
Universität des Saarlandes

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 203

Image Compression with Anisotropic

Diffusion

Irena Galić, Joachim Weickert, Martin Welk,

Andrés Bruhn, Alexander Belyaev and

Hans-Peter Seidel

Saarbrücken 2008

Fachrichtung 6.1 – Mathematik Preprint No. 203

Universität des Saarlandes submitted: January 7, 2008

Image Compression with Anisotropic

Diffusion

Irena Galić

Mathematical Image Analysis Group
Faculty of Mathematics and Computer Science, Saarland University

Campus E1.1, 66041 Saarbrücken, Germany
galic@mia.uni-saarland.de

Joachim Weickert

Mathematical Image Analysis Group
Faculty of Mathematics and Computer Science, Saarland University

Campus E1.1, 66041 Saarbrücken, Germany
weickert@mia.uni-saarland.de

Martin Welk

Mathematical Image Analysis Group
Faculty of Mathematics and Computer Science, Saarland University

Campus E1.1, 66041 Saarbrücken, Germany
welk@mia.uni-saarland.de

Andrés Bruhn

Mathematical Image Analysis Group
Faculty of Mathematics and Computer Science, Saarland University

Campus E1.1, 66041 Saarbrücken, Germany
bruhn@mia.uni-saarland.de

Alexander Belyaev

EECE, School of Engineering and Physical Sciences
Earl Mountbatten Building, Heriot-Watt University

Riccarton, Edinburgh EH14 4AS, UK
a.belyaev@hw.ac.uk

Hans-Peter Seidel

Max-Planck Institute for Informatics
Campus E1.4, 66123 Saarbrücken, Germany

hpseidel@mpi-sb.mpg.de

Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

Compression is an important field of digital image processing where
well-engineered methods with high performance exist. Partial differ-
ential equations (PDEs), however, have not much been explored in
this context so far. In our paper we introduce a novel framework
for image compression that makes use of the interpolation qualities of
edge-enhancing diffusion. Although this anisotropic diffusion equation
with a diffusion tensor was originally proposed for image denoising, we
show that it outperforms many other PDEs when sparse scattered data
must be interpolated. To exploit this property for image compression,
we consider an adaptive triangulation method for removing less signif-
icant pixels from the image. The remaining points serve as scattered
interpolation data for the diffusion process. They can be coded in
a compact way that reflects the B-tree structure of the triangulation.
We supplement the coding step with a number of amendments such as
error threshold adaptation, diffusion-based point selection, and spe-
cific quantisation strategies. Our experiments illustrate the usefulness
of each of these modifications. They demonstrate that for high com-
pression rates, our PDE-based approach does not only give far better
results than the widely-used JPEG standard, but can even come close
to the quality of the highly optimised JPEG2000 codec.

1 Introduction

While applications of partial differential equations (PDEs) and corresponding
variational techniques in image processing and computer vision are often
associated with denoising problems (see e.g. [3, 17, 68]), there is an increasing
number of publications where their potential as interpolation methods is
explored.
Early examples in that direction include variational optic flow methods [35,
54] where one is interested in estimating the apparent motion field in an im-
age sequence as a minimiser of an energy functional. In flat regions where
the local greyscale data do not allow to compute reliable motion fields, in-
formation from surrounding regions is propagated by the so-called filling-in
effect of the smoothness term. Similar variational models are also used for
related correspondence problems such as stereo reconstruction [49, 74] or
image registration [6, 52], whenever dense displacement fields are required.
More recently this filling-in effect has also become the main feature of PDE-
based inpainting methods such as [10, 11, 16, 34, 50, 65]. Here one aims at
restoring missing informations in certain corrupted image areas by means of
second or higher-order PDEs. The basic idea is to regard the given image data

1

as Dirichlet boundary conditions, and interpolate the data in the inpainting
regions by solving appropriate boundary value problems.
Variational and PDE methods that have been proposed for inpainting have
also been investigated for more classical interpolation problems such as zoom-
ing into an image by increasing its resolution [2, 7, 8, 15, 47, 60, 69]. For
such interpolation problems with data given on a regular grid, these tech-
niques are in competition with cubic or quintic splines, radial basis functions
and sinc-based interpolation techniques; see e.g. [44, 51]. If the data are
not available on a regular grid, scattered data interpolation techniques have
been proposed [31, 55], among which radial basis functions such as thin plate
splines [25] are popular and well-performing.
Interestingly, not many of the variational and PDE-based interpolation and
inpainting techniques have been used for scattered data interpolation. It
seems that the sparsity of the scattered data constitutes a real challenge
for these techniques: While second-order PDEs may satisfy a maximum–
minimum principle, they often create singularities at isolated interpolation
points in 2-D. Higher-order PDEs, on the other hand, may give smoother
solutions, but the violation of an extremum principle can lead to undesirable
over- and undershoots; see e.g [15].

The goal of the present paper is to explore the potential of PDEs for a diffi-
cult scattered data interpolation problem, namely lossy image compression.
While contemporary image compression methods are dominated by concepts
that involve the discrete cosine transform (such as the widely-used JPEG
standard [56]) or the discrete wavelet transform (in JPEG2000 [64]), we shall
give a proof-of-concept that there are alternatives where PDEs may be ben-
eficial. The basic idea is to reduce the image data to a well-adapted set of
significant sparse points that can be coded in an efficient way. Decoding is
accomplished by using these scattered data and interpolating them by means
of a suitable PDE. Our PDE of choice is edge-enhancing anisotropic diffusion
(EED). It uses a diffusion tensor that allows smoothing along discontinuities
while inhibiting smoothing across them. Although EED has been introduced
originally as a denoising technique [67], we will see that it is particularly
useful for scattered data interpolation. As a tool for creating a useful sparse
point representation, we consider the B-tree triangular coding (BTTC) by
Distasi et al. [24], since it is relatively simple and allows an efficient coding
of the sparsified image data. In order to end up with a PDE-based compres-
sion framework with optimal quality, however, it is not sufficient to apply
BTTC in its original version. It has to be supplemented with a number of
amendments such as error threshold adaptation, diffusion-based point selec-
tion and specific quantisation strategies.

2

Paper Structure. Our paper is organised as follows. In Section 2 we
describe PDE-based interpolation techniques and show that scattered data
interpolation with EED performs particularly well. In Section 3 we review
the BTTC model of Distasi et al. [24] for image coding and decoding. Section
4 describe how it can be coupled with EED-based interpolation, and presents
a number of amendments for the coding step. Experiments on EED-based
image coding are presented in Section 5, where each of these amendments
is demonstrated to lead to improved compression quality. Our paper is con-
cluded with a summary in Section 6.

