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Abstract

We consider variational integrals J(u) = [, f(Vu)dz with convex
integrand f of linear growth satisfying an ellipticity condition of the
form

D*f(X)(Y,Y) > A(1+|X[?) * Y ]?

with exponent 1 < 4 < 142/n, n = dim Q, where in the vectorvalued
case the structure condition f(Vu) = g(|Vu|?) is assumed. We prove
Holder continuity of the dual solution of the problem J — min in

ug+ V(E/II(Q, RM) and establish — using De Giorgi type arguments —
Cl@—regularity of weak limits of J—minimizing sequences. Moreover,
it is shown that weak cluster points of minimizing sequences are unique
up to a constant. For twodimensional domains 2 these results are
partially extended to the limit case p = 2.

AMS Subject Classification: 49N60, 49N15, 49M29, 35]
Key words: linear growth, minimizers, regularity, duality, BV—functions

1 Introduction and statement of the main re-
sults

Consider a bounded Lipschitz domain €2 C R" and let
J() = / £(Vu) dz, (1.1)
Q
where Vu = (0,u') denotes the Jacobi matrix of the vectorial function wu:

Q — RM. We assume that f > 0 is of class C?(R"™) (of course f > c for
some ¢ > —oo is also sufficient) satisfying the following set of hypotheses:

alX|=b < f(X); (1.2)
VX)) < A; (13)
D) < A(L+|XP) 3 (1.4)
D f(X)(V,Y) > A1+[XP) 5P, (1.5)

Here a, b, A, A\, A denote positive constants, ;1 > 1 is some fixed exponent,
and (1.2)—(1.5) are valid for any choice of X, Y € R*™. Note that (1.3)
immediately implies the linear growth condition

a|lX|—-b < f(X) < alX|+b (1.6)



with suitable constants @, b > 0. Combining (1.4) and (1.6) we see that f is
“balanced” in the sense that

|ID*f(X)]|X]> < const(f(X)+1) (1.7)
holds. Finally, the p—ellipticity condition (1.5) gives strict convexity of our

integrand f.
It is easily seen that

x| ps u
f(X) :/ /(1+t2)2dtds, X e R*M,
0 0

satisfies (1.3)-(1.5) (compare [BFM] for details). For (1.2) let us write
f(X) = (] X|) with convex function ¢. Then, if t = | X| > 1, we get

FX) = o) 2 o) +¢'(1) (X[ -1)

with
1 3
o'(1) = /(1+|t\2) 2dt > 0.
0

In the vectorial case M > 1 we suppose in addition to (1.2)—(1.5) that f is
of “special structure” in the sense that

f(X) = g(|XP), XeR™M, (1.8)
holds with g: [0,00) — [0, 00) of class C?(R). Note that this implies

0% f

Sxioxd ) = 49" (IXP) XaxXG + 24/ (1X1%) 67 das
a B

We also assume in case M > 1 that there are real numbers o € (0,1}, K >0
satisfying!
D*f(X) - D*f(X)| < K|X - X" (1.9)

The above example is easily adjusted to (1.9) (and in fact to much stronger
conditions) by letting

B Vet X|? s u
f(X) :/O ! /0(1+|t|2)‘2dtds, e>0.

! Although not explicitely mentioned, some Holder condition of this type is also assumed
in [FM] if M > 1.




Next consider a given function uy € Wpl(Q,]RM ) for some p > 1. (By con-
sidering a suitable approximation it is also possible to include the limit case
p =1, we refer to [BF1].) As a role the variational problem

to minimize J(u) = / f(Vu)dr in wug+ ﬁ/f(Q,RM) (V)
Q

in general may fail to have solutions in the non-reflexive space Wi (2, RM).
For this reason one either studies suitable relaxations or passes to the dual
variational problem. In our note we try to handle both aspects: first of all,

due to (1.6), any minimizing sequence u,, € uo+ W;'(, RM) is bounded
in the space BV (2, RM), hence there is a subsequence and a function v in
BV (Q,RM) such that um,, — uin L'(Q,RM), and we define the set of all

generalized minimizers of problem (V) as

M = {u € BV(Q, RM) : u is the L'-limit of a J-minimizing sequence
from wuo+ VCI’/II(Q, RM)} .

