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Abstract

In this note, it is proved that multiplier algebras of analytic repro-
ducing kernel Hilbert spaces which are compatible with the action of
the torus group possess Kraus’ completely contractive approximation
property (CCAP) and, consequently, have the Property Sσ. Our re-
sults apply in particular to the usual reproducing kernel Hilbert spaces
on bounded symmetric domains.
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1 Introduction

Since the pioneering work of Grothendieck many different versions of approxi-
mation properties for Banach and operator spaces have been considered. The
common ground of these properties is the question whether or not there ex-
ists, over a given Banach or operator space X, a net of finite rank operators
Vi, possibly bounded in norm or cb norm, such that limi Vi(x) = x holds in
a prescribed topology for all x ∈ X.
In this note, we shall be concerned with the so-called σ-weak completely
contractive approximation property (CCAP) as introduced by J. Kraus in
[10]: A σ-weakly closed subspace S of B(G,H) (G,H Hilbert spaces) is said
to have the CCAP if there exists a net (Vi)i of completely contractive σ-
weakly continuous finite-rank operators on S such that limi Vi(S) = S holds
σ-weakly for all S ∈ S.
In [10] it is shown that the dual algebra generated by an injective weighted
shift has the CCAP. In particular this means that H∞(D), identified with
the multiplier algebra of the Hardy space H2(D), has the CCAP. It is the
main result of this note to prove, more generally, that multiplier spaces of
holomorphic reproducing kernel Hilbert spaces have the CCAP whenever the
underlying reproducing kernel Hilbert spaces are circular. More precisely,
let D ⊂ Cd be a circular domain (that is, eitD ⊂ D holds for all t ∈ R)
containing the origin. Then a reproducing kernel Hilbert space H ⊂ O(D)
is called circular if it contains the constant functions and if the reproducing
kernel KH of H satisfies KH(eitz, eitw) = KH(z, w) for all z, w ∈ D and
t ∈ R. This class of spaces includes the usual reproducing kernel spaces on
bounded symmetric domains (see for instance [7] or [1]), which attracted a
lot of attention in recent time. In particular, the Hardy and Bergman space
over the d-dimensional unit ball, and also the Arveson-Drury space (cf. [3]
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for details) are circular in the above sense. The key step in the proof of our
main result (Theorem 3.3) is the observation that every multiplier between
circular reproducing kernel Hilbert spaces can be approximated pointwise by
a sequence of polynomials which is bounded in multiplier norm.
As an immediate consequence, multiplier algebras of circular reproducing ker-
nel Hilbert spaces have the CCAP, and therefore have Kraus’ Property Sσ
(cf. [9] and [10]). This can be used to prove a tensor product formula (Corol-
lary 3.4) which generalizes the well-known equality H∞(D, T ) = H∞(D)⊗T ,
where H∞(D, T ) is the space of all bounded holomorphic functions on D with
values in a σ-weakly closed subspace T of B(D, E), and H∞(D)⊗T denotes
the normal spatial tensor product, that is, the σ-weak closure of H∞(D)⊗T

in B(H2(D)⊗D, H2(D)⊗E). A generalization of this formula in the setting
of strictly pseudoconvex domains can be found in the recent paper [6].

2 Reproducing kernel Hilbert spaces

In this preliminary section, we are going to recapitulate some basic facts
about reproducing kernel Hilbert spaces (see [2] for further reference). A
Hilbert space H of functions on a set X with values in a Hilbert space E is
called a reproducing kernel Hilbert space if the point evaluations δz : H →
E , f 7→ f(z), are continuous for all z ∈ X. Equivalently, there exists a
unique function KH : X × X → B(E) (the reproducing kernel of H) with
the property that the functions KH(·, z)x : X → E belong to H and that
〈f,KH(·, z)x〉 = 〈f(z), x〉 holds for all f ∈ H, z ∈ X and x ∈ E . Moreover,
it is well known that KH is a positive definite B(E)-valued function and
that conversely every positive definite function is the reproducing kernel of a
uniquely determined reproducing kernel Hilbert space. Hence it makes sense
to define, for a given scalar reproducing kernel Hilbert space H ⊂ CX and a
Hilbert space E , the so-called inflation HE as the reproducing kernel Hilbert
space associated with the positive definite function KH · 1E . It is not hard
to see that HE coincides with the Hilbert space tensor product H ⊗ E via
canonical identification.
Given two reproducing kernel Hilbert spaces G,H ⊂ CX and Hilbert spaces
D, E , the multiplier space M(GD,HE) is defined as the collection of all func-
tions φ : X → B(D, E) with the property that the pointwise product φ · f
belongs to HE for all f ∈ GD. Furthermore, we write MT (GD,HE) for the
space of all multipliers taking values in a prescribed subspace T of B(D, E).
As a consequence of the closed graph theorem, the multiplication operator
Mφ : GD → HE , f 7→ φ·f , associated with a multiplier φ, is continuous. This
induces a seminorm on M(GD,HE) by setting ‖φ‖M = ‖Mφ‖. This seminorm
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is a norm if we assume that G and H contain the constant functions, since
in this case the assignment φ 7→ Mφ is one-to-one. In this situation, we shall
often regard M(GD,HE) or, more generally, MT (GD,HE) as an (operator)
subspace of B(GD,HE).