Related Work. In the context of image compression, PDEs and related
variational techniques have mainly been used as a preprocessing step before
coding images or videos [18, 30, 29, 41, 66] or as a postprocessing tool for
removing coding artifacts [1, 26, 29, 33, 53, 72, 73]. Our work differs from
these papers by the fact that we use a PDE within the encoding and decoding
step rather than applying it before encoding or after decoding. Chan and
Zhou [19] proposed total variation regularisation in order to modify the co-
efficients in a wavelet decomposition such that oscillatory edge artifacts are
reduced. Sometimes PDE-based interpolation strategies have been tailored
to specific data sets such as surface data in digital elevation maps [28, 61, 70].
Moreover, some variational L1 minimisation ideas play an important role in
recent compressed sensing concepts [13].
The usefulness of inpainting concepts for image compression is confirmed in
several papers, where structure and texture inpainting ideas have been inte-
grated into standard codecs (i.e. compression and decompression methods)
such as JPEG [46, 58, 71].
With respect to its intention to reconstruct an image from a small set of
characteristic data, our paper has some relations to publications where edge
information is used to represent the main image content. This has been done
in different formulations by Zeevi and Rotem [75], Carlsson [14], Hummel
and Moniot [37], Mallat and Zhong [48], Aurich and Daub [4], Desai et al.
[23], and Elder [27]. Methods of this type can be seen as representatives of
second-generation coding approaches that exploit perceptually relevant fea-
tures such as contours [43].
An alternative way to represent signals and images by a sparse set of sig-
nificant points consists of reconstructions from top points in scale-space, as
has been investigated by Johansen et al. [39] and Kanters et al. [40]. More
general discussions on how to reconstruct an image from a suitable set of fea-
ture points and their derivatives (local jet) have been presented by Lillholm
et al. [45]. Impressive global reconstructions of natural images by means

3

of the local jet structure are reported by Bruckstein [12], who suggested to
incorporate Tikhonov regularisation and directional filtering.
With respect to the triangular B-tree coding of Distasi et al. [24] that is
used in our paper, a number of related variable block size image coding
algorithms exist, in particular also methods based on quadtree decomposions;
see e.g. [62, 63]. An interesting coding scheme that exploits scattered data
interpolation has been proposed by Demaret et al. [22]. They construct
an adaptive Delaunay triangulation that is used for decoding the image by
linear interpolation. Their experiments show that it can be an alternative to
JPEG 2000 coding for texture-free images.
In 2005 a preliminary version of our paper has been presented at a workshop
[32]. Compared to this earlier model, the present paper introduces numerous
improvements in Section 4, it presents a systematic evaluation of all these
modifications, and it compares the results with JPEG2000 for a set of six
standard test imags. Recently Köstler et al. [42] have developped multigrid
algorithms for our method from [32] and demonstrated that they can be used
for real-time video compression on a Playstation 3.

2 PDE-Based Interpolation

We start by considering a PDE approach to image interpolation. First we
discuss a general model, then we investigate a number of options for smooth-
ing operators, and finally we present an experiment that illustrates their
performance.

2.1 General Model

Let Ω ⊂ IRn denote an n-dimensional image domain. We want to recover
some unknown scalar-valued function v : Ω → IR, from which we know its
values on some subset Ω1 ⊂ Ω. Our goal is to find an interpolating function
u : Ω → IR that is smooth and close to v in Ω \ Ω1 and identical to v in Ω1.
We may embed this problem in an evolution setting with some evolution
parameter (the ”time”) t ≥ 0. It solution u(x, t) gives the desired interpo-
lating function as its steady state (t → ∞). We initialise the evolution with
some function f : Ω → IR that is identical to v on Ω1 and that is set to some
arbitrary value (e.g. to 0) on Ω \ Ω1:

f(x) :=

{

v(x) if x ∈ Ω1

0 else.
(1)

4

We consider the evolution

∂tu = (1−c(x)) Lu − c(x) (u − f) (2)

with f as initial value,
u(x, 0) = f(x), (3)

and reflecting (homogeneous Neumann) boundary conditions on the image
boundary ∂Ω. The function c : Ω → IR is the characteristic function on Ω1,
i.e.

c(x) :=

{

1 if x ∈ Ω1

0 else,
(4)

and L is some elliptic differential operator. The idea is to solve the steady
state equation

(1−c(x)) Lu − c(x) (u − f) = 0 (5)

with reflecting boundary conditions. In Ω1 we have c(x) = 1 such that the
interpolation condition u(x) = f(x) = v(x) is fulfilled. In Ω \ Ω1 it follows
from c(x) = 0 that the solution has to satisfy Lu = 0. This elliptic PDE can
be regarded as the steady state of the evolution equation

∂tu = Lu (6)

with Dirichlet boundary conditions given by the interpolation data on Ω1.

2.2 Specific Smoothing Operators

Regarding the elliptic differential operator L, many possibilities exist. The
simplest one uses the Laplacian Lu := ∆u leading to homogeneous diffusion
[38]:

∂tu = ∆u. (7)

A prototype for a higher order differential operator is the biharmonic operator
Lu := −∆2u giving the biharmonic smoothing evolution

∂tu = −∆2u. (8)

Using it for interpolation comes down to thin plate spline interpolation [25],
a rotationally invariant multidimensional generalisations of cubic spline in-
terpolation.

The multidimensional generalisation of quintic spline interpolation leads to
triharmonic smoothing based on Lu := ∆3u:

∂tu = ∆3u. (9)

5

Note that only the second-order differential operators allow a maximum–
minimum principle, where the values of u stay within the range of the values
of f in Ω1.

A second order PDE that has been advocated for interpolation purposes [15]
is given by the absolute monotone Lipschitz extension (AMLE) model. It
uses the second order directional derivative Lu := ∂ηηu in gradient direction
η := ∇u/|∇u|:

∂tu = ∂ηηu. (10)

Nonlinear isotropic diffusion processes are governed by the equation Lu :=
div (g(|∇u|2)∇u). This gives [57]

∂tu = div (g(|∇u|2)∇u) (11)

where the diffusivity function g is decreasing in its argument, since the goal
is to reduce smoothing at edges where |∇u| is large. One may e.g. choose
the Charbonnier diffusivity [20]

g(s2) =
1

√

1 + s2/λ2

(12)

with some contrast parameter λ > 0. Since (11) uses a scalar-valued dif-
fusivity we name this process isotropic (in contrast to the nomenclature in
[57]).

Real anisotropic behaviour is possible when a diffusion tensor is used. As
a prototype for nonlinear anisotropic diffusion filtering we consider edge-
enhancing diffusion (EED) [67]. The idea is to reduce smoothing across edges
while still permitting diffusion along them. The EED diffusion tensor has one
eigenvector parallel to ∇uσ, where uσ is obtained from convolving u with a
Gaussian with standard deviation σ. The associated eigenvalue is given by
g(|∇uσ|

2) with a diffusivity function such as (12). The other eigenvectors
are orthogonal to ∇uσ and have corresponding eigenvalues 1. If we use the
convention to extend a scalar-valued function g(x) to a matrix-valued func-
tion g(A) by applying g to the eigenvalues on A and leaving the eigenvectors
unchanged, then EED can be formally linked to Lu := div (g(∇uσ∇u⊤

σ)∇u).
Hence, its evolution is governed by

∂tu = div (g(∇uσ∇u⊤

σ)∇u). (13)

6

2.3 Experiments on Interpolation

In order to evaluate the potential of the preceding PDEs for scattered data in-
terpolation, we have discretised them with central finite differences in space.
For the diffusion equations, we performed a semi-implicit time discretisation
with SOR as solver for the linear systems of equations, while for AMLE,
biharmonic and triharmonic smoothing an explicit scheme was used. Run-
times for a non-optimised C implementation on a 1.5 GHz Centrino laptop
range between a few seconds and several minutes for a 256 × 256 image. If
necessary, these operations can be speeded up to real-time performance using
multigrid algorithms [42].