Now let us write (see [ET))

J(u) = reLofg)I,)RnM) {/QT : Vudz — /Qf*(T) dx} , (1.10)

u € ug+ WH(Q, ]RM), where f* is the conjugate function of f. We define the

Lagrangian [(u, 7) for (u,7) = (uo+¢,7) € (uo+ VCI}/ll(Q, RM)) x L=(Q, R"M)
through the formula

l(u,7) = /T : Vudr — / ff(r)dx = I(uop, 1) +/T :Vpdx.
Q Q Q
Then the dual functional is by definition
R: L*(Q,R"™) 5 R,
—00, if divr #0
R(1) = inf l(u,7) =

u€uo+Wi(Q,RM) l(uO,T), if divr =0,

and the dual problem reads

to maximize R among all functions in L (Q, R") . (V*)



It is well known (see, again [ET]) that

inf  J(u) =  sup R(1),
u€uo+W}(Q,RM) TELo (QRM)

moreover, (V*) admits a unique maximizer o (compare [BI] for a uniqueness
theorem valid under much more general conditions and not formulated in
terms of the conjugate function). Let us first assume that

2
po< 14>, (1.11)
n

Then our main results are summarized in

THEOREM 1.1 Let (1.2)-(1.5), (1.11) hold and assume in addition that
in case M > 1 (1.8) and (1.9) are valid.

a) The dual solution o is of class CO*(Q, R"™™) for any 0 < a < 1. More-

over, o has weak derivatives in the space L7, (€, R"M).

b) Any generalized minimizer v € M is in the space C1*(Q,RM), 0 <
a <l

c) For u, v € M we have Vu = Vu, i.e. up to a constant uniqueness of
generalized minimizers holds true.

We like to remark that for functionals with linear growth arising in the theory
of perfect plasticity partial regularity of ¢ was established in the papers
[SE1]-[SE3] (see also [FS] for an exhaustive list of references), whereas the
general vectorial setting of Theorem 1.1 with only partial regularity results
was studied in [BF1]. (Note that in [BF1] u—ellipticity is replaced by a much
weaker condition.) The case of functionals with linear growth satisfying an
ellipticity condition of minimal-surface type was investigated in [GMS], see
also [BF2].

Let us now look at the limit case y = 1+ 2/n which unfortunately we could
include only for n = 2. An example satisfying (1.2)—(1.5) with p = 2 is given
by

1X| 1
f(X) = / arctansds = |X|arctan|X|— ) In(1 +|X[%),
0

and we have

THEOREM 1.2 Letn =2, let (1.2)—(1.5) hold with p = 2. In case M > 1
we also assume that (1.8) and (1.9) are valid. Then there exists an at most
countable subset X of ) with no interior accumulation points such that the
following 1s true:



a) The dual solution o is of class CO%(Q — ¥, R?M) for any 0 < a < 1
(still having weak derivatives in the space L2 (Q,R?M)).

loc
b) Any u € M is of class C*(Q -2, RM), 0 < a < 1.
c¢) Foru, v € M we have u = v + const a.e. on Q.

Corollary 1.3 Under the assumptions of Theorem 1.2 we have
u € Wiy (QQRM) for u € M and any t < oo. In particular, u is locally
Holder continuous with any exponent o < 1.

Our paper is organized as follows: in Section 2 we first replace (V) by a
sequence (Vy) of approximate problems with regular solutions us being con-
vergent to some u* € M. In Section 3 we apply De Giorgi type arguments
to show that this particular generalized minimizer is smooth provided the
assumptions of Theorem 1.1 hold. The regularity of o then follows from the
duality relation o = V f(Vu*). Section 5 contains the proof of the remaining
results from Theorem 1.1, in Section 6 we discuss the case n = 2 together
with p = 2.

2 Regularization of the original problem and
weak differentiability of the dual solution

Let the assumptions of Theorem 1.1 or 1.2 hold. We fix some real number
1 < g < 2 satisfying ¢ < p and in addition for n > 3 (recall (1.11))

n

¢ < 2w (2.1)

For any 0 < § < 1 we define
Js(w) := 5/9(1 + |Vw|2)% de + J(w), w € up+ VT/;(Q,]RM) ,
and denote by us the unique solution of
to minimize Js(w) in the class wuo+ ﬁ/; (Q,RM). (Vs)
Thus, letting f5(-) = 6(1 + |- |2)% + f(+), we obtain
/QVf(g(Vu(;) :Vodr = 0 forall ¢ EVCI)/ql (Q,RM). (2.2)
Moreover, the following lemma is seen to be true:
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LEMMA 2.1 There is a real number ¢; > 0 such that for any n € C§°(R2)

/ 772 D2f,5(Vu5) (aSVU5, 8SVU5) dx
Q (2.3)

< Vil /Q D2 f5(Vug)| Vs de

where we always take the sum w.r.t. s=1,...,n.