Lemma 2.1. Suppose that G,H ⊂ C
X are reproducing kernel Hilbert spaces

containing the constant functions and that D, E are Hilbert spaces.

(a) A function ψ : X → B(D, E) belongs to M(GD,HE) with ‖ψ‖M ≤ 1
if and only if the function X × X → B(E) , (z, w) 7→ KH(z, w)1E −
KG(z, w)ψ(z)ψ(w)∗, is positive definite.

(b) Let T be a σ-weakly closed subspace of B(D, E). Then MT (GD,HE) is
σ-weakly closed in B(GD,HE).

(c) A bounded net (ψi)i in M(GD,HE) converges σ-weakly to ψ ∈ M(GD,HE)
if and only if (ψi(z))i converges weakly to ψ(z) for all z ∈ X.

(d) The equality M(GD,HE) = M(G,H)⊗B(D, E) holds, up to canonical
identification.

Proof. Part (a) is Corollary 3.5 in [5]. Assertion (b) is proved in [4], and
(c) is checked by a straightforward calculation. To prove (d), one first
verifies by use of (a) that for every multiplier ψ ∈ M(G,H) and every
T ∈ B(D, E), the function ψ ·T belongs to M(GD,HE) with Mψ·T = Mψ⊗T .
Then (b) yields the inclusion M(G,H)⊗B(D, E) ⊂ M(GD,HE). Conversely,
fix ψ ∈ M(GD,HE) and choose nets (Pi)i and (Qj)j of finite-rank projec-
tions approximating σ-weakly the identities on D and E , respectively. Then
again by (a), the functions ψi,j = Qj · ψ · Pi belong to M(GD,HE) with
‖ψi,j‖M ≤ ‖ψ‖M. Moreover, each ψi,j belongs to the algebraic tensor prod-
uct M(G,H) ⊗ B(D, E). In fact, for rank-one projections P = u ⊗ u and
Q = v ⊗ v, we have Qψ(z)P = 〈ψ(z)u, v〉(v ⊗ u) for all z ∈ X and by
(a), the function X → C , z 7→ 〈ψ(z)u, v〉, belongs to M(G,H). Since
limi,j ψi,j(z) = ψ(z) weakly for all z ∈ X, an application of (c) proves the
claim.

3 Main results

Throughout this section, D ⊂ Cd denotes a circular domain containing the
origin. For the reader’s convenience, we start by recapitulating some facts
about the Fejér kernels

FN : [−π, π] → [0,∞) , FN (t) =
1

N

N−1
∑

n=0

Dn(t) =
1

N

(

sin Nt
2

)2

(

sin t
2

)2 (N ≥ 1),
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where

Dn : [−π, π] → C , Dn(t) =
n

∑

ν=−n

eiνt (n ≥ 0)

is the nth-order Dirichlet kernel. It is well known (see Lemma 2.2 in [8])
that

∫ π

−π
FN(t) dt = 2π, and that (FN )N converges to zero uniformly outside

(−δ, δ), for every 0 < δ < π. The following lemma probably is well known.
Since we are unable to find an exact reference, we include a proof.

Lemma 3.1. Suppose that X is a Banach space and that u ∈ O(D,X) is a
holomorphic function. Then the functions

uN : D → X , uN(z) =
1

2π

∫ π

−π

u(eitz)FN (t) dt (1)

are polynomials (of degree at most N−1) with coefficients in X. Furthermore,

lim
N
uN(z) = u(z) (in the norm of X)

holds for all z ∈ D.