In Figure 1 we present an experiment that illustrates the use of the differ-
ent smoothing operators for scattered data interpolation. It depicts a zoom
into the famous lena image, where 2 percent of all pixels have been chosen
randomly as scattered interpolation points. We observe that homogeneous
diffusion is not very suitable for scattered data interpolation, since it creates
singularities at the interpolation points. This can be avoided with interpo-
lation using biharmonic smoothing. It gives fairly good results, but suffers
from over- and undershoots near edges due to the violation of an extremum
principle (see e.g. the shoulder). These limitations become even more obvi-
ous for triharmonic smoothing. In spite of a number of favourable theoretical
properties [15], AMLE does not live up to its expectations. Also going from
homogeneous diffusion to nonlinear isotropic diffusion does not give an im-
provement: While nonlinear isotropic diffusion may allow discontinuities, its
interpolant is too flat and tends to keep many interpolation points as iso-
lated singularities. The fact that EED, on the other hand, gives the best
results shows the importance of the anisotropic behaviour. Its ability to
smooth along edges seems to be very beneficial for avoiding singularities at
interpolation points. Moreover, this second-order PDE respects a maximum–
minimum principle, such that the solution is within the greyscale bounds of
the interpolation points.

A quantitative error analysis is presented in Table 1, where we have computed
the average absolute error (AAE) and the mean squared error (MSE) between
the interpolated image (ui,j) and the original image (vi,j):

AAE (u, v) :=
1

N

∑

i,j

|ui,j − vi,j|, (14)

MSE (u, v) :=
1

N

∑

i,j

|ui,j − vi,j|
2, (15)

7

Figure 1: (a) Top left: Zoom into the test image lena, 256 × 256 pixels.
(b) Top middle: Grey values of the scattered interpolation points (2 per-
cent of all pixels, chosen randomly). (c) Middle left: Interpolation by
linear diffusion. (d) Centre: Biharmonic smoothing. (e) Middle right:
Triharmonic smoothing. (f) Bottom left: AMLE. (g) Bottom middle:
Nonlinear isotropic diffusion (λ = 0.1). (h) Bottom right: EED (λ = 0.1,
σ = 1).

8

Table 1: Average absolute errors (AAE) and mean squared error (MSE) for
the PDEs used for scattered data interpolation in Figure 1.

PDE method AAE MSE
homogeneous diffusion (7) 16.98 611.5
biharmonic smoothing (8) 15.79 615.5
triharmonic smoothing (9) 18.69 807.9
AMLE (10) 17.33 631.7
Charbonnier diffusion (11) 21.80 987.0
edge-enhancing diffusion (13) 14.58 591.7

where N denotes the number of pixels. As already mentioned, biharmonic
and triharmonic interpolation may create over- and undershoots. At loca-
tions where they lead to grey values outside the interval [0, 255], they have
been truncated.
In our experiments the average absolute error gives a ranking that corre-
sponds well with our visual impression, while the mean squared error fails
to discriminate between the perceptually strongly differing qualities of linear
diffusion, biharmonic smoothing and AMLE. It seems that the MSE puts
more weight on deviations of individual pixels than our human perception
does. Thus, it may be less helpful for quantifying the perceived visual quality.
Interestingly, in both error measurements as well as in our visual analysis,
EED gives the best scattered data interpolation. These findings are also in
accordance with results from [69] where EED proved to be the PDE of choice
for interpolating tensor data. Therefore, we will focus on EED from now on,
and all optimisations of the approximation quality will be carried out with
respect to the average absolute error.

3 Image Coding and Decoding by Binary Trees

Now that we have seen that EED is useful for scattered data interpolation,
we want to exploit this technique for image compression. To this end we
have to combine it with a method that provides a useful sparse image rep-
resentation with scattered data. Intuitively the density of these data points
should be adapted to the underlying image structure in order to allow the
best interpolation quality. We have started to explore a number of options,
ranging from semantically motivated feature selection [76] over greedy opti-
misation concepts [21] to shape optimisation strategies [9]. For compression

9

purposes, however, good interpolation quality is not sufficient if the resulting
set of image data is too expensive to encode. This requirement has led us to
an image compression and decompression scheme that relies on an adaptive
sparsification of the image data by means of the triangulation from B-tree
triangular coding (BTTC). In this section we review the underlying codec by
Distasi et al. [24]. It serves as starting point for inclusion of our EED-based
interpolation concept.

3.1 Creating Scattered Interpolation Points

In B-tree triangular coding, an image is decomposed into a number of trian-
gular regions such that within each region it can be recovered in sufficient
quality by interpolation from the vertices. In our case, all regions are isosceles
right triangles. Then the decomposition into triangles is stored in a binary
tree structure.
In order to describe the compression procedure, let us assume we have an
image v = (vi,j) of size (2m + 1) × (2m + 1). Smaller images should be filled
up to such a size in a suitable way. Initially, the image is split by one of
its diagonals into two triangles. The four image corners (1, 1), (1, 2m + 1),
(2m + 1, 1) and (2m + 1, 2m + 1) are vertices of these two triangles.
To refine this initial configuration, an approximation (ui,j) of the image (vi,j)
is calculated by using only the grey values from the vertices and interpolating
the remaining parts of the image.
For the moment, we consider just the simplest interpolation procedure, that
is a linear interpolation within each triangle. If the error ei,j := |ui,j − fi,j |
satisfies ei,j ≤ ε for all pixels (i, j), with a given tolerance parameter ε > 0,
the representation by triangles is considered sufficiently fine. Otherwise, for
each pixel (i, j) for which ei,j > ε holds, the triangle which contains (i, j) is
split into two similar triangles by the height on its hypotenuse. The centre of
the hypotenuse thereby becomes an additional vertex of the representation.
By recalculating approximation errors within the new smaller triangles, it
is determined whether to split these again etc. Since the approximation
error is zero at vertices, triangles with legs of length 1 are not split further,
which guarantees that the recursive splitting terminates. Moreover, vertices
throughout the process have integer coordinates. A vertex mask of size equal
to the image is generated during the triangulation in order to indicate which
pixels are vertices.
One point which needs additional consideration is the treatment of pixels
located on the sides of triangles during the splitting process. If the error
bound is violated in such a pixel, it is sufficient for our compression and
decompression method to split one of the two adjacent triangles. This allows

10

to reduce the number of triangles noticeably since in regions with fine details,
a large number of small triangles occur, and many pixel positions then happen
to be located on sides.