Proof. The idea is to choose the test function ¢ = 9, (n? dsus) in equation
(2.2). However, in the vectorial case M > 1 it is not immediately obvious if ¢
is admissible in (2.2). In the paper [BF3|, Lemma 3.1, we overcame this diffi-
culty by some technical approximation argument leading to inequality (2.3).
We like to remark that now we do not need the full strength of the arguments
used in [BF3], Lemma 3.1, since the structural condition (1.8) together with
[AF], Proposition 2.7, already implies us € W3,,.(, RM) (compare (3.4)).
Let us look at the scalar case. Then, from standard arguments (see, e.g. [LU],
Chapter 4, Theorem 5.2) we get u; € Wy ,,.(Q2) N W, ,,.(Q) using also the
fact that us is locally bounded which is proved under very weak assumptions
in [GG]. Alternatively we may quote [DB] or [EV] to get u; € C»*(Q) for
some & > 0. Let us fix a subdomain ' € Q and let K = 2||Vus||re ().
Following [KS], p. 97, we replace V f; by a coercive vectorfield A of class C*
in such a way that A(X) = V f;(X) for | X| < 2K. From (2.2) we get

/ A(Vug) -Veodr = 0 forall ¢ € Cy(Q),

and the well known difference quotient technique implies u; € Wy,.(2). Let
us fix a coordinate direction y € {1,...,n}. Then

/ () 0a(0us) Ogpdr = 0 for all ¢ € Cy(Q)

with elliptic coefficients a,p = %(Vu(;) of class C°(€Y). Quoting “LP—
theory” for equations with continuous coefficients (see [MO], Theorem 5.5.3,
or [GI], Chapter 4.3, pp. 71) we get 0 u; € th,loc(Ql) for any finite ¢. Thus
we have us € W7,.() and 9, (1 dsus) is admissible in (2.2), the claim fol-
lows after partial integration and using the Cauchy-Schwarz inequality for
the bilinear form D? f5(Vus) (compare [BFM], Lemma 2.3, and [FM] for sim-
ilar calculations). [



REMARK 2.2 In the papers [BFM] and [BF3] the bound (1.11) was im-
posed but obuviously the statement of Lemma 2.3 can be obtained for any
positive .

For the study of the dual variational problem we let

75 = Vf(Vu), o5 = 6Xs+7 = V[s(Vus),

q—2

Xs = q(1+|VUJ|2)TVU(5.

Note that o5 € Wy ,,.(, R*) which for M > 1 follows from [AF], Proposi-
tion 2.7. Next we argue as in [BF1], where the case ¢ = 2 was considered:
since Js(us) < J5(ug) < Ji(ug), the existence of a real number ¢; > 0 is
ensured such that

6/(1+|Vu(5|2)gdx < ¢, /f(Vw;)dx < ey |75l < 2. (2.4)
Q Q
The first inequality implies

H(S%X(;HLCI%(Q’MM) < ¢3, hence 6X; — 0 in L1 (QR*™) (2.5)

as 0 — 0. Here and in the following we always pass to, subsequences if
necessary. By (2.4) and (2.5) it is possible to define 0 € L7 (Q, R™M) via

T5, 06 — 10 in Lq—Ll(Q,R”M) as 0 > 0. (2.6)
In addition, dive = 0 (in the sense of distributions) is a consequence of
divos = 0. We now claim that the weak limit ¢ is the unique maximizer of
the dual problem (V*). To prove this, we recall the duality relation (compare

[ET])

75 : Vus — f*(15) = f(Vuy),
which together with the definition of o5 and with divos = 0 gives

Js(us) = 6 / (1+ |Vu5\2)% dz + / (05 : Vug — f*(15)) da
Q Q
q—2
—dq / (1+|Vusl’) 2 |Vug|*dz
Q

This yields for any s € L>*(Q, R*M)



o
u€ug+Wi(Q,RM)

= /(Téivuo—f*(ﬂs)) dCU+5/X5:Vu0d:v (2.7)
Q Q
+(1—Q)5/(1+|VU5|2)%dx+(5q/(1+|Vu(;|2)%dm,
Q Q

and, passing to the limit § — 0, the second and the last integral on the right—
hand side vanish according to (2.5) and since ¢ < 2. Finally, lower semiconti-
nuity of [, f*(-) dz w.r.t. weak—* convergence proves the claim R(») < R(0)
as well as

5/(1+|Vu5|2)%dx — 0 as 6 —0. (2.8)
Q

To proceed further, we observe that the left-hand side of (2.3) is estimated
via Young’s inequality

|V05|2 < c4D2f5(Vua)(85Vu5,83Vu5),

whereas (1.7), (2.4) and (2.8) prove the right-hand side to be bounded by:

Cs (5/9(1+|Vu5|2)%d3:+/9(f(Vu(g)+1) d:v) < ¢.

Summarizing the results have established:

LEMMA 2.3 Let o be the weak limit defined in (2.6). Then dive =0, o
is the unique mazimizer of the dual variational problem (V*) and we have
0 € Wy 100 (2, R*M).

3 Construction of a smooth generalized min-
imizer
In this section we again concentrate on the original problem (V): (2.7) proves

Us to be a J—minimizing sequence, and by definition, each LI*CIUSteI' [)oint
gseq ) ) )
of {u(s} is seen to be a generalized minimizer.

