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Abstract

We introduce integrands f: R*Y — R of (s, u, ¢)-type, which are,
roughly speaking, of lower (upper) growth rate s > 1 (¢ > 1) satis-
fying in addition D2f(Z) > A(1 +|Z[2) */* for some y € R. Then,
ifg<2—p+ s%, we prove partial C'-regularity of local minimiz-
ers u € W11 ! OC(Q,RN ) by the way including integrands f being con-
trolled by some N—function and also integrands of anisotropic power
growth. Moreover, we extend the known results up to a certain limit
and present examples which are not covered by the standard theory.

AMS Subject Classification: 49N60, 49N99, 35J45
Key words: regularity, minimizers, convexity, non-standard growth

1 Introduction

In this paper we study the problem of partial C'-regularity for local mini-

mizers u € W}, (Q, RY) of strictly convex variational integrals

J(u) = /Qf(Du)d:c (1.1)

under rather general and also non-standard growth conditions. Here 2 is
some domain in Euclidean space R, n > 2, and we assume that the integrand
f: RN — [0,00) is a function of class C? whose second derivative D?f(Z)
has to satisfy certain coercivity conditions to be specified below. Thus, we
do not touch the quasiconvex case (compare e. g. [EV], [FH], [EG1], [AF1],
[AF2], [CFM]) and before presenting our results, we briefly summarize the
conditions under which partial regularity is available in the framework of
strong convexity. Roughly speaking, we can consider three different cases:

A. power growth
For some number m > 1 and with constants A, A > 0 the integrand f satisfies

Ajz™-1) < f(2) < A(|Z|"+1) forall Ze R, (1.2)

in particular, f has the same growth rate from above and from below. Then,
if also D?f(Z) > 0 holds for any matrix Z, Anzellotti and Giaquinta proved
in [AG] that for any local minimizer u € W, (Q,RY) of (1.1) there is an
open set €y such that | ~ (g = 0, i. e. the singular set has measure zero,
and u € CH*(Qy, RY). We emphasize that the paper [AG] also includes the
case of linear growth (m = 1) with corresponding local minimizers in the



space BV,.(Q, RY). Moreover, the reader will find there further comments
on earlier results obtained under condition (1.2).

B. growth conditions involving N—functions

The model f(Z) = |Z|In(1 + |Z|) serves as a typical example for integrands
f not satisfying (1.2) for any power m > 1. Generally speaking, the quan-
tity |Z|™ occuring in (1.2) is now replaced by A(|Z|) for some arbitrary
N-function A: [0,00) — [0, 00) satisfying a Ay—condition. If we add an ap-
propriate ellipticity and growth condition on D?f(Z), then in [FO] partial
regularity was shown to hold up to a certain dimension n. The particu-
lar class of integrands f with logarithmic structure (i. e. f is C?—close to
|Z|In(1 + |Z|)) was studied first in [F'S] with the result that minimizers are
partially C! provided that n < 4. Later on Esposito and Mingione [EM2]
removed the restriction on n, moreover, Mingione and Siepe [MS] proved for
f(Z) =1|Z|In(1 + |Z|) in fact that the singular set is empty which of course
can not be expected in the general case. We would like to remark that some
extensions of the results obtained in [MS] can be found in [FM].

C. anisotropic power growth

was introduced by Marcellini [M1]-[M4] as a natural extension of (1.2) where
now f is allowed to have different growth rates from above and from below,
precisely: with numbers 1 < p < ¢ we have

AM|zP-1) < f(Z) < A(|Z]7+1) forall ZeR™ (1.3)
(plus corresponding conditions involving D?f(Z), for example D*f(Z) >
A1+ |Z|%)P=2/2) Condition (1.3) is motivated by the integral (n = 2)

J(u) = /Q{(l +10wu)® + (1+ |82u\2)%} dz

where the derivatives occur with different powers. It should be noted that B.
is not a subcase of C. For formal reasons this should be obvious by considering
energies of logarithmic type. On the other hand, partial regularity in the
anisotropic case has been studied by Acerbi and Fusco [AF4] and later by
Passarelli Di Napoli and Siepe [PS] under quite restrictive assumptions: in
[PS] they impose the condition

2 < p<gq< min{p+1, pnl} (1.4)
n_

thus excluding any subquadratic growth.