3.2 Coding the Binary Tree

To efficiently store the triangulation, we notice that the hierarchical splitting
of triangles gives rise to a binary tree structure. Each triangle occurring
during the splitting process is represented by a node while leaves correspond
to those triangles which are not divided further. When a triangle is split,
its two subtriangles become the children of its representing node. To store
the structure of the tree, one traverses the tree and stores one bit per node:
a 1 for a node that has children, and a 0 for a leave. Preorder or level-
order traversal are equally possible. Note that by the tree structure, the
vertex mask is fully determined. Further space in storing the tree is saved
by measuring globally the minimal and maximal depth of the tree. Only for
nodes at intermediate levels, the corresponding bits are stored.
For coding the grey values in all vertices, we first zig zag traverse the sparse
image created with the binary tree structure and store it in a sequence of
grey values. Then this sequence is compressed by Huffman coding [36], a
lossless variable-length prefix code that assigns shorter codes to more frequent
characters. Its code structure is represented by a binary tree, too.
Our entire coded image format then reads as follows:

• image size (4 bytes)

• minimal and maximal depth of the binary tree (together 2 bytes)

• binary string encoding binary tree structure (1 bit for each node be-
tween minimal and maximal depth, filled up with zeros to the next
byte boundary)

• first grey value in a sequence of grey values (1 byte)

• minimal and maximal depth of the Huffman-code binary tree (2 bytes)

• binary string for Huffman-code binary tree (1 bit for each node be-
tween minimal and maximal depth, filled up with zeros to the next
byte boundary)

• Huffman dictionary (less than 256 bytes)

• sequence of Huffman-coded grey values

11

We have also considered arithmetic coding [59] as an alternative to Huff-
man coding that adapts better to the distribution of grey values. In our
experiments, however, no better compression of the grey value sequence was
achieved in this way: For the image sizes used here, reductions in the length
of the encoded sequence itself are compensated by the increased size of the
coding dictionary.

3.3 Preprocessing by Requantisation

To further enhance BTTC, we introduced a modification that has not been
exploited in the original paper by Distasi et al. [24]: We preprocessed the
image by a (lossy) requantisation step that reduced the number of grey values
from 256 to 64. As this shortens the grey value codes, it allows to retain
more interpolation pixels at a given compression rate. The resulting gain in
restoration quality exceeds the loss caused by the higher quantisation error.

3.4 Decoding by Linear Interpolation

Decompression takes place in two steps. In the first step, the vertex mask
is recovered from the binary tree representation, and the stored grey values
are placed at the appropriate pixel positions to give the sparse image. To
recover the vertex mask, the tree is generated in the same order as it was
stored. Along with generating nodes, vertex positions are calculated and
marked in the vertex mask. The second step consists of the interpolation of
the image, where the vertex mask becomes the interpolation mask. In the
BTTC scheme of Distasi et al. [24], linear interpolation within each triangle
is used.

In the sequel we will denote the entire coding and decoding technique of Dis-
tasi et al. by Q64+BTTC(L)-L. This nomenclature characterises a method
with requantisation preprocessing to 64 grey levels, followed by B-tree trian-
gular encoding where linear interpolation is incorporated, and decoded using
linear interpolation.

4 EED-Based Coding and Decoding

Having seen in the previous section how images can be coded efficiently via
binary trees, we are in a position to use these binary trees as backbone for
our EED-based codec. While the format of the coded image remains, we
introduce several amendments step by step. Each of them improves the
quality of the restored image at a given compression rate.

12

4.1 Decoding with EED

Since we have observed that EED performs favourably as a scattered data
interpolant, it is natural to renounce the linear interpolation step for decoding
in the Q64+BTTC(L)-L method, and apply EED to the interpolation mask
instead. We abbreviate this codec by Q64+BTTC(L)-EED. Our workshop
paper [32] was based on this method.
Note that in contrast to Q64+BTTC(L)-L, the Q64+BTTC(L)-EED method
does not rely on the triangulation, only on its vertices as interpolation points.
Moreover, this replacement of linear interpolation by EED is the only step
that affects the decoding. All amendments that are described next take place
in the coding phase: They optimise the sparsification step which selects the
scattered interpolation points and their stored grey values.

4.2 Adaptive Error Threshold

One approach to improve the compression procedure addresses the choice of
the threshold parameter ε. In the original BTTC procedure, this parameter
is constant throughout the construction of the binary tree. Recall, however,
that the decision whether or not to split a triangle is based on the maximum
error encountered within that triangle. Since splitting a large triangle affects
many more pixels than splitting a small one, it is expected to be more efficient
in reducing the average error. This suggests a strategy in which a more
restrictive, i.e., smaller, threshold ε is used on the coarser levels of the binary
tree.
Since the size of the triangles shrinks exponentially with the level index of our
binary tree, an exponential scaling is chosen for the threshold, too: Starting
from a small threshold ε0 on the coarsest level, it is adapted by a constant
factor α > 1 per level (typically, in the range between 1.35 and 1.5), resulting
in

εk = αkε0 (16)

in level k of the binary tree. We denote this algorithm with adaptive thresh-
old by Q64+BTTC(L,AT)-EED.

4.3 Coding with EED

In Subsection 4.1 we have replaced the linear interpolation within each tri-
angle in the decoding step by EED-based interpolation. This already leads
to a considerable improvement in restoration quality. At the same time, a
mismatch between coding and decoding was introduced in this way, since we
retained the linear interpolation in the sparsification procedure.

13

As a remedy, diffusion-based interpolation can be used in the sparsification
step, too. To decide whether to split a triangle, the current sparse image
is completed by EED interpolation and compared to the original image. If
the error of some pixel within the triangle in question exceeds the threshold
pertaining to the current refinement level, the triangle is split.
In contrast to the linear interpolation used in Section 3, diffusion interpola-
tion is not localised within each triangle: The changes in the interpolation
result that occur when inserting a new vertex are not limited to the triangle
that has been split, or even adjacent triangles. After updating the tree, one
has therefore always to recompute the interpolation for the entire image, not
just for a triangle. For best coding quality, recomputing is done after each
insertion of a node. Alternatively, all decisions on the splitting of triangles
of one and the same size can be made simultaneously, thereby restricting
recomputations to one interpolation per triangulation level. This leads to a
faster compression at the cost of a slight loss in image quality. In the cur-
rent stage we are more interested in optimal quality than in fast algorithms.
Thus we perform a recomputation for each inserted vertex. This EED-based
compression method is called Q64+BTTC(EED,AT)-EED.