LEMMA 3.1 Let the assumptions of Theorem 1.1 hold.



a) There is a real number c; > 0, independent of §, such that

Vsl pge (@ mmary < ez

b) Let u* denote a L'—cluster point of the sequence {us}. Then u* is of
class CH* (2, RM) for any 0 < a < 1.

REMARK 3.2 With Lemma 3.1 the results of [BFM] formulated for the
unconstrained case are also seen to be true in the vectorial setting M > 1
assuming the hypotheses (1.8) and (1.9).

Proof. As in [BFM], Lemma 2.4, we first use Lemma 2.1 to prove that we
have local higher integrability of Vus; which holds uniformly w.r.t. §. For
simplicity let us first assume that n > 3 and let x = n/(n — 2). Moreover,
fix a ball B, satisfying By, € €2 and choose n € C§°(By,), 0 <n<1,n=1
on B,. Then, by Sobolev’s inequality,

2—u)x 2— 2
/ (1+ \Vu6‘2)< 4 dr < / (77(1+ |V“5|2)( 4»0) de
T Bs,
Cs (/ [Vn|* (1 + \Vua|2)@ dzr
Bay

X
+ / 7’}2 (1 + ‘VU(5|2)_% |V2u5|2 d$> .
B,

IN

Hence, Lemma 2.1 and (1.7) imply the bound (observe (2—pu)x > ¢ by (2.1))

(2=p)x
/(1+|w5\2) Ml < e(r), (3.1)

T

which corresponds to Lemma 2.4 of [BFM]. If n = 2, we let x denote some
number > 1 such that (2 — p)x > ¢q. Writing as before

2—p)x i (2-p)\ 2 i
([ 0emut) ™)™ < ([ (004 w) ) )
I Bay

we may estimate the right-hand side by Sobolev’s inequality

(/ (77 (1 + |VU5|2) (24#))2)( dx) >
B2'r
< ¢ (/
B2r

8

v(n (1+ |Vu5|2)(21”)rdx> ,

9



s being defined through 2y = 2s/(2 — s). Applying Holder’s inequality we
get as before
2 X
da:)

(2—p)x
/ (1+|Vusl’) 2 dz < en(r) (/
r B2T

and (3.1) follows also in case n = 2 with a different constant c¢;5 depending
also on the chosen value for .

In the scalar case we may now exactly follow the lines of [BFM], Lemma 2.5,
Lemma 2.6 and Step 5 (conclusion) to get a) of Lemma 3.1. We have to
show that Lemma 2.5 of [BFM] remains also valid in the vectorial case with
the additional assumption (1.8), i.e. we claim that there is a real number
c13 < 00, depending only on the data and not on ¢ such that for any £ > 0

V(n (1+ |Vus|?) @>

/ (1 + \Vu5|2)17% |Vws|?n? dz
A(k,R)

+ / (1+ |Vu<5|2)71Zi (w5 — k)?n? |V?us|* dx (3.2)
A(k,R)

IN

C13 / (1+ |Vu5|2)% \Vn|* (ws — k) dx .
A(k,R)

Here we have set
ws = ln(1+|Vu5|2), A(h,r) = {z€B,:ws>h}, h>0, r<R,

the ball Bg is chosen such that Bog @ Q and n € C§°(Bgr), 0 < n < 1.
Assuming (3.2) for the moment, we see as in the scalar case that De Giorgi’s
technique works exactly as outlined in [BFM], i.e. the uniform bound (3.1)
gives a) of Lemma 3.1 and proves any L!'-cluster point u* to be locally
Lipschitz.

To verify part b), we quote the well known explicit formula for the relaxation
of J (see, for instance, [GS])

A

i) = [ fvwas [ g ( Vu

Vol

) d|V*u|, u € BV(B,,RM).
Here, f is the recession function of f,

foo(X) = limsup @ ,

t—+4o0

the absolutely continuous part of Vu with respect to the Lebesgue measure
is denoted by V?u, the singular part by V*u and V*u/|V*u| is the Radon-
Nikodym derivative.

10



Then, according to [BF1] (see the proof of Theorem 5.1), each generalized
minimizer of problem (V) is seen to minimize .J on a.a. balls B, € Q. In
particular, this result can be applied to the sequence {us}, whose L'-cluster
points are already known to be locally Lipschitz. Thus, if we fix one of these
cluster—points u*, then the singular part of Vu* can be neglected and we
obtain the Euler-equation

/Vf(Vu*) :Vodr = 0 forany ¢ € Cj(Q,RY). (3.3)
Q

In the scalar case, again by strict ellipticity of D?f (see (1.5)) together with
local boundedness of Vu*, the assertion of part b) immediately follows from
known regularity results for weak solutuions of (3.3) (compare the references
quoted in the proof of Lemma 2.1). In the vectorial setting we follow the lines
of [MS] where an auxiliary integrand f is constructed satisfying f(Z) = f(Z)
whenever |Z] < 2K, K = [|[Vu*||peo(qy gomy for some subdomain ' € Q.
Then Theorem 3.1 of [GM] can be applied (choosing m = 6 and recalling the
Holder condition (1.9)) to prove Ch®regularity of u* for any 0 < o < 1.