Proof. First of all, uN obviously is analytic. By the definition of the Fejér
kernel, we see that

DαuN(z) =
1

2πN

N−1
∑

n=0

n
∑

ν=−n

∫ π

−π

Dαu(eitz)ei(|α|+ν)t dt

holds for all z ∈ D and α ∈ Nd
0. By Cauchy’s Theorem, the integrals on the

right-hand side of the above expression are zero whenever |α| ≥ N . Since D
is connected, this shows that uN is a polynomial of degree at most N − 1. It
remains to prove that (uN)N converges pointwise to u. So, given z ∈ D and
ǫ > 0, we choose δ > 0 such that ‖u(eitz) − u(z)‖ < ǫ holds for all |t| < δ.
Using the remarks preceding this lemma, we obtain that

‖uN(z) − u(z)‖ ≤
1

2π

∫

|t|≤δ

‖u(eitz) − u(z)‖FN (t) dt

+
1

2π

∫

δ≤|t|≤π

‖u(eitz) − u(z)‖FN(t) dt

≤ ǫ+M sup{FN(t) ; δ ≤ |t| ≤ π}

for all N ≥ 1, where M = sup{‖u(eitz) − u(z)‖ ; |t| ≤ π}. As indicated
earlier, the sequence (FN)N converges to zero uniformly on compact subsets
of [−π, π]\{0}, which completes the proof.
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Remark 3.2. We point out that the polynomials uN in the above lemma can
be computed explicitly: If u(z) =

∑

α cαz
α is the Taylor expansion of u on a

neighbourhood of 0, then a straightforward calculation reveals that

uN(z) =
∑

|α|<N

cα
N − |α|

N
zα

holds for all z ∈ C and all N ≥ 1. Since we shall not make further use of
this observation, a proof is omitted.

The main result now reads as follows.

Theorem 3.3. Suppose that G,H ⊂ O(D) are circular reproducing kernel
Hilbert spaces, that D, E are Hilbert spaces, and that T is a norm closed
subspace of B(D, E). Then there exists a sequence of complete contractions
VN on MT (GD,HE) such that for every φ ∈ MT (GD,HE), VNφ is a polyno-
mial of degree at most N − 1 with coefficients in T for all N , and such that
limN(VNφ)(z) = φ(z) holds for all z ∈ D in the norm topology of B(D, E).
If T is σ-weakly closed in B(D, E), then limN VNφ = φ holds σ-weakly for all
φ ∈ MT (GD,HE). If in addition D and E are separable, then the mappings
VN are σ-weakly continuous.

Proof. For φ ∈ MT (GD,HE), we write φt : D → B(D, E) , φt(z) = φ(eitz).
By Lemma 3.1, the functions

φN : D → B(D, E) , φN(z) =
1

2π

∫ π

−π

φt(z)FN (t) dt (N ≥ 1)

are polynomials of degree at most N − 1 with coefficients in T , and the
sequence (φN)N approximates φ pointwise in the norm topology of B(D, E).
We claim that the functions φN are multipliers with ‖φN‖M ≤ ‖φ‖M. In
fact, Lemma 2.1(a) and the circular symmetry of KG and KH imply that the
functions φt belong to MT (GD,HE) with ‖φt‖M ≤ ‖φ‖M. So the mapping
R → B(GD,HE) , t 7→Mφt

, is well defined and moreover weakly continuous,
since the functions of the form KH(·, z)x form a total subset of HE and since
the family {Mφt

, t ∈ R} is bounded. Thus it makes sense to define operators

AN =
1

2π

∫ π

−π

Mφt
FN(t) dt (N ≥ 1),

as weak integrals. They obviously satisfy

‖AN‖ ≤
1

2π

∫ π

−π

‖Mφt
‖FN(t) dt ≤

1

2π
‖φ‖M

∫ π

−π

FN(t) dt = ‖φ‖M.
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Furthermore,

〈(ANf)(z), x〉 = 〈ANf,KH(·, z)x〉 =
1

2π

∫ π

−π

〈Mφt
f,KH(·, z)x〉FN (t) dt

=
1

2π

∫ π

−π

〈φt(z)f(z), x〉FN(t) dt = 〈φN(z)f(z), x〉

holds for all f ∈ GD, z ∈ D and x ∈ E . This shows that φN ∈ MT (GD,HE)
and that AN = MφN

holds for all N ≥ 1. It remains to show that the
contractive operators

VN : MT (GD,HE) → MT (GD,HE) , φ 7→ φN (N ≥ 1)