The purpose of our paper is twofold: first, we would like to give a unified
approach including all the different cases. Secondly, we present certain im-
provements by extending for example the results of [FO] (see Remark 5.)
below) and by constructing integrands to which the results mentioned in A.
— C. do not apply but which can be handled with the help of our techniques.
We consider integrands f of (s, i, ¢)—growth which are defined as follows: let
F: [0,00) — [0,00) denote a continuous function such that for some s > 1
we have

lim —~= = oo, F(t) > c¢ot® for large values of ¢. (1.5)

The integrand f is a non-negative C?-function such that for all Z, Y € R*V

aF(Z) < (2); R
A1+1ZB)FIYE < DP2)(Y) < AQ+]2P)7 VP (1)

Here p € R, ¢ > 1 and ¢, ¢1, A, A denote positive constants. In addition,
we require the (s, u, g)—condition, i. e.

2
qg < 2—pu+s—. (1.8)
n
Note that on account of ¢ > 1 (1.8) gives the upper bound
2
po< 14+ —. (1.9)
n

In the case that f is C? close to |Z|In(1 + |Z|) we can take s = 1, yu = 1,
q=1+¢ (for any ¢ > 0) and F(t) = tIn(1 +¢), hence (1.8) holds. Now our
main result reads as follows:

THEOREM 1.1 Let conditions (1.5)-(1.8) hold and let u € W}, (Q,RY)
denote a local minimizer of (1.1), i. e. f(Du) € L,,.(Q) and

loc

/ f(Du)dx < / f(Dv)dz
spt(u—v) spt(u—v)

for any v € Wi, (QRY) such that spt(u —v) € Q. Then there is an open

subset Qo of Q of full measure, i. e. |Q ~ Qo| = 0, such that u € C**(Q, RY)
forany 0 < a < 1.

Let us briefly comment on our conditions:



1.) The (s, p,q)—condition was introduced in [BFM]| where full regularity
(i. e. Qp = Q) was established for the scalar case under exactly the same
assumptions as stated here. The key ingredient in [BFM] is a local gradient
bound in L* which follows via Moser iteration technique or from DeGiorgi
type arguments. In the vectorial setting N > 1 such a bound can not be
expected to hold true, thus we could not benefit too much from the arguments
in [BFM]. However, as it is shown in [BFM] for the scalar case, it is easy to
check that the result of Theorem 1.1 continues to hold if we replace (1.8) by
the weaker condition (note that s < g on account of 2.))

n

2 — 1.8*
¢ < Qo (1.8)
provided we add the balancing condition (introduced in [FO))

D2(2)|1 2P < const (§(Z) +1). (B)

Note that (1.8*) makes sense only in the case that n > 3 and then (1.8%)
clearly implies (1.9). For the twodimensional case we have to replace (1.8%)
by the requirement that p < 2. We leave the details of the proof of this
variant of Theorem 1.1 to the reader.

2.) (1.5) together with the second inequality in (1.7) implies (see [AF3],
Lemma 2.1, if ¢ < 2) the bound s < g.

3.) In the case u > 1 we have 2 — pu < s. If u < 0 we clearly may assume
that 2 — pu < s since 2 — p is a lower bound for the growth of f, hence we can
replace s by max{s,2 — p}. For 0 < p < 1 this inequality is also reasonable:
from [AF3], Lemma 2.1, and the first inequality in (1.7) we get again that
2 — p is a lower growth rate for f. Comparing this to (1.5) we may directly
assume that 2 — o < s. In particular we have by 2.) that 2 — p < g.