4.4 Biasing Interpolation Values

A close look at the PDE interpolation results in Figure 1 reveals that inter-
polation points that are local extrema tend to stand out in the interpolated
image as sharp peaks. This effect is most striking in the linear diffusion result
but can also be observed in less pronounced form in the nonlinear diffusion
interpolation. In the case of linear interpolation, it can be related to the
decay behaviour of radial basis functions that underly the steady state of the
diffusion interpolation.
As a consequence, it is not always appropriate to store the exact grey values
of the interpolation pixels extracted from the original image: While the re-
construction error in the interpolation pixel itself is minimised in this way,
surrounding pixels can be considerably biased. For example, if the interpo-
lation pixel is a local maximum, grey values in its neighbourhood will be
systematically underestimated. Storing, instead, a slightly larger grey value
for the interpolation pixel introduces an error in this particular pixel while
reducing the error in its neighbourhood; see Figure 2. As the latter involves
multiple pixels, the average absolute error is reduced.
A caveat in exploiting this idea is that it is difficult to estimate the influ-
ence zone of a given pixel in the interpolation of a scattered data set. Our
realisation is based on the conservative assumption of a small influence zone
given by a 3 × 3 neighbourhood. After determining the interpolation mask,

14

Figure 2: Biasing of an interpolation value. Vertical direction expresses grey
values. An interpolation pixel (dot in the middle) with its 3 × 3 neighbour-
hood in the original image (joined by solid lines) and in the interpolated
image (dashed lines). Left: Without biasing. Right: With biasing.

the interpolated image u using exact grey values in all interpolation pixels is
compared to the original image v. For each pixel (i, j) of the interpolation
mask we compute the average error

ẽi,j :=
1

9

i+1
∑

k=i−1

j+1
∑

l=j−1

(vk,l − uk,l) (17)

and use it to correct the stored grey value for pixel (i, j): Instead of ui,j we
store the value

ũi,j := ui,j + ẽi,j . (18)

Although a more precise estimation of the influence zones of interpolation
pixels could most probably further improve the quality of restored images,
already the simple procedure described here offers a measurable reduction of
the reconstruction error. This version of the algorithm with biased interpo-
lation is named Q64+BTTC(EED,AT)+B-EED.

4.5 Postprocessing by Requantisation

Finally, we revisit the requantisation procedure described in Subsection 3.3.
By deferring the requantisation until the actual coding step, we gain a more
precise error measurement during the sparsification procedure. On the other
hand, the interpolated images in the sparsification procedure are computed
based on grey values different from those that are eventually stored, which
may deteriorate restoration results. The question which of these two settings,
quantisation as preprocessing or postprocessing, is superior, is therefore dif-
ficult to answer theoretically.
Experiments, however, indicate that postprocessing is preferable. This is par-
ticularly true if it is applied in conjunction with the biasing of interpolation

15

values as described in the previous subsection: Bias corrections computed
there may often be less than one quantisation level. Only when the quanti-
sation acts as postprocessing, small adjustments can therefore optimally be
accounted for in the quantised data set. Our best postprocessing results have
been achieved with quantisation to 32 grey levels.
We will refer to the compression algorithm with post-quantisation to 32 levels
by BTTC(EED,AT)+B-Q32-EED. Note the shifted order of the Q label.
This is our most advanced algorithm that incorporates all amendments. For
the sake of brevity, this EED-based codec is also abbreviated by EEDC
when being compared with other algorithms such as JPEG or JPEG2000.

5 Experiments on Compression

Let us now investigate the effects of our EED-based interpolation in the
context of image coding. In all experiments in this section, the parameters
have been optimised in order to give the best compression quality.

Figures 3 and 4 show a test image and its compressed versions using Q64+
BTTC(L)-EED, our BTTC-method with EED decoding. We have chosen
the threshold parameter ε such that compressions of 0.8, 0.4 and 0.2 bits
per pixel (bpp) are achieved. Compared to the standard coding that uses 1
byte per pixel, this comes down to compression ratios of 10:1, 20:1 and 40:1.
In Figure 4, we display both the coded pixels with their corresponding grey
values, and the result after scattered data interpolation with EED. While the
image quality deteriorates with increasing compression, we observe that even
at high compression rates, still fairly realistic results are possible. Therefore
we carry out our further comparisons at the high compression rate of 40:1
(or equivalently 0.2 bpp) where the differences between the original and the
compressed images are well visible.
In Figure 5, we compare Q64+BTTC(L)-EED with the original Distasi me-
thod Q64+BTTC(L)-L and the widespread JPEG compression. We show
images reconstructed after compression to 0.2 bpp by each method. We ob-
serve that JPEG coding suffers from severe block artifacts that result from
the fact that the discrete cosine transform is computed within blocks of
8 × 8 pixels. The Q64+BTTC(L)-L method, on the other hand, creates a
different type of artifacts where the underlying triangulation becomes visi-
ble. Since Q64+BTTC(L)-EED only uses the interpolation points from the
Q64+BTTC(L)-L method, but not the corresponding triangulation, it is clear
that this method cannot suffer from such a shortcoming. Where insufficient
data are available, its interpolation tends to be on the smoother side. As a

16

Figure 3: Test image trui, 257 × 257 pixels.

Figure 4: First row, left to right: Adaptive sparsification of trui, using
BTTC with compression to 0.8 bpp, 0.4 bpp, 0.2 bpp. Second row, left to
right: Corresponding interpolation (Q64+BTTC(L)-EED).

consequence, already this most basic one of our PDE-based algorithms gives
results that are visually superior to the other two methods.

This visual impression is also confirmed by the quantitative measurements
in Table 2, where the average absolute error is listed. We see that at the

17

Figure 5: Comparison at high compression rates (0.2 bpp) for the test image
trui. Left: JPEG. Middle: Q64+BTTC(L)-L. Right: Q64+BTTC(L)-
EED.

compression rate 40:1, JPEG performs worst, Q64+BTTC(L)-L is in the
midfield, and Q64+BTTC(L)-EED gives the best results.

Table 2: Comparison of the average absolute error (AAE) for the trui image
and compression to 0.2 bpp.

codec AAE
JPEG 11.25
Q64+BTTC(L)-L 8.63
Q64+BTTC(L)-EED 8.45

In Figure 6 we demonstrate how the quality of reconstructed images is suc-
cessively improved by introducing the adaptive threshold, diffusion-based
sparsification, biasing and post-quantisation. Each step constitutes an im-
provement over its predecessor. In compression methods using EED in the
coding step, interpolation is recomputed once per node to achieve optimal
quality. With fast compression (a single EED interpolation per level) the
AAE values deteriorate by approximately 0.1 to 0.2.
A comparison in terms of their average absolute error in Table 3 further sup-
ports these observations. In this table we include also the error measure for
JPEG2000. For the BTTC-based methods, we give also the numbers of pix-
els in the sparse images. From these numbers it can be read off firstly that all
algorithmic modifications improve the quality of selected pixels, while their
number remains in the same range between 1500 and 1550 pixels. Secondly,
it is confirmed that a reduced number of quantisation levels allows to store
substantially more pixels.

18

Figure 6: Comparison of BTTC-based compression methods at a com-
pression rate of 0.2 bpp. First row, left to right: EED-based decod-
ing (Q64+BTTC(L)-EED), with adaptive threshold (Q64+BTTC(L,AT)-
EED), with EED coding (Q64+BTTC(EED,AT)-EED). Second row,
left to right: with biasing (Q64+BTTC(EED,AT)+B-EED), with post-
quantisation to 64 grey levels (BTTC(EED,AT)+B+Q64-EED), with post-
quantisation to 32 grey levels instead (BTTC(EED,AT)+B+Q32-EED).