actually are complete contractions. To see this, let us write VN = VN [D, E ],
and observe that the kth amplification of VN [D, E ] coincides with the map-
ping VN [Dk, Ek], which of course is contractive by what we have shown so
far.
Now suppose that T is σ-weakly closed in B(D, E). Then by Lemma 2.1(b),
the space MT (GD,HE) is σ-weakly closed in B(GD,HE). The assertion that
(VNφ)N converges σ-weakly towards φ for every φ ∈ MT (GD,HE) follows
immediately from Lemma 2.1(c). If in addition D and E are separable Hilbert
spaces, then also GD and HD are separable Hilbert spaces, and MT (GD,HE)
is the dual of a separable Banach space. By the Krein-Smulian theorem, the
σ-weak continuity of the operators VN can be proved by showing that every
VN is sequentially σ-weakly continuous on bounded sets. So suppose that
(φk)k is a bounded sequence in MT (GD,HE) converging σ-weakly to some
φ ∈ MT (GD,HE). By Lemma 2.1(c), this means exactly that the sequence
(φk(z))k converges weakly to φ(z) for all z ∈ D. Fix z ∈ D and x ∈ D,
y ∈ E . From

‖φk(e
itz)‖ ≤ ‖φk‖M‖1‖GKH(eitz, eitz)

1

2 = ‖φk‖M‖1‖GKH(z, z)
1

2

(t ∈ R, k ∈ N) we deduce that

lim
k

〈(VNφk)(z)x, y〉 = lim
k

∫ π

−π

〈φk(e
itz)x, y〉FN(t) dt

=

∫ π

−π

〈φ(eitz)x, y〉FN(t) dt = 〈(VNφ)(z)x, y〉

holds. By Lemma 2.1(c) we conclude that limk VNφk = VNφ σ-weakly, thus
proving the claimed σ-weak continuity of VN .
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Theorem 3.3 shows in particular that, for circular reproducing kernel Hilbert
spaces G and H, the space M(G,H) ∩ C[z] is sequentially σ-weakly dense
in M(G,H). If M(G,H) contains the coordinate functions, then C[z] is
sequentially σ-weakly dense in M(G,H).
As a second consequence, Theorem 3.3 implies that M(G,H) has Kraus’
Property Sσ. Recall that a σ-weakly closed subspace S of B(G,H) is said to
have Property Sσ if, for all Hilbert spaces D,E and all σ-weakly closed sub-
spaces T of B(D,E), the Fubini product F (S, T ) coincides with the normal
spatial tensor product S⊗T . The Fubini product F (S, T ) can be defined as

F (S, T ) = {X ∈ S⊗B(D,E) ; Rλ(X) ∈ T for all λ ∈ S∗}

(cf. [10], p.119). Here, for λ ∈ S∗ (the space of all σ-weakly continuous
functionals on S), the right slice mapping Rλ : S⊗B(D,E) → B(D,E) is
the unique σ-weakly continuous operator satisfying Rλ(S ⊗ T ) = λ(S)T for
all S ∈ S and T ∈ B(D,E).

Corollary 3.4. For circular reproducing kernel Hilbert spaces G,H ⊂ O(D),
the dual space M(G,H) has the completely contractive σ-weak approximation
property (CCAP). In particular, M(G,H) has Property Sσ. For every σ-
weakly closed subspace T of B(D, E), the tensor product formula

M(G,H)⊗T = MT (GD,HE)

holds.

Proof. It is clear from Theorem 3.3 that M(GD,HE) has the CCAP. That
the CCAP implies Property Sσ is Theorem 2.10 in [10]. Furthermore, the
inclusion M(G,H)⊗T ⊂ MT (GD,HE) is obvious, since the right-hand side
is σ-weakly closed. Suppose conversely that φ ∈ MT (GD,HE). Then, by
Lemma 2.1(d), φ ∈ M(G,H)⊗B(D, E), and Rλz

(φ) = φ(z) ∈ T holds for
all z ∈ D, where λz ∈ M(G,H)∗ is the point evaluation at z ∈ D. By a
simple Hahn-Banach argument, the set of all λz is norm total in M(G,H)∗,
which shows that Rλ(φ) ∈ T for all λ ∈ M(G,H)∗. This means (cf. [10],
p.119) that φ ∈ F (M(G,H), T ). Since M(G,H) has Property Sσ, the claim
is proved.

Finally, we point out that the equality M(G,H)⊗T = MT (GD,HE) can be
deduced directly from Theorem 3.3 if we suppose in addition that all poly-
nomials belong to M(G,H). In fact, in this case, the polynomials VNφ asso-
ciated with a multiplier φ ∈ MT (GD,HE) obviously belong to the algebraic
tensor product M(G,H) ⊗ T .
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