4.) Suppose we are given numbers 1 < p < ¢ such that for all Z € R*
a(lZzP-1) < f(Z2) < b(z2]°+1),
q—2

A1+12D)T < D) < A(1+|2P)

Then we may let =2 — p, s = p, and we deduce partial regularity if
n+2

q9 <p



which is much weaker than (1.4). (Note: [PS] do not need an upper bound
for D?f(Z).)

5.) In [FO] partial regularity was established under the assumptions (1.5)-
(1.7), ¢ < 2, u < 4/n together with condition (B) (see Remark 1.)). Clearly
g <2and p < 4/n imply (1.8*) so that we have included the result of [FO]
on account of the first remark. But, what is even more important, Theorem
1.1 does not need any balancing condition of the form (B), the regularity of
local minimizers follows from p < 2 — ¢ + s2/n which for ¢ close to 1 and
large values of n is a much weaker hypothesis than p < 4/n.

6.) Let us now sketch an example of an integrand of (s, u, ¢)—growth which
is not of type A., B. or C. As shown in [BFM], Section 3, there exists for
each k € N and ¢ > 1 a function ®: R¥ — [0, 00) such that

®¥(n) > aln|' for large values of n € R*, (1.10)
t—2
and 0 < D*®f(n)(r,7) < b(1+nf) >, n, 7R, (1.11)

hold with positive constants a, b. Roughly speaking, the function ®F is con-
structed by first considering (14 |Z|?)"/2, then redefining equidistant parts to
be linear and finally smoothing the result of the first two steps. By definition
of ®F the exponents in (1.10) and (1.11) can not be improved, moreover, due
to the degeneracy of D?®F, the lower bound of (1.11) is the best possible.
Next consider numbers s, i, g such that 1 < s < g and 2 — y < s. Again,
according to [BFM], Section 3, we can construct a function ®: R"Y — [0, 00)
satisfying

D*®(Z)(r,7) > c(1+]2]) * 7.

For instance, we may choose ®(Z) = ¢(|Z|) were ¢ is defined via

o(r) = /OT/OS(1+\t|2)_%dtds, reRS.

In the case p > 1 @ is of lower growth than any power |Z|'*? ¢ > 0, for
p <1 weget ®(Z) <d(1+|Z|?)* /2 and it is not possible to improve the
exponents. We then define (z = (2%,...2%)1<i<n € R™Y)

F(Z) = ®(2)+ @V (z1) + B (2, ..., 7).

Then (1.5)—(1.7) hold and if we also impose (1.8) then regularity of local
minimizers follows which can not be deduced from the results stated in A.—C.



Our paper is organized as follows: in Section 2 we introduce a suitable regu-
larization v. of our local minimizer u which converges weakly and in energy
to u on compact subsets. Section 3 investigates higher weak differentiability
of v.. As a consequence we obtain uniform local estimates in L?¢ for Duw,
which allow us to give local apriori bounds for ||Du/||z«. Moreover, we prove
certain Caccioppoli—type inequalities. Finally, Section 4 contains the proof
of Theorem 1.1 via blow-up arguments by considering the cases ¢ > 2 and
1 < ¢ < 2 more or less separately.

2 Approximation and some preliminary re-
sults

Let € denote a sequence of positive real numbers converging to zero, where
we do not care about relabelling if necessary. Then we define u, as the -
mollification of u through ¢., where {(;};~0 is a family of smooth mollifiers.
Moreover, let us fix R > 0 and 2o € Q. Letting B, := B,(zo) we assume
Byg C {z € Q :dist(z,00) > ¢}. For § € (0,1] we define

f5(2) = f(Z)+6(1+|2))*
and denote by v, ;5 the unique solution of the variational problem

Jsw) == [ f(Dw)dz ~ min in u+ W2 (Bop, RY) .