It remains to verify (3.2) for M > 1: the structure condition (1.8) allows us

to cite [AF], Proposition 2.7. We obtain, as already remarked in the proof of
Lemma 2.1

Vus € Wiioe N Lig, (2, R*M) (3.4)

loc

and, as a consequence, for any s = 1,...n, and for any ¥ € C}(Q, RM)

/ D2 f5(Vus) (0, Vs, Vi) dz = 0. (3.5)
Q

In addition to (3.4) we have D?f; € L™, hence v €W} (2, RM) is admissible
in (3.5) (by approximation arguments), in particular we may choose ¢ =
n* 0sus max{ws — k,0} with the result

/ D? £5(Vus) (05 Vus, 0;Vus) n? (ws — k) dx
A(k,R)
+ / D2f¢5 (VU«S) (83VU6, Osus @ Vw,s) 772 dz (3.6)
A(k,R)

= —2/ sz(;(Vu(;)(&Vu(;, Vn ® Osus)n(ws — k) dx .
A(K,R)

11



The first integral I on the left-hand side is non—negative, the second one II
is handled as follows (letting f5(Z) = g;(|Z|?) = §(1 + |Z|?)%? + ¢(|Z|?))

I = / (4 95 0oy 0500 Opul Oul Opws + 2 gl 05O uis Oguis dows) n* dz =
A(k,R)

= / (2 g5 0,|Vus|? Opws 8311?5' asug + 9504 |Vus|? 8aw5) n* dx
A(k,R)

= / (2 g5 Osws Opws asu‘gagug + g5 Oaws 8aw5) (1 + |Vu(5\2) n? dx (3.7)
A(k,R)

1 9% fs
= - ———2 (Vuy) 0sws Osws (1 + |Vus|?) n? dz .
2/A(k,R) axgaxg( o) Opus O (1 + [Vusl')m

If e; denotes the 4t coordinate vector, then we have

1
I = 5/ D?f5(Vug)(Vws ® ej, Vws ® ¢5) (1 + [Vug|) n* do
A(k,R) (3.8)

K
> 014/ (1—|—|Vu(5|2)1 > |[Vw;*n* dx .
A(k,R)

Similar calculations show the right-hand side of (3.6) to be bounded from
above by

C15

0% fs i
/A(k,R) aX[gan( us) Osws Opnn (1 + |Vus|?) (ws — k) da (3.9)

Finally, for each fixed j € {1,... M}, the Cauchy—Schwarz inequality can be
applied to the bilinear form
2

n 9 fs
R*>¢ — 8Xgan(vu6)§ﬂ§s
and, together with Young’s inequality, (3.6)—(3.9) prove that the first term
of the left-hand side of (3.2) is bounded in the desired way. (Note that
from the growth assumptions imposed on f it follows that | D?f5(X)] | X|? <
c16(f5(X) + 1) < er7(1 + | X[2)¥? with suitable constants c;g and c¢i7.) The
second integral on the left-hand side of (3.2) is studied by inserting ¢ =
n? 0sus max{ws — k,0}? in (3.5). This gives

/ D? f5(Vus) (0sVus, 0;Vus) 0’ (ws — k) dx + II
AR (3.10)

= -2 / D? £5(Vug) (05 Vus, Ogus @ V) n(ws — k)? dz
A(k,R)

12



where we have abbreviated

I = 2 / D2f5(Vu(5) (aSVU5, 8su5 ® Vu}(s) (w5 - k) ’172 dz
A(k,r)

& 2, 2
N TV te) Osws Os —k)(1+|V dr (3.11)
A(k R) aXéan( uJ) BWs OsWs (LU(E )( | ’U,5| )']7 T

> 0.

Here the second equation in (3.11) again uses the special structure f5(X) =
95(|X]?). Given (3.10) and (3.11) the proof of (3.2) (and of Lemma 3.1) is
completed by applying Young’s inequality once more. |

4 Holder continuity of the dual solution

We apply the results of the previous section to get regularity of the maximizer
o, more precisely

LEMMA 4.1 Let the assumptions of Theorem 1.1 hold.

a) If u* denotes a L'—cluster point of {us}, then we have
o = Vf(Vu").

b) o is of class CO%(Q,R*™) for any 0 < a < 1.

Proof. Recalling (3.3), we choose ¢ = 7? (us — u*), n € C3(2), 0 < n < 1.
Then, together with (2.2), the counterpart of (6.4), [BF1], is established:

/9772 (Vf(Vus) = Vf(Vu*)) : (Vus — Vu*) dz
+4 / n* X5 : (Vus — Vu*) dz
= -2 /905 : (Vn@ (us — u*))ndx

+2 /QVf(Vu*) (VN ® (us — u*))ndz.

