) ↓ 0
for l ↓ −∞ and t(l) ↑ ∞ for l ↑ ∞ we have

∫

−fdϕ⋆ =
∑

l∈Z

t(l)
∫

t(l−1)

ϕ⋆([f ≧ t])dt < c.

We can pass to appropriate subdivisions of the individual intervals
[t(l − 1), t(l)], while we retain the notation, in order to achieve that

∑

l∈Z

ϕ⋆
(

[f ≧ t(l − 1)]
)

(t(l)− t(l − 1)) < c.

Then we fix S(l) ∈ S with S(l) ⊃ [f ≧ t(l − 1)] such that
∑

l∈Z

ϕ(S(l))(t(l)− t(l − 1)) < c.

2) Now define u : X → [0,∞] to be

u :=
∑

l∈Z

(t(l)− t(l − 1))χS(l).

We have u(x) ≧ f(x) for all x ∈ X: This is obvious when f(x) = 0 and
when f(x) = ∞. In case f(x) ∈]0,∞[ we have t(p − 1) ≦ f(x) < t(p) for
some p ∈ Z. For l ≦ p then t(l − 1) ≦ f(x) and hence x ∈ S(l), so that

u(x) ≧
∑

l≦p

(t(l)− t(l − 1)) = t(p) > f(x).

3) After this we define

un :=
n
∑

l=−n

(t(l)− t(l − 1))χS(l) ∈ S(S) for n ∈ N.

Thus un ↑ u for n→ ∞ and hence u ∈ (S(S))σ = Out(S). From [7] 5.6 we
have

∫

−undϕ =

n
∑

l=−n

(t(l)− t(l − 1))ϕ(S(l)),

and hence from [4] 11.18 that
∫

−udϕ = sup
n∈N

∫

−undϕ =
∑

l∈Z

(t(l)− t(l − 1))ϕ(S(l)) < c.

The assertion follows. �
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In the special case that ϕ : S → [0,∞] is a measure on a σ algebra the
assertion 1.6 says for f : X → [0,∞] that

∫

−fdϕ⋆ = inf{

∫

udϕ : u ∈ [0,∞]X measurable S with u ≧ f},

where the second member is called the upper integral
∫

fdϕ of f under ϕ.
This assertion is for example in Fremlin [3] exercise 252Yi. But one notes
as in [4] section 3 p.27 that there is a huge gap between the measures and
the set functions ϕ : S → [0,∞] admitted in 1.6.

Preliminaries on the Product of Set Functions

We recall the product formation developed in [4] chapter VII and sum-
marized in [7] section 6. Let X and Y be nonvoid sets. For nonvoid
set systems S in X and T in Y we have the usual product set system
S × T := {S × T : S ∈ S and T ∈ T} in X × Y . For lattices S and T

with ∅ then R := (S × T)⋆ is a lattice with ∅ as well, and the same for
rings and algebras. Now let ϕ : S → [0,∞] and ψ : T → [0,∞] be isotone set
functions with ϕ(∅) = ψ(∅) = 0. One proves that for E ∈ R the function
x 7→ ψ(E(x)), where E(x) := {y ∈ Y : (x, y) ∈ E} ∈ T is the vertical section
of E at x ∈ X, is in Inn(S) ∩Out(S). We define the product set function

ϑ = ϕ× ψ : R → [0,∞] to be ϑ(E) =

∫

−ψ(E(·))dϕ.

Its basic properties are listed in [7] 6.2: ϑ is isotone with ϑ(∅) = 0 and
fulfils ϑ(S × T ) = ϕ(S)ψ(T ) for S ∈ S and T ∈ T (with 0∞ = 0 as usual),
and inherits from ϕ and ψ the properties to be modular and to be finite.

We want to add a note on the question of symmetry: In [7] 6.2.5) we
assert that in the frame of modular ϕ and ψ the present ϑ = ϕ × ψ is
the unique natural product formation. In particular it coincides with the
opposite formation θ : θ(E) =

∫

−ϕ(E[·])dψ for E ∈ R, where E[y] := {x ∈
X : (x, y) ∈ E} ∈ S is the horizontal section of E at y ∈ Y . However, we
want to present a simple example that ϑ and θ can be different when ϕ and
ψ are not both modular.

1.7 Example. Assume that ϕ : S → [0,∞[ has a pair P,Q ∈ S with
P ∩ Q = ∅ and ϕ(P ) = ϕ(Q) = 1, and that ψ : T → [0,∞[ has a pair
U, V ∈ T with U ∩ V = ∅ such that ψ(U) = ψ(V ) = 0 and ψ(U ∪ V ) = 1.
Thus ψ is not modular. For E := (P × U) ∪ (Q × V ) ∈ R then on the one
hand ψ(E(x)) = 0 for all x ∈ X and hence ϑ(E) = 0. On the other hand
ϕ(E[y]) = 1 for y ∈ U ∪ V and ϕ(E[y]) = 0 for the other y ∈ Y , so that
θ(E) = 1.

After this the development splits into the inner and the other ones, both
for • = στ . In the inner situation we recall the basic properties obtained in
[4] 21.4-7 and [5] 1.4 and summarized in [7] 6.3.

1.8 Proposition. Assume that ϕ : S → [0,∞[ and ψ : T → [0,∞[ are
isotone with ϕ(∅) = ψ(∅) = 0 and downward • continuous. Then

1) ϑ = ϕ× ψ is downward • continuous (the same implication holds true
for downward • continuous at ∅).
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2) For E ∈ R• one has E(x) ∈ T• for all x ∈ X. Moreover the function

ψ•(E(·)) : X → [0,∞[ is in Inn(S•), and ϑ•(E) =
∫

−ψ•(E(·))dϕ•.
3) ϑ•(A×B) = ϕ•(A)ψ•(B) for all A ⊂ X and B ⊂ Y .