Bar
LEMMA 2.1 Ife and  are connected via
1

0 = O(e) =
& e D,

and if ve = v 5e), fe = [5(), then we have as € — 0:

(2.) v — u in Wi (B, RY),
@) o) / (1+[Dv.?)?dz — 0,
Bsr
(441.) f(Dv.)dx — f(Du) dx ,
Bagr Bar
(1v.) fe(Dv.)dx — f(Du) dx .
Bsr Brr

Proof of Lemma 2.1. We argue as in [BFM], conclusion of Theorem 1.1,
i. e. we use the minimality of v. as well as Jensen’s inequality to get



/BQRF(|D1)5|)dx < /Bmf(Dvg)dx < /B?ng(Due)dx o)

< [ jowds+o).
Bsr
i. e. we may suppose that
v. —: v weakly in W) (B, R").

Passing to the limit ¢ — 0, lower semicontinuity implies

f(Dv)dz < lirgn_)iglf f(Dv.)dx < f(Du) dx .

Bar Bsgr Bagr

Finally, the minimality of u together with strict convexity of f (see (1.7))
ensure that v = u, thus, with (2.1) the lemma is proved. [

In the following ¢ is always assumed to be chosen according to Lemma 2.1.
To finish this section, some well known properties of v, are summarized. Part
a.) of the following lemma is proved in [AF3|, Proposition 2.4 and Lemma
2.5, for the second part we refer the reader to [GM], especially formula (3.3),
and to [CA] (compare Theorem 1.1).

LEMMA 2.2 q.) In the case q < 2 the approzimative solution satisfies:

(i) ve € W2io(Ber, RY), (ii.) Df.(Dv.) € Wy yoo(Bar, R*™Y),
-2

(i) (14 |Dv.?) T Dv. € Whjoo(Bor, ™),

(iv.) | D*v: Lo <rr]| € Lipe(Bog)  for all M > 0.

b.) In the case ¢ > 2 we have

(i) ve € Wiioe(Bar, RY) (i) Dfe(Dve) € Wy 1) soe(Bar, R*Y)

(le) (1 + |DUE|2) : € WQI,ZOC(BZR) ’

q—

(i) (1+|Dv.?)'T Dv. € Wiy (Bon, RV .



3 Apriori L%—estimates and Caccioppoli—type
inequalities

In this section we are going to prove the two main ingredients which will
enable us to perform the blow—up procedure in Section 4. The starting point
is the following Caccioppoli-type inequality for the approximative solutions.

LEMMA 3.1 There is a real number ¢ > 0 such that for all n € Cy(Bag),
0<n<1, and for all Q € R*N

/ 772 D2f5(Dv5) (asDUsaasDUg) dz
Bagr

< | Dyl / |D*f.(Dw.)| | Dv. — QP da,
BarNsptDn

where summation with respect to s = 1,...,n 1s always assumed in the fol-
lowing. In particular, for all Q € R*N

/ n* (1+ |Dvg|2)7% |D?v, | dx
Bsr

< ¢||Dnll, / D £.(Dv.)| | Do, — Q|2 d.
BarNsptDn

Proof of Lemma 3.1. First of all we recall that v. solves the regularized
problem, i. e.

Df.(Dv.): Dpdz = 0 forall ¢ €W, (B, R"). (3.1)
Bar
Next, denote by e, € R® the unit coordinate vector in x;—direction and let
for a function g on €2
g(w + hes) B g(ﬂ?)

Apg(z) = Ajg(z) = A , heR,

denote the difference quotient of ¢ at x in the direction e;. Then, given
QeRY, p=A_1(n*Ap (v — Qx)), n € C(Bag), is admissible in (3.1)
and by a “partial integration” we obtain

[ P Su(PLDe)) s Dweda
o (3.2)

_ _z/B nAw(Dfo(Dv.)) : D ® Ap(v, — Qu) da.