We extend this comparison in Table 4 for both pre- and postprocessing quan-
tisation, including also the case without quantisation (256 grey levels). It can
be seen that the number of pixels increases with coarser quantisation. For
very small numbers of grey levels, however, the growing quantisation er-
ror dominates over the AAE improvements by having more pixels, making
32 the preferable choice. Post-quantisation offers an advantage over pre-
quantisation for medium quantisation levels that disappears when reducing
the number of quantisation levels to 16.
Our most optimised EED-based codec is given by BTTC(EED,AT)+B+Q32-
EED (from now on simply called EEDC). It achieves an average absolute
error of 4.99. This is far better than JPEG with an error of 11.25 and very
close to the 4.86 value for JPEG2000 which marks the state of the art in
image compression. For a visual comparison, we juxtapose this algorithm

19

Table 3: Comparison of absolute errors for different methods at 0.2 bpp. For
BTTC-based methods, the number of pixels in the sparse image is stated in
the last column.

codec AAE #pixels
Q64-BTTC(L)-EED 8.45 1543
Q64-BTTC(L,AT)-EED 5.98 1517
Q64-BTTC(EED,AT)-EED 5.55 1542
Q64-BTTC(EED,AT)+B-EED 5.32 1530
BTTC(EED,AT)+B+Q64-EED 5.27 1527
BTTC(EED,AT)+B+Q32-EED 4.99 1769
JPEG2000 4.86

Table 4: Comparison of absolute errors and numbers of stored
pixels for different quantisation levels. We juxtapose pre-
quantisation (Q**+BTTC(EED,AT)+B-EED) and post-quanitsation
(BTTC(EED,AT)+B+Q**-EED).

#quantisation pre-quantisation post-quantisation
levels AAE #pixels AAE #pixels
256 6.42 1123 6.42 1123
64 5.32 1530 5.27 1527
32 5.04 1770 4.99 1769
16 5.33 2099 5.34 2054

20

Figure 7: Left: Original image trui. Middle: Reconstructed after compres-
sion to 0.2 bpp by JPEG2000 (AAE = 4.86). Right: Reconstructed after
compression to 0.2 bpp by EEDC (AAE = 4.99).

and JPEG2000 in Figure 7. It can be seen that the overall visual quality of
both methods is very similar. Each algorithm represents some details better.
The result of the EEDC algorithm appears slightly smoother and is free from
the faint block artifacts that occur even in JPEG2000. On the other hand,
it tends slightly more towards cartoon-like smoothed structures.

In Figure 8, we show the relation between EEDC, JPEG, and JPEG2000 over
a range of different compression ratios. At the lowest compression ratio 5:1,
the differences between all methods are marginal. While JPEG deteriorates
rapidly at higher compression ratios, both JPEG2000 and EEDC show a
moderate increase in the reconstruction error.

Finally, a comparison of EEDC with JPEG and JPEG2000 on a variety of
popular compression test images is shown in Figure 9 and Table 5. It demon-
strates that in terms of reconstruction quality at high compression ratio,
PDE-based compression consistently ranks between JPEG and JPEG2000,
and is always closer to the latter. For images with a lot of detail and textures,
like barbara or boats, the tendency to smoothing becomes more striking. In
these cases, however, even JPEG2000 displays a noticeable loss of detail.

6 Summary and Conclusions

While contemporary image compression is dominated by transform-based
methods that rely on the discrete cosine transform or wavelet decomposi-
tions, we have shown that PDEs have the potential to become a serious
alternative. To this end, we have driven PDE-based inpainting ideas to the
extreme by storing only a sparse set of all pixels and interpolating the missing

21

0

2

4

6

8

10

12

AAE

5:1 10:1 20:1 40:1

JPEG
PDE-based
JPEG2000

Figure 8: Comparison of EEDC with JPEG and JPEG2000 over a range of
compression ratios from 5:1 (1.6 bits per pixel) to 40:1 (0.2 bpp) for the test
image trui.

Table 5: Comparison of absolute average errors for different images and
compression methods at 0.2 bpp, as shown in Figure 9.

Image JPEG EEDC JPEG2000
lena 13.61 8.72 7.20
cameraman 13.75 9.38 8.07
peppers 12.19 7.53 6.59
barbara 15.47 12.22 10.06
boats 14.68 11.82 9.28

22

Figure 9: Comparison of compression methods at 0.2 bpp for different test
images (rescaled to 257 × 257 pixels). Rows, top to bottom: lena, cam-
eraman, peppers, barbara, boats. Columns, left to right: Original im-
age, reconstructed images after compression by JPEG, by EEDC, and by
JEPG2000.

23

data by edge-enhancing anisotropic diffusion. The sparse point set has been
constructed by a B-tree triangular coding with several improvements such
as the adaptation of the threshold parameter, diffusion-based point selec-
tion, and a specific quantisation strategy. The fact that with this relatively
moderate degree of sophistication, our EED-based codec clearly outperforms
the JPEG standard at high compression rates and even comes close to the
quality of the highly optimised JPEG2000 is very encouraging.

With respect to the specific method in our paper, there is certainly room for
further optimisation, for instance by incorporating ideas from rate distortion
theory. In order to establish PDE-based methods as a more general alterna-
tive to existing paradigms, additional research is underway, e.g. with respect
to the theoretical foundations of diffusion-based interpolation [9], alternative
sparsification strategies [21, 9] including feature-based ones [76], compact
representation of textured regions, highly efficient numerical algorithms [42],
as well as generalisations to vector- and tensor-valued images [69], image
sequences [42], and surface data [5]. More details will be reported in forth-
coming publications.

Acknowledgements

Our research is partly funded by the International Max-Planck Research
School (IMPRS). This is gratefully acknowledged. Joachim Weickert also
thanks Vicent Caselles for interesting discussions on EED-based interpola-
tion during a stay at the University Pompeu Fabra, Barcelona.

References

[1] F. Alter, S. Durand, and J. Froment. Adapted total variation for artifact
free decompression of JPEG images. Journal of Mathematical Imaging
and Vision, 23(2):199–211, September 2005.

[2] H. A. Aly and E. Dubois. Image up-sampling using total-variation reg-
ularization with a new observation model. IEEE Transactions on Image
Processing, 14(10):1647–1659, October 2005.

[3] G. Aubert and P. Kornprobst. Mathematical Problems in Image Pro-
cessing: Partial Differential Equations and the Calculus of Variations,
volume 147 of Applied Mathematical Sciences. Springer, New York, 2002.

24

[4] V. Aurich and U. Daub. Bilddatenkompression mit geplanten Verlusten
und hoher Rate. In B. Jähne, P. Geißler, H. Haußecker, and F. Hering,
editors, Mustererkennung 1996, pages 138–146. Springer, Berlin, 1996.

[5] E. Bae. New PDE-based methods for surface and image reconstruction.
Master’s thesis, Dept. of Mathematics, University of Bergen, Norway,
2007.

[6] R. Bajcsy and S. Kovačič. Multiresolution elastic matching. Computer
Vision, Graphics and Image Processing, 46(1):1–21, April 1989.

[7] S. Battiato, G. Gallo, and F. Stanco. Smart interpolation by anisotropic
diffusion. In Proc. Twelvth International Conference on Image Analysis
and Processing, pages 572–577, Montova, Italy, September 2003. IEEE
Computer Society Press.