Clearly the second integral on the right—hand side vanishes as § — 0 and by
(2.5), (2.8) this is also true for the second one on the left-hand side. Since the
definition of o5 gives the same result for the first integral on the right—hand
side, it is proved that

13



lgfgl Qn2 (Vf(Vus) = Vf(Vu*)) : (Vus — Vu*)dz = 0.

On the other hand we have by (1.5)

/ n* (Vf(Vus) = Vf(Vu")) : (Vus — Vu*) dz
Q
1
> i3 / / (1+ [Vu* 4+t (Vus — Vu*)|2)_12i \Vus — Vu*|>n? dt d
aJo

hence as 6 — 0

(1+|Vu*f + |Vus — VU*P)J2i Vus; — Vu*> — 0 in L} (Q) and a.e.
Thus, on account of y < 2, it immediately follows that a.e.
limsup |[Vus(z)] < oo, which implies Vus(x) % v (z).

510
Hence V f(Vus(z)) v f(Vu*(z)) which together with the weak conver-
gence (2.6) completes the proof of the first assertion. The second one follows
from Lemma 3.1. |

5 Local Cl“—regularity and uniqueness of gen-
eralized minimizers

So far we have proved Theorem 1.1 a). Now we fix any u € M and use
ideas of [SE4] to show that the pair (u, o) satisfies an appropriate minimax
inequality. A variation of the tensorial argument will finally give

LEMMA 5.1 Under the assumptions of Theorem 1.1 any generalized min-
imizer u € M satisfies

Vu = Vf*(o),
where the right-hand side is of class C%*(Q, R"M).

Corollary 5.2 Of course Lemma 5.1 implies uniqueness of generalized min-
imizers up to a constant.
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Proof. Consider a J-minimizing sequence {u,,} in up+ W;*(Q,RM) such
that

n/(n=1) Ll
Um, il u, Uy — U.

Then let for any w € BV(Q,RM) and » € U := {7 € L®(Q,R"M) : divT €
L™(Q,RM)}

l(w, ) = /Qdivx(uo—w)dx—/Qf*(%)dm—#/Q%:Vu()dx.

The representation formula (1.10) implies

J(Um) = sup (U, A) > W, 2) = ty, 3)
AEL (Q,RnM)

for any s € U. Passing to the limit m — oo we obtain

inf J(w) > supli(u, ).
weug+WHQRM) =

On the other hand, given » € U, v € ug+ Vi/f(Q, RM), we observe (recalling
that diveo = 0)

l(u,2) < inf J(w) = R(o) = inf l(w, o)
wEug+WH(QRM) weug+WH(QRM)

< lv,0) = l(v,0) = /O‘ : Vug dx — / f(o)dz =: (o).
Q Q
Thus, for any u € M and » € U it is proved that
Z(u,%) < Z(o). (5.1)

To proceed further, fix A € C$°(Q, R*™); by Lemma 4.1, o is a continuous
function taking values in Im V f and hence there is a real number v > 0 such
that dist(o(z), 0ImV f) > v for any x € spt A. If |¢| is suffienciently small,
then the same is true if we replace o by o; := o + tA and v by v/2. (5.1)
implies

/ divoy - (up — u) dz + / oy : Vugdx
spt A spta

< /spt,\(f (0:) — f*(0)) d:c—l—/spt)\o:Vuoda:.

15



If we observe that

/ divat-uoda:—i-/ at:Vuodac—/ o : Vugdx
Spta Spta Spta

= / tdiv)\-uodaz—i—/ tA:Vugder = 0,
spt A spt A

then we obtain

—/Spt)‘tdiv)\-udac < /sptA(f (00) — f*(0)) du .

Dividing through ¢ > 0 and passing to the limit £ — 0 we get
—/ divA-udr < V(o) : Ndx,
spta Spta

i.e., by definition, the first weak derivative of u is given by V f*(o) which is
a function of class C%*(Q2, R*™) on account of Lemma 4.1 and the fact that
dist(o(z), OImV f) > ¢(Q) > 0 on Q € €. [ |

6 The limit casen=2, y=2

Let the assumptions of Theorem 1.2 hold. For simplicity we just consider
the scalar case M = 1. With notation from Section 2 and Section 3 it is easy
to check that (3.2) extends to the case p = 2, i.e. we have for any £ > 0

/ \Vws|*n® do + / (1+ |Vu(5|2)_1 (ws — k)2 n? |V?us|* do
A(k,R) A(k,R)

(6.1)
< 019/ (1 + |VU'6|2)
A(k,R)

q
2

Vn|* (ws — k)* do

being valid for all discs Bogp € 2 and any 5 € C3(Bg), 0 < n < 1. Note that
estimate (6.1) is true in any dimension n > 2. In order to get a variant of
Lemma 2.6 in [BFM] we let

alk,r) = / 1+|Vu(5|2)%dx,
A,

[V10SY

(k,r)
rhyr) = / (14 |Vus)? (w5 — k) da.
A(k,r)

16



LEMMA 6.1 There is a constant coy independent of 6 such that

a(h,r)
T(k,T)

< (h=k)’7(k,r), (6.2)
< ¢y (R—71)27(k,R)a(k, R)

valid for h > k and r < R < Ry, Bag, € 2.