Consider now the case ¢ > 2: by Lemma 2.2 and by (1.8) Dwv, is known to be
of class L] . for some r > q and if F}, denotes the integrand on the right—hand

loc

side of (3.2), then the existence of a real number ¢(Dn), independent of h,
follows such that

By < c{‘Ah(Dfs(Dvg))V1 + |Ahvg|l2} for some I; < Ll’ g<ly<r,

thus, equiintegrability of F}, in the sense of Vitali’'s convergence theorem is
ensured by Lemma 2.2, b.), (ii.), and passing to the limit A — 0 the right—
hand side of (3.2) tends to

9 /B n8,(Df.(Dv.)) : Dn® (B0, — Q) dz € (—o0,+00).  (3.3)
2R
For the left-hand side of (3.2) we observe
Ap(Df.(Dv.)) = /01 D?f.(Dv, + thApDv,) (AyDu,, ) dt
and get using (3.3), Fatou’s lemma and Young’s inequality
/B n* D*f.(Dv,) (asts, asts) dx
2R

1
< / n* lim inf/ D%f. (DUg + thAhDvg) (AhDvg, AhDUg) dt dx
Bog h—0 0

1
< —/ 772D2f5(DU€)(8sDU€,8stE) dx
2 Bsr

selDals [ D200 1Du, - QP da,
BogrNsptDn

i. e. the lemma is proved for ¢ > 2. If ¢ < 2 then we modify the truncation
arguments given in [EM1]. To this purpose fix M > 1 and let for ¢ > 0

v = {0 12Mn o WOISaM,

Given n, @ as above, then, by Lemma 2.2, a.), (iv.), and by [EM1], Lemma
1, o = A_p(n?0s(ve — Qz)1p(|Dv,|)) is seen to be admissible, hence

/ n*1 Ay (D f.(Dv.)) : DOsv, dx
Bagr
= -2 /B nt Ap (D fe(Dve)) : Dn ® 95(ve — Q) d (3.4)

-2 / n? Ah(DfE(Dvs)) : DY ® 05(v: — Q) dx .
Bsr



By the definition of ¢ and again on account of Lemma 2.2, a.), (iv.), both
integrals on the right-hand side of (3.4) can be written as

/ Ap(Df.(Dv,)) : &(z) dz
sptn (3.5)

< / |An(DLD))[* e+ o)
spim

for a suitable function £ of class L?. Since Lemma 2.2, a.), (ii.), shows
0O, (D fE(D’US)) to be of class L2 . strong convergence of difference quotients

locy

(see [MO], Theorem 3.6.8 (b)) implies passing to the limit A — 0

|Ah (DfE(Dvs)) |2 — ‘63 (ng (Dvs)) |2 almost everywhere ,

/t |Aw(Df(Dv.)) | dz — |0,(Df.(Dv.))|" da .

sptn

(3.6)

With (3.5) and (3.6) the variant of the dominated convergence theorem,
given for example in [EG2], Theorem 4, p. 21, is applicable (note that almost
everywhere convergence in (3.6) is needed for a proof of this variant). Thus,
we may pass to the limit 4~ — 0 on the right-hand side of (3.4). The left-hand
side is handled as in the case ¢ > 2 and summarizing the results we arrive at
(again after applying Young’s inequality to the bilinear form D?f.(Duv.))

/ n* D*f.(Dwv,) (astg, OSDUE) dx
Bagr

1

< 5/ nzwDQfE(Dvs)(asts,asDUE) dx
Bagr

+ ellDnlP / D £.(Dv.)| | Do — QP2 da
sptDn
* C/ | D f.(Dve) | | D*:]? 1w o< Do <y dit
sptDn

Here we use the fact that |[Dv, — Q| < 2M on [M/2 < |Dv.| < M] for M
sufficiently large and that D (t(|Dv.|)) < ¢|D?v.|/M. Before passing to the
limit M — oo we use Proposition 2.4 of [AF3] once again, i. e. we observe
the estimate

/(1+|Dv5|2)q2;2|p2v5|2dx < c(t,t')/ (14 [Dv.P)? da
By

By

10



being valid for all 0 < ¢ < t' < 2R. Recalling the growth of |D?f(Dwv.)| we
immediately get that

M—x

/ |D2f5(DUE)‘ ‘D2UE‘2 1[M/2§‘D115|SM] de — 0
sptDn
on account of 1y, py — 0 as M — oo and the claim of the lemma follows. B

Besides Lemma 3.1 the following technical proposition is needed to prove
uniform Li-estimates for Dv.. So let us introduce ©(t) := (1 + 2)2-#/4
t >0, and let h, := ©(|Dv,|).