In the inner situation one then has the fundamental product theorem [4]
21.9 = [7] 6.4 which follows.

1.9 Theorem. Assume that ϕ : S → [0,∞[ and ψ : T → [0,∞[ are inner

• premeasures. Then ϑ = ϕ × ψ : R → [0,∞[ is an inner • premeasure.

Moreover Θ = ϑ•|C(ϑ•) is an extension of the product Φ×Ψ of Φ = ϕ•|C(ϕ•)
and Ψ = ψ•|C(ψ•).

In the outer situation we repeat the basic properties summarized in [7]
6.5 and add their proofs, which had been left out so far. The example [7] 6.6
shows an imperfection compared with the inner situation, and in particular
that there is no full counterpart of the product theorem 1.9.

1.10 Proposition. Assume that ϕ : S → [0,∞] and ψ : T → [0,∞] are
isotone with ϕ(∅) = ψ(∅) = 0 and upward • continuous. Then

1) ϑ = ϕ× ψ is upward • continuous.

2) For E ∈ R• one has E(x) ∈ T• for all x ∈ X. Moreover the function

ψ•(E(·)) : X → [0,∞] is in Out(S•), and ϑ•(E) =
∫

−ψ•(E(·))dϕ•.
3) ϑ•(A×B) = ϕ•(A)ψ•(B) for A ⊂ X and B ⊂ Y , except perhaps when

the latter product is 0∞ or ∞0.

Proof. 1) Let M ⊂ R be nonvoid • with M ↑ E ∈ R. For x ∈ X

we have {M(x) : M ∈ M} ⊂ T nonvoid • with ↑ E(x) ∈ T from [4]
20.1.3), and hence sup

M∈M

ψ(M(x)) = ψ(E(x)). Thus from [4] 11.18 we obtain

sup
M∈M

∫

−ψ(M(·))dϕ =
∫

−ψ(E(·))dϕ, that is sup
M∈M

ϑ(M) = ϑ(E).

2) For E ∈ R• we have E(x) ∈ T• ∀x ∈ X from [4] 20.3.1) and 20.1.3).
Define K ⊂ R• to consist of all those E ∈ R• which are as claimed in the
second sentence in 2). Thus R ⊂ K. It remains to show that K• ⊂ K,
because then R• ⊂ K• ⊂ K and hence K = R•.

To see this fix E ⊂ K• ⊂ R•, and then M ⊂ K ⊂ R• nonvoid •
with ↑ E. As above we have {M(x) : M ∈ M} ⊂ T• nonvoid • with
↑ E(x) ∈ T• for x ∈ X. Since ψ•|T• is upward • continuous by 1.2.0),
it follows that sup

M∈M

ψ•(M(x)) = ψ•(E(x)) for x ∈ X. Now ψ•(M(·)) ∈

Out(S•) because M ⊂ K, and this implies at once that ψ•(E(·)) ∈ Out(S•).
Since ϕ•|S• is upward • continuous by 1.2.0), it follows from [4] 11.18 that
sup
M∈M

∫

−ψ•(M(·))dϕ• =
∫

−ψ•(E(·))dϕ•. In view of M ⊂ K this says that

sup
M∈M

ϑ•(M) =
∫

−ψ•(E(·))dϕ•. Now ϑ•|R• is upward • continuous by 1) and

1.2.0), so that M ⊂ R• and E ∈ R• implies that sup
M∈M

ϑ•(M) = ϑ•(E). Thus

ϑ•(E) =
∫

−ψ•(E(·))dϕ• and hence E ∈ K.

3) We first show that
∫

−ψ•
(

(A × B)(·)
)

dϕ• = ϕ•(A)ψ•(B) for all A ⊂ X

and B ⊂ Y (with 0∞ = 0 as usual). In fact, we have (A × B)(x) = B and
hence ψ•((A × B)(x)) = ψ•(B) for x ∈ A, and (A × B)(x) = ∅ and hence
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ψ•((A×B)(x)) = 0 for x ∈ X \A. Thus

∫

−ψ•
(

(A×B)(·)
)

dϕ• =

→∞
∫

0←

ϕ•
(

[ψ•((A×B)(·)) ≧ t]
)

dt

is on the one hand = 0 in the two particular cases ϕ•(A) = 0 and ψ•(B) = 0,
and on the other hand for ϕ•(A) > 0 and ψ•(B) > 0 is

=

→∞
∫

0←

ϕ•
(

[ψ•(B)χA ≧ t]
)

dt =

→ψ•(B)
∫

0←

ϕ•(A)dt = ϕ•(A)ψ•(B) in all cases.

Now fix A ⊂ X and B ⊂ Y . To prove ≧ we note for E ∈ R• with
E ⊃ A×B from 2) that

ϑ•(E) =

∫

−ψ•(E(·))dϕ• ≧

∫

−ψ•
(

(A×B)(·)
)

dϕ• = ϕ•(A)ψ•(B),

and obtain ϑ•(A×B) ≧ ϕ•(A)ψ•(B), since ϑ• is outer regular R•. To prove
≦ we can assume that ϕ•(A) <∞ and ψ•(B) <∞ in view of the admitted
exceptions. For all P ∈ S• with A ⊂ P and ϕ•(P ) < ∞ and all Q ∈ T•

with B ⊂ Q and ψ•(Q) <∞ then P ×Q ∈ R• and hence from 2)

ϑ•(A×B) ≦ ϑ•(P ×Q) =

∫

−ψ•
(

(P ×Q)(·)
)

dϕ• = ϕ•(P )ψ•(Q).

This implies that ϑ•(A × B) ≦ ϕ•(A)ψ•(B), since ϕ• is outer regular S•

and ψ• is outer regular T•. �

The Fundamental Inequalities

We continue to assume lattices S in X and T in Y with ∅ and their product
lattice R = (S× T)⋆ in X × Y . Let • = στ .