Proof. (6.2) is immediate. Let I := 1 + |Vus|? and choose n € Cj(Bg),
0<n<1,n=1on B,. Then, by Sobolev’s inequality,

T(k,7) < / {nF% (ws — k)}2 dx
A(k,R)

< ¢ (/
Ak

On the right-hand side three different terms arise which may be estimated
as follows:

|V{77F% (ws — k)}| dx) .
R)

’

2
(/ |VnTi (w5 — k)| dx) < |A(k,R)| / VT3 (ws — k)% da
A(k,R) A(k,R)

< cpa(k,R)(R—r) ?7(k,R),

2
(/ |77Vw5F%‘ dm) < (/ 772|Vw5\2da:) (/ s dx)
A(k,R) A(k,R) A(k,R)

(6.1)
< c3(R—7r)27(k,R)a(k, R),

2
(/ i~ VT (ws — k) d:v)
A(k,R)

2
< co (/ nF%’% \Vzu,g\ (ws — k) d:r)
A(k,R)

< oy (/ \V2us 2 n? T~ (ws — /{)de> . (/ r$ dx)
A(k,R) A(k,R)

S Cog (R-’l")iQT(k,R)a(k‘,R).
|

Let h > k and R > r. Then we get from Lemma 6.1 (o > 1 being specified
later)

17



>
l/\i‘l

7(h,r)*a(h,T) 7(h,r)*(h — k)27(k,7)

< 7(k,7)*(h—k)*7(k,R)
D e (R= 1) 2r (e, R alk, R) (h— k) 27 (k, R)

— ew(R—1)"2(h—k)2|a(k, R)7(k, R) 2]

For a = (/5 + 1)/2 we see that (1 + a)/a = «, hence
W(h,r) = 7(h,7)%a(h,r)
satisfies the growth estimate
Y(h,r) < c(R—71)**(h—k) 2¥(k,R)*, h>k>0, r<R<Ry,
and from [ST], Lemma 5.1, we deduce
(d, Rof2) = 0,

where the number d is determined by Ry and the quantity (0, Ry). Here Ry
is any radius such that Bsp, € 2. Clearly this implies

|VU§|2 S ed on BR0/27 (64)

and as usual (6.4) turns into a locally uniform gradient bound as soon as we
can estimate the quantity d. In order to get such a bound, we observe first
that the functions ws = In(1 + |Vus|?) satisfy

||VCU5||L2(QI) S 627(91) (65)
for any subdomain Q' € Q. In fact, (1.5) implies in the case p = 2
[Vws|* < cos D* f5(05 Vg, 0,Viug)

thus we may quote Lemma 2.1 by observing that the right-hand side of (2.3)
is bounded independent of 4.
According to (6.5) there is a Radon measure v on € such that

vs = Vs> 2 v (6.6)
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in the sense of measures (at least for a subsequence). For ¢ > 0 being
determined later let

Y = {:U € Q: limv(B,(z)) =v({z}) > 8} .

rl0

Being a subset of the atoms of v the set Y. is at most countable with no
interior accumulation points.

LEMMA 6.2 (compare [GT], Theorem 7.21)
Let G denote a disc in R%2. Then there are constants cag, 39 > 0 as follows:
if w € WHG) satisfies for some K > 0

/ \Vwldz < KR for all Br(z) CR?, (6.7)
GNBg(2)
then we have
/ exp(% |w — (w)G|> dz < c30(diamG)?. (6.8)
G K B

Let us now choose g ¢ .. Then v(B,(z,)) < 2¢ for t < t,, thus

limsupyg(Pt(xo)) < I/(Et(.’ﬂo)) < 2eg,
510

and in conclusion vs(B;(z¢)) < 3¢ for all § small enough. Let G := By(z).
Then

/ Vws|dz < V3ev7TR,
GOBR(Z)

thus we have (6.7) with K = \/71/3¢, and (6.8) implies

/Bt w P (\f\/—‘wé (W) By (o) \) dz < c5(t)

for § small enough. We select ¢ according to ca9/v/37e = 1, thus
/ exp ‘w(s — (wg)Bt($0)| dr < c31(t).
Bt(zo)

Observing (ws)(z0) = F 5, (zoy (1 + |Vus|?) dz < c35(t) we have shown that

/ (Vug|®dr < cs3(t) (6.9)
By(zo)
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holds for all § small enough.