[8] A. Belahmidi and F. Guichard. A partial differential equation approach
to image zoom. In Proc. 2004 IEEE International Conference on Image
Processing, volume 1, pages 649–652, Singapore, October 2004.

[9] Z. Belhachmi, D. Bucur, B. Burgeth, and J. Weickert. How to choose
interpolation data in images, 2008. In preparation.

[10] M. Bertalmı́o, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting.
In Proc. SIGGRAPH 2000, pages 417–424, New Orleans, LI, July 2000.

[11] F. Bornemann and T. März. Fast image inpainting based on coherence
transport. Journal of Mathematical Imaging and Vision, 28(3):259–278,
July 2007.

[12] A. M. Bruckstein. On image extrapolation. Technical Report CIS9316,
Computer Science Department, Technion, Haifa, Israel, April 1993.

[13] E. Candés, J. Romberg, and T. Tao. Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion. IEEE Transactions on Information Theory, 52(2):489–509, Febru-
ary 2006.

[14] S. Carlsson. Sketch based coding of grey level images. Signal Processing,
15:57–83, 1988.

[15] V. Caselles, J.-M. Morel, and C. Sbert. An axiomatic approach to image
interpolation. IEEE Transactions on Image Processing, 7(3):376–386,
March 1998.

25

[16] T. F. Chan and J. Shen. Non-texture inpainting by curvature-driven
diffusions (CDD). Journal of Visual Communication and Image Repre-
sentation, 12(4):436–449, 2001.

[17] T. F. Chan and J. Shen. Image Processing and Analysis: Variational,
PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia, 2005.

[18] T. F. Chan and H. M. Zhou. Feature preserving lossy image compression
using nonlinear PDE’s. In F. T. Luk, editor, Advanced Signal Processing
Algorithms, Architectures, and Implementations VIII, volume 3461 of
Proceedings of SPIE, pages 316–327. SPIE Press, Bellingham, 1998.

[19] T. F. Chan and H. M. Zhou. Total variation improved wavelet thresh-
olding in image compression. In Proc. Seventh International Conference
on Image Processing, volume II, pages 391–394, Vancouver, Canada,
September 2000.

[20] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. De-
terministic edge-preserving regularization in computed imaging. IEEE
Transactions on Image Processing, 6(2):298–311, 1997.

[21] H. Dell. Seed points in PDE-driven interpolation. Bachelor’s Thesis,
Dept. of Computer Science, Saarland University, Saarbrücken, Germany,
2006.

[22] L. Demaret, N. Dyn, and A. Iske. Image compression by linear splines
over adaptive triangulations. Signal Processing, 86(7):1604–1616, 2006.

[23] U. Y. Desai, M. M. Mizuki, I. Masaki, and B. K. P. Horn. Edge and
mean based image compression. Technical Report 1584 (A.I. Memo),
Artificial Intelligence Lab., Massachusetts Institute of Technolgy, Cam-
bridge, MA, U.S.A., November 1996.

[24] R. Distasi, M. Nappi, and S. Vitulano. Image compression by B-tree
triangular coding. IEEE Transactions on Communications, 45(9):1095–
1100, September 1997.

[25] J. Duchon. Interpolation des fonctions de deux variables suivant le
principe de la flexion des plaques minces. RAIRO Mathematical Models
and Methods in the Applied Sciences, 10:5–12, 1976.

[26] S. Durand and M. Nikolova. Restoration of wavelet coefficients by min-
imizing a specially designed objective function. In O. Faugeras and
N. Paragios, editors, Proc. Second IEEE Workshop on Geometric and

26

Level Set Methods in Computer Vision, Nice, France, October 2003.
INRIA.

[27] J. H. Elder. Are edges incomplete? International Journal of Computer
Vision, 34(2/3):97–122, 1999.

[28] G. Facciolo, F. Lecumberry, A. Almansa, A. Pardo, V. Caselles, and
B. Rougé. Constrained anisotropic diffusion and some applications. In
Proc. 2006 British Machine Vision Conference, volume 3, pages 1049–
1058, Edinburgh, Scotland, September 2006.

[29] G. E. Ford. Application of inhomogeneous diffusion to image and video
coding. In Proc. 13th Asilomar Conference on Signals, Systems and
Computers, volume 2, pages 926–930, Asilomar, CA, November 1996.

[30] G. E. Ford, R. R. Estes, and H. Chen. Scale-space analysis for image
sampling and interpolation. In Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, volume 3, pages 165–168, San
Francisco, CA, March 1992.

[31] R. Franke. Scattered data interpolation: Tests of some methods. Mathe-
matics of Computation, 38:181–200, 1982.

[32] I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and H.-P. Seidel.
Towards PDE-based image compression. In N. Paragios, O. Faugeras,
T. Chan, and C. Schnörr, editors, Variational, Geometric and Level-Set
Methods in Computer Vision, volume 3752 of Lecture Notes in Computer
Science, pages 37–48. Springer, Berlin, 2005.

[33] A. Gothandaraman, R. Whitaker, and J. Gregor. Total variation for
the removal of blocking effects in DCT based encoding. In Proc. 2001
IEEE International Conference on Image Processing, volume 2, pages
455–458, Thessaloniki, Greece, October 2001.

[34] H. Grossauer and O. Scherzer. Using the complex Ginzburg–Landau
equation for digital impainting in 2D and 3D. In L. D. Griffin and
M. Lillholm, editors, Scale-Space Methods in Computer Vision, volume
2695 of Lecture Notes in Computer Science, pages 225–236. Springer,
Berlin, 2003.

[35] B. Horn and B. Schunck. Determining optical flow. Artificial Intelli-
gence, 17:185–203, 1981.

27

[36] D. A. Huffman. A method for the construction of minimum redundancy
codes. Proceedings of the IRE, 40:1098–1101, 1952.

[37] R. Hummel and R. Moniot. Reconstructions from zero-crossings in scale
space. IEEE Transactions on Acoustics, Speech, and Signal Processing,
37:2111–2130, 1989.

[38] T. Iijima. Basic theory on normalization of pattern (in case of typical
one-dimensional pattern). Bulletin of the Electrotechnical Laboratory,
26:368–388, 1962. In Japanese.

[39] P. Johansen, S. Skelboe, K. Grue, and J. D. Andersen. Representing
signals by their toppoints in scale space. In Proc. Eighth International
Conference on Pattern Recognition, pages 215–217, Paris, France, Oc-
tober 1986.

[40] F. M. W. Kanters, M. Lillholm, R. Duits, B. J. P. Jansen, B. Platel,
L.M.J. Florack, and B. M. ter Haar Romeny. On image reconstruction
from multiscale top points. In R. Kimmel, N. Sochen, and J. Weickert,
editors, Scale Space and PDE Methods in Computer Vision, volume 3459
of Lecture Notes in Computer Science, pages 431–439. Springer, Berlin,
2005.

[41] I. Kopilovic and T. Szirányi. Artifact reduction with diffusion prepro-
cessing for image compression. Optical Engineering, 44(2):1–14, Febru-
ary 2005.