1.11 Inner Theorem. Assume that ϕ : S → [0,∞[ and ψ : T →
[0,∞[ are isotone with ϕ(∅) = ψ(∅) = 0, and modular and downward •
continuous, and let ϑ = ϕ× ψ. For all f : X × Y → [0,∞] then

∫

−fdϑ• ≦

∫

−
(

∫

−f(x, y)dψ•(y)
)

dϕ•(x).

1.12 Inner Lemma. Assume ϕ and ψ as in 1.11. For f ∈ S(R•) then

f(x, ·) ∈ S(T•) for all x ∈ X, and the function F : F (x) =
∫

−f(x, ·)dψ• for
x ∈ X is in Inn(S•) with

∫

−Fdϕ• =
∫

−fdϑ•.

For the subsequent proofs we recall two formal rules from [4] p.226: 1)
For f : X × Y → [0,∞] and all 0 < t <∞ and x ∈ X one has

[f(x, ·) ≧ t] = [f ≧ t](x) and [f(x, ·) > t] = [f > t](x).

2) For E ⊂ X × Y and all x ∈ X one has χE(x, ·) = χE(x).

Proof of 1.12. We have

f =
r

∑

l=1

tlχE(l) with t1, · · · , tr > 0 and E(1) ⊃ · · · ⊃ E(r) in R•.
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From the formal rule 2) for x ∈ X hence f(x, ·) =
r
∑

l=1

tlχE(l)(x), and 1.8.2)

implies that E(l)(x) ∈ T• and hence f(x, ·) ∈ S(T•). Next [4] 11.8 shows
that

F (x) =
r

∑

l=1

tlψ•
(

E(l)(x)
)

for x ∈ X, that is F =
r

∑

l=1

tlψ•
(

E(l)(·)
)

.

We have ψ•
(

E(l)(·)
)

∈ Inn(S•) (l = 1, · · · , r) from 1.8.2) and hence F ∈
Inn(S•) from [4] 11.1.3). Now [7] 5.6 can be applied to ϕ•|S•, which is
modular by 1.1.ii). It follows that

∫

−Fdϕ• =

∫

−Fd(ϕ•|S•) =
r

∑

l=1

tl

∫

−ψ•
(

E(l)(·)
)

d(ϕ•|S•)

=
r

∑

l=1

tl

∫

−ψ•
(

E(l)(·)
)

dϕ• =
r

∑

l=1

tlϑ•(E(l)) =

∫

−fdϑ•,

where for the last two equalities 1.8.2 and [4] 11.8 have been used. �

Proof of 1.11. We know that ϑ is modular, and downward • continuous
by 1.8.1). Thus from 1.1 and from 1.4 applied to ξ := ϑ•|R• we obtain

∫

−fdϑ• =

∫

−fdξ⋆ = sup{

∫

−udξ : u ∈ S(R•) with u ≦ f}.

But for each such u ∈ S(R•) we have from 1.12
∫

−udξ =

∫

−udϑ• =

∫

−
(

∫

−u(x, y)dψ•(y)
)

dϕ•(x) ≦

∫

−
(

∫

−f(x, y)dψ•(y)
)

dϕ•(x).

The assertion follows. �

1.13 Outer Theorem. Assume that ϕ : S → [0,∞] and ψ : T → [0,∞]
are isotone with ϕ(∅) = ψ(∅) = 0, and modular and upward • continuous,

and let ϑ = ϕ× ψ. For all f : X × Y → [0,∞] then
∫

−fdϑ• ≧

∫

−
(

∫

−f(x, y)dψ•(y)
)

dϕ•(x).

1.14 Outer Lemma. Assume ϕ and ψ as in 1.13. For f ∈ S(R•) then

f(x, ·) ∈ S(T•) for all x ∈ X, and the function F : F (x) =
∫

−f(x, ·)dψ• for
x ∈ X is in Out(S•) with

∫

−Fdϕ• =
∫

−fdϑ•.

The proof of 1.14 runs like that of 1.12, but with 1.10.2) instead of 1.8.2)
and with 1.2.ii) instead of 1.1.ii).

Proof of 1.13. 0) We know that ϑ is modular, and upward • continuous
by 1.10.1). Thus from 1.2 and from 1.6 applied to ξ := ϑ•|R• we obtain

∫

−fdϑ• =

∫

−fdξ⋆ = inf{

∫

−udξ : u ∈ (S(R•))σ = Out(R•) with u ≧ f}.

1) Now fix u ∈ (S(R•))σ = Out(R•), and then a sequence (un)n in
S(R•) ⊂ Out(R•) such that un ↑ u. We shall invoke [4] 11.18 for three
times. 1.i) We have

∫

−undϑ
• =

∫

−undξ ↑
∫

−udϑ• =
∫

−udξ. 1.ii) For x ∈ X we
have [u(x, ·) > t] = [u > t](x) ∈ T• ∀ 0 < t <∞ from the formal rule 1) and
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1.10.2), so that u(x, ·) ∈ Out(T•). Likewise un(x, ·) ∈ Out(T•) for n ∈ N,
and of course un(x, ·) ↑ u(x, ·). Thus we have

Un(x) :=

∫

−un(x, ·)dψ
• ↑

∫

−u(x, ·)dψ• =: U(x) for x ∈ X.

1.iii) By 1.14 the functions Un : X → [0,∞] thus defined are in Out(S•)
with

∫

−Undϕ
• =

∫

−undϑ
•. Then Un ↑ U implies that U ∈ Out(S•) as well.

Thus we have
∫

−Undϕ
• ↑

∫

−Udϕ•.

2) The results obtained in 1) combine to furnish
∫

−udξ =

∫

−udϑ• =

∫

−Udϕ• =

∫

−
(

∫

−u(x, y)dψ•(y)
)

dϕ•(x)

≧

∫

−
(

∫

−f(x, y)dψ•(y)
)

dϕ•(x).