Let us suppose that in the beginning a sequence ¢ | 0 has been chosen such
that us — »* in L'(2). By the choice of ¢ and the definition of (0, )
we see that (6.9) provides a uniform bound for d, and from (6.4) we get
Vu* € L®(Byo(x0)). Altogether we have shown

LEMMA 6.3 Let u* denote a L' cluster point of the sequence {us}. Then
u* is locally Lipschitz (and hence of class C1®) on the open set Q — 3.

Next we let Qy = Q — X, (which is an open set) and consider € C}(Q).
Then, as in Section 4, we get Vus; — Vu* a.e. on €, thus ¢ = Vf(Vu*)
on {2y which proves part a) of Theorem 1.2. Now let u denote some gen-
eralized minimizer, i.e. u € M, and repeat the proof of Lemma 5.1 with
A € C°(Q,R?). We get Vu = V f*(o) now on €, thus Vu = Vu* on .
But since X, has no interior accumulation points, we see that €2y is connected,

hence © = u* 4+ const on 0y and therefore a.e. on €.
Theorem1.2

So far we have shown that any generalized minimizer v is of class C** except
for a discrete set of possible singular points forming a subset of .. Let us
have a closer look at the behaviour near isolated singularities x,. We fix a
disc By(zo) such that no other singular point occurs in B;(z,) and decompose
the vector-measure Vu as

Vu = (Vu)* + (Vu)®

with absolutely continuous part (Vu)® in the space L'(B;(x¢), R?). Obviously
(Vu)?® has the form & d,, for some £ € R? | and we claim £ = 0. In fact, this is
a consequence of the fine properties for BV —functions stated for example in
[AFP], Lemma 3.76, saying that the measure |Vu| vanishes on the set {zy}
which is of #! measure zero. Alternatively we may assume that £ # 0 and

A

recall that u minimizes J(-, B;(zo)) w.r.t. its boundary values. Let v :=n,u
with 7, € C1(By(0)), 0 <71, <1, 5. =1 on By(x¢) — Bor(70), 7 = 0 on
B (%0), |Vn,| < caar™!, where r < t. Then

/( )f(mVu-l—Vnru)da: = j(v,Bt(xo)) > f(u,Bt(xo))
Bi(xo

_ /Bt(zo) F((Vu)?) dz + fxo (%)

with foo(£/]€]) > 0 on account of (1.2). By convexity of f we have
fpVu) = fnVu+uVn) —uVn-Vf (i Vut+uVn,),

=
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hence

A

J(v, By(zo)) < /

B¢(zo)

f(n, Vu)dr + / uVn, -Vf(x)de =

By¢(zo)

= / f((Vu)*) dz + / f(n (Vu)®) do
Bi(z0)—Bar(zo)

By, (z0)—Br (o)

+/ uVn, - Vf(sx)dx
Bi(zo)

< /Bt(xo) F(Vu)*) dz + / f(n: (Vu)®) do

Ba, (z0)—Br(zo)

1
+035 - / |u| dz s
r BQ’I‘(xO)

where we have used (1.3). Recallingn = 2 and u € BV (2), we see u € L*(Q),
hence r* [, (zo) [t/ dz — 0 as 7 | 0. The linear growth of f implies

rl0

/ F(n-(Vu)*) dz < cse / (1+[(Vu)?)) dz =
By (w0)—Br (o) Bar (z0)

and we finally get

0,

/B( )f((Vu)“) de+O(r) > j(v,Bt(xO))

> /Bt(xo)f((vu)a) dz + fr (%) .

(JFrom (1.2) we deduce fo(&/[€]) > a which is a contradiction if r is small
enough. Consequentely Vu = (Vu)® € L'(By(zo),R?), and therefore u €
W1 10e(8). To prove the corollary we recall that according to (6.5) we may
assume ws —: w in Wy, (). On the other hand, Vus — Vu* a.e. on €,
and since Vu* € Lj,.(Q2) we have pointwise convergence a.e. on 2, hence

w = In(1 + [Vu*[?) € Wy,,.(). Suppose that ¢ > 1 is given, and let 2
denote a point of ¥.. Then we have

/ Vwldz < ||Vl @) VT R,
By (x0)NBr(z)
and (6.8) implies

C29 2
exp w— (W)B,(z ) de < c3(27)°.
e <ﬁ||w||L2<Br<x0» | «l
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Let us choose r small enough in such a way that

C29

>
VT Vel @)

N | =+

Then we get

/ \Vu*|'dr < +oo
Br(mo)

which proves the claim of the corollary for u* and hence for any u € M. Note
that we can bound the mean value of w on B,(x¢) in terms of the L' norm
of Vu* due to the fact that we already know that u* is of class W/ ,,.(Q2). B
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