[42] H. Köstler, M. Stürmer, C. Freundl, and U. Rüde. PDE based video
compression in real time. Technical Report 07-11, Lehrstuhl für Infor-
matik 10, Univ. Erlangen–Nürnberg, Germany, 2007.

[43] M. Kunt, A. Ikonomopoulos, and M. Kocher. Second-generation image-
coding techniques. Proceedings of the IEEE, 73(4):549–574, April 1985.

[44] T. Lehmann, C. Gönner, and K. Spitzer. Survey: Interpolation methods
in medical image processing. IEEE Transactions on Medical Imaging,
18(11):1049–1075, November 1999.

[45] M. Lillholm, M. Nielsen, and L. D. Griffin. Feature-based image analysis.
International Journal of Computer Vision, 52(2/3):73–95, 2003.

[46] D. Liu, X. Sun, F. Wu, S. Li, and Y.-Q. Zhang. Image compression
with edge-based inpainting. IEEE Transactions on Circuits, Systems
and Video Technology, 17(10):1273–1286, October 2007.

28

[47] F. Malgouyres and F. Guichard. Edge direction preserving image zoom-
ing: A mathematical and numerical analysis. SIAM Journal on Numer-
ical Analysis, 39(1):1–37, 2001.

[48] S. Mallat and S. Zhong. Characterisation of signals from multiscale
edges. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 14:720–732, 1992.

[49] R. March. Computation of stereo disparity using regularization. Pattern
Recognition Letters, 8:181–187, October 1988.

[50] S. Masnou and J.-M. Morel. Level lines based disocclusion. In Proc. 1998
IEEE International Conference on Image Processing, volume 3, pages
259–263, Chicago, IL, October 1998.

[51] E. Meijering. A chronology of interpolation: From ancient astron-
omy to modern signal and image processing. Proceedings of the IEEE,
90(3):319–342, March 2002.

[52] J. Modersitzki. Numerical Methods for Image Registration. Oxford Uni-
versity Press, Oxford, 2004.

[53] P. Mrázek. Nonlinear Diffusion for Image Filtering and Monotonicity
Enhancement. PhD thesis, Czech Technical University, Prague, Czech
Republic, June 2001.

[54] H.-H. Nagel and W. Enkelmann. An investigation of smoothness con-
straints for the estimation of displacement vector fields from image se-
quences. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 8:565–593, 1986.

[55] G. M. Nielson and J. Tvedt. Comparing methods of interpolation for
scattered volumetric data. In D. F. Rogers and R. A. Earnshaw, editors,
State of the Art in Computer Graphics: Aspects of Visualization, pages
67–86. Springer, New York, 1994.

[56] W. B. Pennebaker and J. L. Mitchell. JPEG: Still Image Data Com-
pression Standard. Springer, New York, 1992.

[57] P. Perona and J. Malik. Scale space and edge detection using anisotropic
diffusion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12:629–639, 1990.

29

[58] S. D. Rane, G. Sapiro, and M. Bertalmio. Structure and texture filling-
in of missing image blocks in wireless transmission and compression
applications. IEEE Transactions on Image Processing, 12(3):296–302,
March 2003.

[59] J. Rissanen and G. G. Langdon Jr. Arithmetic coding. IBM Journal of
Research and Development, 23(2):149–162, 1979.

[60] A. Roussos and P. Maragos. Vector-valued image interpolation by an
anisotropic diffusion-projection PDE. In F. Sgallari, F. Murli, and
N. Paragios, editors, Scale Space and Variational Methods in Computer
Vision, volume 4485 of Lecture Notes in Computer Science, pages 104–
115. Springer, Berlin, 2007.

[61] A. Solé, V. Caselles, G. Sapiro, and F. Arandiga. Morse description
and geometric encoding of digital elevation maps. IEEE Transactions
on Image Processing, 13(9):1245–1262, September 2004.

[62] P. Strobach. Quadtree-structured recursive plane decomposition coding
of images. IEEE Transactions on Signal Processing, 39(6):1380–1397,
June 1991.

[63] G. J. Sullivan and R. J. Baker. Efficient quadtree coding of images
and video. IEEE Transactions on Image Processing, 3(3):327–331, May
1994.

[64] D. S. Taubman and M. W. Marcellin, editors. JPEG 2000: Image Com-
pression Fundamentals, Standards and Practice. Kluwer, Boston, 2002.

[65] D. Tschumperlé and R. Deriche. Vector-valued image regularization
with PDEs: A common framework for different applications. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(4):506–
516, April 2005.

[66] H. Tsuji, T. Sakatani, Y. Yashima, and N. Kobayashi. A nonlinear
spatio-temporal diffusion and its application to prefiltering in MPEG-4
video coding. In Proc. 2002 IEEE International Conference on Image
Processing, volume 1, pages 85–88, Rochester, NY, September 2002.

[67] J. Weickert. Theoretical foundations of anisotropic diffusion in image
processing. Computing Supplement, 11:221–236, 1996.

[68] J. Weickert. Anisotropic Diffusion in Image Processing. Teubner,
Stuttgart, 1998.

30

[69] J. Weickert and M. Welk. Tensor field interpolation with PDEs. In
J. Weickert and H. Hagen, editors, Visualization and Processing of Ten-
sor Fields, pages 315–325. Springer, Berlin, 2006.

[70] Z. Xie, W. R. Franklin, B. Cutler, M. A. Andrade, M. Inanc, and D. M.
Tracy. Surface compression using over-determined Laplacian approxi-
mation. In F. T. Luk, editor, Advanced Signal Processing Algorithms,
Architectures, and Implementations XVII, volume 5266 of Proceedings
of SPIE. SPIE Press, Bellingham, 2007.

[71] Z. W. Xiong, X. Y. Sun, F. Wu, and S. P. Li. Image coding with
parameter-assistant inpainting. In Proc. 2007 IEEE International Con-
ference on Image Processing, volume 2, pages 369–372, San Antonio,
TX, September 2007.

[72] S. Yang and Y.-H. Hu. Coding artifact removal using biased anisotropic
diffusion. In Proc. 1997 IEEE International Conference on Image Pro-
cessing, volume 2, pages 346–349, Santa Barbara, CA, October 1997.

[73] S. Yao, W. Lin, Z. Lu, E. P. Ong, and X. Yang. Adaptive nonlinear
diffusion processes for ringing artifacts removal on JPEG 2000 images.
In Proc. 2004 IEEE International Conference on Multimedia and Expo,
pages 691–694, Taipei, Taiwan, June 2004.

[74] N. Yokoya. Surface reconstruction directly from binocular stereo im-
ages by multiscale-multistage regularization. In Proc. Eleventh Inter-
national Conference on Pattern Recognition, volume 1, pages 642–646,
The Hague, The Netherlands, August 1992.

[75] Y. Zeevi and D. Rotem. Image reconstruction from zero-crossings. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 34:1269–1277,
1986.

[76] H. Zimmer. PDE-based image compression using corner informa-
tion. Master’s thesis, Dept. of Computer Science, Saarland University,
Saarbrücken, Germany, 2007.

31