Thus from 0) we obtain the assertion. �

1.15 Specialization of 1.13. Assume that ϕ : S → [0,∞] and ψ : T →
[0,∞] are measures on σ algebras and • = σ. First note the obvious fact
that in this case the outer envelopes fulfil ϕσ = ϕ⋆ and ψσ = ψ⋆. Thus
after the final remark in the subsection on the Choquet integral the second
member in the assertion of 1.13 for f : X × Y → [0,∞] is the iterated upper

integral
∫ (∫

f(x, y)dψ(y)
)

dϕ(x). As to the first member, we know from
[7] 3.3 that ϑ = ϕ × ψ is an outer σ premeasure, and shall see in section 3
that its maximal extension Θ = ϑσ|C(ϑσ) is the so-called primitive product

measure of ϕ and ψ. It is an immediate verification that ϑσ = Θσ = Θ⋆.

Hence the first member becomes
∫

−fdϑσ =
∫

−fdΘ⋆ =
∫

fdΘ. Thus in the
present special case the assertion in 1.13 reads

∫

fdΘ ≧

∫

(

∫

f(x, y)dψ(y)
)

dϕ(x) for all f : X × Y → [0,∞].

This version appears for example in Rao [10] lemma 7 p.371 and is attributed
to M.H.Stone.

2. The Fubini-Tonelli Type Theorem for • Premeasures

The two fundamental inequalities of the previous section are intended to
lead to Fubini-Tonelli type theorems. It is obvious that this aim requires
substantial relations between the inner and the outer • envelopes of the
involved set functions. Our favorite source for these relations is the method
of complemental pairs of inner and outer • premeasures developed in [6] part
I and summarized in [7] section 4. We start to recall this procedure.

Preliminaries on Complemental Pairs

The present subsection assumes a nonvoid set X and • = ⋆στ . We define a
pair of lattices S and P with ∅ in X to be • complemental iff P ⊂ (S⊤S•)⊥
and S ⊂ (P⊤P•)⊥. An obvious example is a ring S = P in X. The
most important example is S = Comp(X) and P = Op(X) in a Hausdorff
topological space X. In the present subsection we fix a • complemental pair
S and P in X. We quote some basic results from [6] sections 2-4.
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2.1 Inner Theorem. Let ϕ : S → [0,∞[ be an inner • premeasure, and

define ξ := ϕ•|P. Then

i) ξ : P → [0,∞] is an outer • premeasure with P ⊂ C(ϕ•) ⊂ C(ξ•).
ii) ϕ• ≦ ξ•, and ϕ•|P

• = ξ•|P•. Hence ξ• is inner regular S• at P
•.

iii) ϕ•(A) = ξ•(A) for all A ∈ C(ϕ•) with ξ•(A) < ∞. Hence ϕ• = ξ• on

all members of C(ϕ•) which are upward enclosable [ξ• <∞]σ.
iv) If ϕ• is outer regular P• at S•, then ξ

•|S <∞.

2.2 Outer Theorem. Let ξ : P → [0,∞] be an outer • premeasure with

ξ•|S <∞, and define ϕ := ξ•|S. Then

i) ϕ : S → [0,∞[ is an inner • premeasure with S ⊂ C(ξ•) ⊂ C(ϕ•).
ii) ϕ• ≦ ξ•, and ϕ• = ξ• on S•. Hence ϕ• is outer regular P• at S•.

iii) ϕ•(A) = ξ•(A) for all A ∈ C(ξ•) upward enclosable S.

After this we turn to a natural combination of the two theorems. We
define an inner • premeasure ϕ : S → [0,∞[ to be • tame for S and P iff
ϕ• is outer regular P

• at S•; equivalent is the much simpler condition that
each S ∈ S is contained in some P ∈ P• with ϕ•(P ) < ∞. Likewise we
define an outer • premeasure ξ : P → [0,∞] to be • tame for S and P iff
ξ• is inner regular S• at P• and fulfils ξ•|S < ∞. For these particular •
premeasures one extracts from 2.1 and 2.2 the previous main result [6] 4.6
= [7] 4.6 which follows.

2.3 Theorem. There is a one-to-one correspondence between

the inner • premeasures ϕ on S which are • tame for S and P, and

the outer • premeasures ξ on P which are • tame for S and P,

via ϕ 7→ ξ := ϕ•|P and ξ 7→ ϕ := ξ•|S. Under this correspondence we have

i) C(ϕ•) = C(ξ•) =: C.
ii) ϕ• ≦ ξ•.

iii) ϕ• = ξ• on all members of C which are upward enclosable [ξ• <∞]σ.

We define a pair of • premeasures ϕ : S → [0,∞[ and ξ : P → [0,∞] as
above to be • complemental for S and P.

An important specialization of 2.3 is for Radon premeasures on Hausdorff
topological spaces. It is due to Schwartz [11] part I and is the source of
the present method of complemental pairs. For Radon premeasures we also
refer to [7] 4.3 and to the earlier presentation in Bourbaki [1]. Let as above
be S = Comp(X) and P = Op(X) on a Hausdorff topological space X,
and let ϕ : S → [0,∞[ be a Radon premeasure on X. We recall that the
envelopes ϕ• are the same for • = ⋆στ . One defines ϕ to be locally finite iff
each S ∈ S is contained in some P ∈ P with ϕ•(P ) < ∞: that means iff
ϕ is • tame for S and P. We call the outer • premeasure ξ := ϕ•|P which
is • complemental to ϕ the hull of ϕ. We recall from 2.3 that ϕ• ≦ ξ•, and
that ϕ• = ξ• on all members of C(ϕ•) = C(ξ•) which are upward enclosable
[ξ• <∞]σ.

Next we note a simple and almost amusing specialization of 2.3. We make
use of [7] 3.7 and 3.3.

2.4 Specialization. Let S be a ring in X and ϕ : S → [0,∞[ be isotone

with ϕ(∅) = 0 and modular, that is a finite content. Then ϕ is downward •
continuous at ∅ iff it is upward • continuous, that is an inner • premeasure
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iff it is an outer • premeasure - all this called • continuous for short. In this

case

i) C(ϕ•) = C(ϕ•) =: C.
ii) ϕ• ≦ ϕ•.

iii) ϕ• = ϕ• on all members of C which are upward enclosable [ϕ• <∞]σ.

Proof. We know that S and P := S form a • complemental pair. Then
the inner • premeasure ϕ on S and the outer • premeasure ξ := ϕ on P = S

are • tame and • complemental for S and P = S. �

We want to note that in case • = σ the last specialization has a wide
but complicated extension in [4] 7.5 = [7] 3.10: The assertions remain true
whenever S is a lattice with ∅ in X and ϕ : S → [0,∞[ is both an inner
and an outer σ premeasure.

We add a little reformulation which is a simple consequence of the defi-
nition.

2.5 Remark. Let ϕ : S → [0,∞] be isotone with ϕ(∅) = 0. For the

subsets of X then upward enclosable [ϕ• < ∞]• is equivalent to upward
enclosable [ϕ <∞]•.

The Fubini-Tonelli Type Theorem

We turn to the announced Fubini-Tonelli type theorem for • premeasures.
The present subsection assumes • = στ , and

a pair of lattices S and P with ∅ in the nonvoid set X,
a pair of lattices T and Q with ∅ in the nonvoid set Y ,

with the product lattices R = (S × T)⋆ and N = (P ×Q)⋆ in X × Y . We
first note a basic lemma.

2.6 Lemma. We have the implications

P ⊂ (S⊤S•)⊥ and Q ⊂ (T⊤T•)⊥ =⇒ N ⊂ (R⊤R•)⊥,

S ⊂ (P⊤P•)⊥ and T ⊂ (Q⊤Q•)⊥ =⇒ R ⊂ (N⊤N•)⊥.

Thus if the pairs S&P and T&Q are both • complemental then the pair

R&N is • complemental as well.

Proof. We prove the first relation. To be shown is that P ∈ P and Q ∈ Q

fulfil P × Q ∈ (R⊤R•)⊥ or (P × Q)′ = (P ′ × Y ) ∪ (X × Q′) ∈ R⊤R•. It
suffices to see for S ∈ S and T ∈ T that

(P ′ × Y )∩ (S × T ) = (P ′ ∩ S)× T and (X ×Q′)∩ (S × T ) = S × (Q′ ∩ T )

are ∈ R•. But by assumption these formations are in S• × T and S × T•
and hence both in R•. �

In the sequel we assume that the pairs S&P and T&Q are both • com-
plemental.

2.7 Theorem. Assume that ϕ : S → [0,∞[ and ψ : T → [0,∞[ are inner

• premeasures with ϑ = ϕ× ψ : R → [0,∞[. If as in 2.1 one forms

ξ = ϕ•|P and η = ψ•|Q with ρ = ξ × η : N → [0,∞],

then ρ = ϑ•|N, and hence 2.1.i) implies that ρ is an outer • premeasure with

N ⊂ C(ϑ•) ⊂ C(ρ•). The functions f : X×Y → [0,∞] which are measurable



12 HEINZ KÖNIG

C(ϑ•) and have [f > 0] upward enclosable [ρ• <∞]σ fulfil
∫

−fdϑ• =

∫

−
(

∫

−f(x, y)dψ•(y)
)

dϕ•(x)

=

∫

−
(

∫

−f(x, y)dη•(y)
)

dξ•(x) =

∫

−fdρ•.

We note for f : X×Y → [0,∞] from the definition of the Choquet integral
that

∫

−fdρ• <∞ implies that [f > 0] is upward enclosable [ρ• <∞]σ.

Proof. 1) From the fundamental inequalities 1.11 and 1.13 combined with
2.1 applied to ϕ and ψ we see that all functions f : X × Y → [0,∞] fulfil

∫

−fdϑ• ≦

∫

−
(

∫

−f(x, y)dψ•(y)
)

dϕ•(x)

≦

∫

−
(

∫

−f(x, y)dη•(y)
)

dξ•(x) ≦

∫

−fdρ•.

Therefore ϑ• ≦ ρ•.

2) We claim that ρ = ϑ•|N. To see this note from 1.8 for P ∈ P and
Q ∈ Q that

ρ(P ×Q) = ξ(P )η(Q) = ϕ•(P )ψ•(Q) = ϑ•(P ×Q),

and from 1.9 that N ⊂ (C(ϕ•) × C(ψ•))
⋆ ⊂ C(ϑ•). For N ∈ N we have to

prove that ρ(N) ≦ ϑ•(N) and thus can assume that ϑ•(N) <∞. It follows
that ϑ• < ∞ and hence ρ < ∞ on {A ∈ N : A ⊂ N}, and then [4] 2.5
implies that ρ(N) = ϑ•(N). Thus in fact 2.1 can be applied to ϑ and ρ, and
in particular ρ is an outer • premeasure.

3) Now let f : X × Y :→ [0,∞] be measurable C(ϑ•), that is [f ≧ t] ∈
C(ϑ•) for 0 < t < ∞, and [f > 0] be upward enclosable [ρ• < ∞]σ. Then
2.1.iii) implies that ϑ•([f ≧ t]) = ρ•([f ≧ t]) for 0 < t < ∞ and hence
∫

−fdϑ• =
∫

−fdρ•. Thus we obtain the final assertion. �

The simplest special case is the one which results from the specialization
2.4 of 2.3.

2.8 Specialization. Assume that

ϕ : S → [0,∞[ is a content on the ring S in X and • continuous,

ψ : T → [0,∞[ is a content on the ring T in Y and • continuous,

so that ϑ = ϕ × ψ : R → [0,∞[ is a content on the ring R = (S × T)⋆ in

X × Y and • continuous as well. Then the functions f : X × Y → [0,∞]
which are measurable C(ϑ•) = C(ϑ•) and have [f > 0] upward enclosable

[ϑ• <∞]σ fulfil
∫

−fdϑ• =

∫

−
(

∫

−f(x, y)dψ•(y)
)

dϕ•(x)

=

∫

−
(

∫

−f(x, y)dψ•(y)
)

dϕ•(x) =

∫

−fdϑ•.

As above we note for f : X × Y → [0,∞] that
∫

−fdϑ• < ∞ implies that
[f > 0] is upward enclosable [ϑ• <∞]σ.
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3. The Connection with the Traditional Fubini-Tonelli Theorems

The notion of product for traditional measures has been a delicate one from
the start. It appears that the development culminated in the two notions of
the primitive product and the c.l.d. (:=complete locally determined) prod-

uct of measures due to Fremlin [3] section 251. We start to describe the
connection with the present formations.

Preliminaries on the Product of Measures

The present section assumes a pair of measures α : A → [0,∞] and β : B →
[0,∞] on σ algebras A in X and B in Y , and their product π := α × β

on the algebra G := (A×B)⋆, which is upward σ continuous and hence an
outer σ premeasure. We form the restrictions

ϕ := α|[α <∞] = α|S on S := [α <∞],

ψ := β|[β <∞] = β|T on T := [β <∞],

and their product ϑ := ϕ × ψ on the ring R := (S × T)⋆, which are finite
contents and σ continuous in the sense of 2.4 and hence inner and outer σ
premeasures. We also consider the restriction δ := π|[π < ∞] on the ring
[π < ∞]. Of course R ⊂ [π < ∞] ⊂ G and ϑ = δ|R. We proceed to the
relations between the inner and outer σ envelopes of these formations.

3.1 Remark. i) From 1.3 and from the definition we have ασ = ϕσ and

βσ = ψσ, and πσ = δσ ≦ ϑσ, where in the last case < can happen. ii) For

E ⊂ X × Y we have

ϑσ(E) <∞ =⇒ E is upward enclosable Rσ =⇒ ϑσ(E) = πσ(E).

Proof. i) We present an example for <: Let X be uncountable and α

the cardinality on A = P(X), and β = 0 on B = P(Y ) in nonvoid Y . Then
on the one hand π = 0, and X × Y ∈ G implies that πσ = 0. On the other
hand X × Y is not upward enclosable Rσ, so that ϑσ(X × Y ) = ∞.

ii) The first =⇒ is clear. For the second =⇒ it is to be shown that
ϑσ(E) ≦ πσ(E). Assume that πσ(E) < c < ∞, and take a sequence (An)n
in G with An ↑ A ⊃ E and lim

n→∞
π(An) < c. Also take a sequence (Rn)n in

R with Rn ↑ R ⊃ E, which exists by assumption. Then An ∩ Rn ∈ R with
An ∩Rn ↑ A ∩R ⊃ E and

ϑσ(E) ≦ lim
n→∞

ϑ(An ∩Rn) = lim
n→∞

π(An ∩Rn) ≦ lim
n→∞

π(An) < c.

The assertion follows. �

Next define H ⊂ P(X×Y ) to consist of the subsets H ⊂ X×Y such that
H ⊂ (P × Y ) ∪ (X ×Q) for some P ∈ S with ϕ(P ) = α(P ) = 0 and some
Q ∈ T with ψ(Q) = β(Q) = 0. Thus H is hereditary and fulfils Hσ = H, and
the H ∈ H have πσ(H) = π⋆(H) = 0.

3.2 Lemma. i) Each E ∈ G with π(E) < ∞ is of the form E = R ∪ H
with R ∈ R and H ∈ H ∩ G. ii) Each E ∈ Gσ with πσ(E) < ∞ is of the

form E = R ∪H with R ∈ Rσ and H ∈ H.
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Proof. i) From [4] 20.2.2) we have

E =
r
⋃

l=1

Al×Bl with A1, · · · , Ar ∈ A pairwise disjoint and B1, · · · , Br ∈ B,

so that the Al × Bl are pairwise disjoint and π(E) =
r
∑

l=1

α(Al)β(Bl) < ∞.

It follows that E = R ∪ H, where R is the union of the Al × Bl with
α(Al) <∞ and β(Bl) <∞, while H is the union of the Al ×Bl with either
α(Al) = ∞ and hence β(Bl) = 0 or β(Bl) = ∞ and hence α(Al) = 0. Thus
the representation E = R ∪H is as required.

ii) Take a sequence (En)n in G with En ↑ E and hence π(En) <∞. From
i) we have En = Rn∪Hn with Rn ∈ R and Hn ∈ H∩G. We can assume that
Rn ↑ to some R ∈ Rσ and Hn ↑ to some H ∈ Hσ = H. Then E = R∪H. �

3.3 Lemma. Let λ : L → [0,∞[ be a finite content on a ring. If (En)n is

a decreasing sequence in L and (Sn)n is a sequence in L with Sn ⊂ En and

λ(Sn) = λ(En) for n ∈ N, then λ(S1 ∩ · · · ∩ Sn) = λ(En) for n ∈ N.

Proof. The induction step 1 ≦ n⇒ n+1: For D := S1 ∩ · · · ∩Sn we have

λ(D ∩ Sn+1) + λ(D ∪ Sn+1) = λ(D) + λ(Sn+1) = λ(En) + λ(En+1).

Now D ⊂ D ∪ Sn+1 ⊂ En ∪En+1 = En and hence λ(D ∪ Sn+1) = λ(En). It
follows that λ(D ∩ Sn+1) = λ(En+1). �

3.4 Remark. ϑσ = δσ.

Proof. ϑσ ≦ δσ is clear since ϑ is a restriction of δ. To prove ϑσ(E) ≧

δσ(E) for E ⊂ X×Y we can assume that δσ(E) > 0. Fix δσ(E) > c > 0, and
take a sequence (En)n in [π < ∞] with En ↓⊂ E and π(En) = δ(En) > c

for n ∈ N. From the above 3.2.i) we have En = Rn ∪ Hn with Rn ∈ R

and Hn ∈ H ∩ G. Thus π(Hn) = 0 and hence δ(Rn) = δ(En). From 3.3 it
follows that δ(R1 ∩ · · · ∩Rn) = δ(En). Thus the Dn := R1 ∩ · · · ∩Rn form a
sequence in R with Dn ↓⊂ E and ϑ(Dn) > c for n ∈ N, so that ϑσ(E) ≧ c.
The assertion follows. �

We combine the above facts with the previous specialization 2.4 and with
2.5 to obtain the consequence which follows.

3.5 Consequence. 0) We have ϑσ = δσ ≦ πσ = δσ ≦ ϑσ, and all these

set functions have the same Carathéodory class C(·) =: C.

i) ϑσ(E) = ϑσ(E) for all E ∈ C upward enclosable Rσ.

ii) δσ(E) = δσ(E) for all E ∈ C upward enclosable [π <∞]σ.

For the sequel we need one more fact.

3.6 Remark. For E ∈ C we have

ϑσ(E) = sup{πσ
(

E ∩ (P ×Q)
)

: P ∈ S and Q ∈ T}.

Proof. To see ≧ we note from 3.5.0)i) that

ϑσ(E) ≧ ϑσ
(

E ∩ (P ×Q)
)

= ϑσ
(

E ∩ (P ×Q)
)

≧ πσ
(

E ∩ (P ×Q)
)

.

To see ≦ fix c < ϑσ(E). Since ϑσ is inner regular Rσ there is an M ∈ Rσ

with M ⊂ E and c < ϑσ(M). Now M ⊂ P ×Q for some P ∈ S and Q ∈ T.
Thus M ⊂ E ∩ (P ×Q) and hence c < ϑσ

(

E ∩ (P ×Q)
)

≦ πσ
(

E ∩ (P ×Q)
)

from 3.5.0). �
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We turn to the comparison with the two product formations due to Frem-
lin [3] section 251. First one defines γ : P(X × Y ) → [0,∞] to be

γ(M) = inf{
∞
∑

l=1

α(Al)β(Bl) : (Al)l in A and (Bl)l in B

with M ⊂
∞
⋃

l=1

Al ×Bl}.

It has been proved in [3] 251E that

1) γ is an outer measure in the Carathéodory sense. Thus Γ := γ|C(γ) is
a measure on the σ algebra C(γ).
2) A×B ⊂ C(γ) and hence Gσ ⊂ Aσ(A×B) ⊂ C(γ).
3) γ(A×B) = Γ(A×B) = α(A)β(B) for A ∈ A and B ∈ B.
4) We add the obvious fact that γ is outer regular Gσ.

From these facts γ can be identified as follows.

3.7 Remark. γ = πσ.

Proof. i) It suffices to prove γ = πσ on Gσ, because both sides are outer
regular Gσ; for γ this is in 4). ii) It suffices to prove γ = πσ on G, because
both sides are upward σ continuous on Gσ; for γ this is in 1)2). iii) Now let
E ∈ G and hence

E =

r
⋃

l=1

Al×Bl with A1, · · · , Ar ∈ A pairwise disjoint and B1, · · · , Br ∈ B.

From 1)2)3) then

γ(E) = Γ(E) =

r
∑

l=1

Γ(Al ×Bl) =

r
∑

l=1

α(Al)β(Bl) = π(E) = πσ(E). �

The measure Γ : C(γ) = C(πσ) = C → [0,∞] is defined to be the primitive

product of α and β. The c.l.d. product ν : C → [0,∞] of α and β is defined
to be

ν(E) = sup{Γ
(

E ∩ (P ×Q)
)

: P ∈ S and Q ∈ T} for E ∈ C.

Thus we obtain the representations which follow.

3.8 Theorem. We have Γ = πσ|C = δσ|C and ν = ϑσ|C = δσ|C. Thus

ν ≦ Γ. For f : X × Y → [0,∞] measurable C it follows that
∫

−fdπσ =

∫

−fdδσ =

∫

fdΓ and

∫

−fdϑσ =

∫

−fdδσ =

∫

fdν.

We note at once the connection with the inner σ premeasures.

3.9 Proposition. Assume that α = ξσ|C(ξσ) and β = ησ|C(ησ) are the

maximal inner σ extensions of inner σ premeasures ξ on X and η on Y .

Then the c.l.d. product ν : C → [0,∞] of α and β is the maximal inner σ

extension Λ = λσ|C(λσ) of the product inner σ premeasure λ = ξ × η on

X × Y .

Proof. We know from 1.9 that Λ is an extension of α× β = π and hence
an extension of δ = π|[π <∞]. Thus δσ = Λ = λσ on [π <∞] ⊂ C(λσ) and
hence on [π <∞]σ. Now δσ is inner regular [π <∞]σ; and also λσ, because
the domain of λ = ξ × η is ⊂ (S × T)⋆ = R ⊂ [π < ∞]. It follows that
δσ = λσ on P(X × Y ), and hence ν = δσ|C = δσ|C(δσ) = λσ|C(λσ) = Λ. �
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The Fubini-Tonelli Theorem

We combine the fundamental inequalities 1.11 and 1.13 with 3.1.i) and 3.5.0).

3.10 Theorem. For all f : X × Y → [0,∞] we have
∫

−fdδσ =

∫

−fdϑσ ≦

∫

−
(

∫

−f(x, y)dψσ(y)
)

dϕσ(x)

≦

∫

−
(

∫

−f(x, y)dψσ(y)
)

dϕσ(x) =

∫

−
(

∫

−f(x, y)dβσ(y)
)

dασ(x)

≦

∫

−fdπσ =

∫

−fdδσ ≦

∫

−fdϑσ.

Next we recall two basic facts from section 2, this time combined with
2.5. i) For all f : X × Y → [0,∞] the definition of the Choquet integral
implies that

∫

−fdϑσ <∞ =⇒ [f > 0] is upward enclosable Rσ,

∫

−fdπσ =

∫

−fdδσ <∞ =⇒ [f > 0] is upward enclosable [π <∞]σ.

ii) For all f : X × Y → [0,∞] measurable C we conclude from 2.4.iii) that

[f > 0] upward enclosable Rσ =⇒

∫

−fdϑσ =

∫

−fdϑσ,

[f > 0] upward enclosable [π <∞]σ =⇒

∫

−fdδσ =

∫

−fdδσ.

We combine ii) with 3.10 to obtain the subsequent Fubini-Tonelli theorem.
We invoke 3.8 in order to formulate the result in terms of Γ and ν, and leave
aside the less important ϑσ. For the connection with section 2 see the final
remark 3.12 below.

3.11 Theorem. The functions f : X × Y → [0,∞] which are measurable

C and have [f > 0] upward enclosable [π <∞]σ fulfil
∫

fdν =

∫

−
(

∫

−f(x, y)dψσ(y)
)

dϕσ(x) =

∫

−
(

∫

−f(x, y)dβσ(y)
)

dασ(x) =

∫

fdΓ.

As far as the author can see the above theorem 3.11 comprises the present
versions of the Fubini-Tonelli theorems - with two exceptions that will be
discussed thereafter. This statement requires two amendments: On the one
hand our theorem contains, as before in section 2, in contrast to the tradi-
tional ones no assertion relative to the legitimacy and to the kind of existence
of the respective iterated integrals: for the simple reason that the use of our
envelopes and of the Choquet integral makes this problem disappear, and
the earlier assertions themselves do not seem to be of particular interest.
On the other hand both the previous formations Γ and ν and the present
π and ϑ and δ, as well as ϑ and ρ in section 2, are symmetric in the two
factors. Therefore our theorem implies the usual assertions on the equality
under the two possible orders in the respective iterated integrals.

We quote a few examples of Fubini-Tonelli theorems in the recent text-
book literature, which can be considered to be representative. First of all one
often assumes the measures α and β to be σ finite: then X × Y ∈ Rσ, and
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hence all functions f : X × Y → [0,∞] have [f > 0] upward enclosable Rσ.
Examples are Fremlin [3] 252H, Elstrodt [2] theorem 2.1 p.175/76, Pap [9]
corollary 162, and Rao [10] theorem 2(i) p.385. Examples of Fubini-Tonelli
theorems without this assumption are Fremlin [3] exercises 252Ycd, Pap [9]
theorem 160, and Rao [10] theorem 1 p.381 and theorem 2(ii) p.385. These
theorems assume

∫

fdΓ <∞ (or some close condition) and thus result from
our 3.11 combined with the above i). Moreover Fremlin [3] theorem 252G
and Pap [9] theorem 161 are examples of partial assertions which result from
the first ≦ in our previous 3.10.

After this we pass to the two particular former Fubini-Tonelli theorems
emphasized above. These are Fremlin [3] 252B and [4] 22.9 due to the present
author. The basic deviations from the present treatment are that in these
theorems the σ finiteness requirement is directed to the second factor alone,
and that in compensation from the two fundamental inequalities in 3.10 the
left inner one alone is claimed to turn into an equation. Of course this
requires a different technique. It is not clear and rather doubtful whether
the idea can be carried through in the present context, and the point does
not seem to be in special demand. In [4] 22.9 one assumes, in accord with the
spirit of [4], the measures α and β to be as in 3.9, and the assertion is for their
product ν = Λ. In [3] 252B the situation is somewhat more comprehensive,
in that one admits certain cases where instead of α and β their completions

are required to be as in 3.9. However, the essential difference between the
two presentations is that [4] 22.9 is for both • = στ in uniform manner,
like in the present section 2, while in [3] the entire treatment of • = τ is
separated from the abstract measure situation • = σ and restricted to the
topological context.

3.12 Remark. In the deduction of theorem 3.11 the substance of section
2 has been used in two applications of 2.4, but not in form of the previous
Fubini-Tonelli theorem 2.7. In fact, it is quite clear that 3.11 is not an imme-
diate consequence of 2.7. In the sequel we want to show that in the present
context the natural application of 2.7 leads to a Fubini-Tonelli theorem
which is similar to but different from 3.11: If 2.7 starts from ϕ : S → [0,∞[
and ψ : T → [0,∞[ with ϑ = ϕ × ψ : R → [0,∞[, then it is most natural
to take P = A and Q = B, so that N = (P ×Q)⋆ = (A ×B)⋆ = G. Then
one obtains, via ξ = ϕσ|A and η = ψσ|B and 3.5.0), the outer σ premeasure
ρ = ϑσ|N = ϑσ|G ≦ πσ|G = π. Thus the final assertion for the functions
f : X × Y → [0,∞] measurable C(ϑσ) = C reads

∫

−fdν =

∫

−
(

∫

−f(x, y)dψσ(y)
)

dϕσ(x)

=

∫

−
(

∫

−f(x, y)dησ(y)
)

dξσ(x) =

∫

−fdρσ,

whenever [f > 0] is upward enclosable [ρ <∞]σ. Thus compared with 3.11
the assertion is for a larger class of functions f but furnishes a weaker result.
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