PROPOSITION 3.2 With this notation h, € Wy, (Bar) and
Dh, = ©'(|Dv.|) D|Dv,|.

REMARK 3.3 If we consider for instance the case ¢ > 2, then the fact that
h. is of class Wy follows from Lemma 2.2, b.), (iii.). However, in Lemma
3.4 we need an explicit formula for the derivative.

Proof of Proposition 3.2. In order to reduce the problem to an application
of the usual chain rule for Lipschitz functions, let L > 1 be some real number
and let

1+)5, 0<t<L
Or(t) = ( o T RE = ep(lv).
L(t) { A+ID5 151 e r([vel)

As a consequence of Lemma 2.2, hZ is immediately seen to be of class W}
satisfying

Dht = O (|Dv.|) D|Dv,|. (3.7)

In addition, for 0 < r < 2R we have the estimate

/|Dh§\2dx < / O | D%, da
B, By N[|Dve|<L]

< c/ (1+|Dv5|2)_%‘D2v5‘2da:,
B,

hence, by Lemma 3.1, || DAL|| £2(B, &) is uniformly bounded with respect to
L and we may assume

Dht —: W, in L*(B,,R") as L — co.

11



On the other hand, the obvious convergence hl — h, in L*(B,) as L — o
implies W, = Dh,, thus h, € W} (B,). (3.7) also gives

Dhl — ©'(|Dv.|]) D|Dv.| almost everywhere,

hence we can identify the limit and the proposition is proved. |

As mentioned above, we now turn our attention to (uniform) higher integra-
bility of Dv,. Let us remark, that with uniform growth estimates for f, but
even without any control on the derivatives, integrability of the gradient can
be slightly improved (compare, for instance, [CF]). In the situation at hand,
Lemma 3.4 can be proved following the lines of [BFM], Lemma 2.4.

LEMMA 3.4 Assume again (1.5)-(1.8) and let x = "5 if n > 2, in the
case n = 2 let x > 5+2%9M—11' Then there are real numbers ¢, B, independent

of € such that for all r < 2R

(2—p)x

/T(1+|Dv6|2) > dr < ¢(r,R) {/Bm(l—kfs(DvE)) dx}ﬂ,

In particular, by Lemma 2.1, Dv, € Ll(zc_“)x(BZR,R"N) C L} (Bag, R™Y)
uniformly with respect to ¢, i. e.

Du € L " (Byg, R™) C LL (Bayg, R™).
Proof of Lemma 3.4. We consider the case n > 3, let a = (22(;@2? and

assume without loss of generality R < r < 3R/2. Moreover, fix 0 < p < R/2
and 1 € C§(Byipp2), n = 1 on B,, Dn < 4/p. Since h, was proved in
Proposition 3.2 to be of class W.}, we obtain using Sobolev’s inequality

2n

/(1+\Dv€\2)“dx < / (77[1+\Dv€‘2]a%2)n—2d$
Bar

=/ (nhg)%dx
Bar n
([ Ipomopar)” < efri+
Bar

n

IN

where we have set

Ty :/ \Dn?h2dr, T =/ n* |Dh.|?* dx .
Bop Bar

12



T is directly seen to satisfy

c oy 22k
v < — (1+|Dvs|) > dx,
P JByr
whereas 75 has to be handled via the representation formula for the derivative
of h. given in Proposition 3.2:

T, < c/ (1+|DU5|2)7%‘D2’U5‘2C[$.
B

r+p/2

With Lemma 3.1 (choosing Q = 0) and (1.7) we obtain
/ (1 + [Dv.]*)" da
B, N
2— q
< / (1+|Dv.?) 7 dx+/ (1+ Do) dzy
p Bsgr BT+pNB7‘

where the arguments used for the right—hand side are the same as in [BFM],
i. e.: the interpolation procedure demonstrated in [ELM] (starting with the
inequality given after (4.6) in [ELM)]) is modified using (1.5):

IDvelly < IIDvellg 1Dvell 52,

This inequality holds with 6 € (0, 1) defined according to % = g (21_;9)}(. Note
that the subsequent arguments of [ELM] require the bound (1-0)q/(2—p) <
1 which in case n > 3 is equivalent to (1.8). Now let n = 2 and define

a = x(2 — u)/2. Then we have

2x
¢
/ (1+‘D1}5|2)0¢d1' < / (nhE)QXd;L' < C(/ ‘D(nh5)|td$> )
'r Bar Bar

where ¢ € (1,2) is defined through 2x = 2¢/(2—1t). Using Hélder’s inequality

we get
X
/(1+\Dv5|2)adaﬁ < c(/ |D(77h5)|2dx> ;
” Bar

and we can proceed as before with n/(n — 2) replaced by x. Again we have
to satisfy the requirement (1 —#)q/(2 — ) < 1 which for n = 2 is equivalent
to x > s/(s+2 — pu—q). But the latter inequality follows from our choice of
X, thus Lemma 3.4 is established also in case n = 2. |

Having established higher integrability of Du, the next proposition gives some
preperations needed for the limit version of Caccioppoli’s—type inequality.

13



PROPOSITION 3.5 Let h = (1+ |Dul?)@#/%. Then

(Z) h e W21,loc(B2R) ’
(i) he — h in Wy (Bagr) as € =0,
(i3.) Dv. — Du  almost everywhere on Byg as € — 0.

Proof of Proposition 3.5. We fix 0 < r < 7 < 2R, combine Lemma 3.1
and Proposition 3.2 to obtain

||Dh6||%2(BT,R") < 0(1 + ”DUEH%Q(B,:,R’@N)) )

hence, by Lemma 3.4, h. is uniformly bounded in Wy, (Bag) and we may
assume as € — 0

h. —: h weakly in W3,10.(Bag) and almost everywhere.

The proof of h = h together with the pointwise convergences exactly follows
the lines of [FO], Lemma 4.1. [

Now we can formulate the limit version of Lemma 3.1.

LEMMA 3.6 There is a real number ¢ such that for alln € Cy(Bag), 0 <
n <1, and for all Q € R*Y

| wiohPds < el [ [D*(Dw)|Du- QP da.
Bar

BorNsptDn

Proof of Lemma 3.6. Given (), n as above, Proposition 3.5, lower semi-
continuity, Lemma 3.1 and Proposition 3.2 together imply

/ n?|Dh|*dz < liminf/ n*|Dh.|* dx
BQR e—0 B2R

< 1iminfc||Dn||§o/ |Df.(Dv.)| |Dv, — Q| dz (3.8)
e—0 BogrpNsptDn

= 1iminfc||Dn||§O/ |D? f(Dv,)| |Dv. — QP d .
e=0 BorNsptDn

Here, for the last equality, we made use of Lemma 2.1, (ii). Next, by the
pointwise convergence almost everywhere stated in Proposition 3.5, (iii.), we
have

14



|D*f(Dv.)||Dv. = QI — |D?f(Du)||Du—QJ*> a.e.as e —»0. (3.9)

Finally, by Lemma 3.4 we know that |D?f(Dv.)| |[Dv. — Q|? is uniformly

bounded in L;}}"(Byg) for some 7 > 0, hence

|D?f(Dv.)||Dv. — Q> —: 9 in L} (Beg),

loc

(3.10)
/ |D*f(Dv,)||Dv. — Q> dz  — 9 dz
Bar Bsir
as ¢ — 0. jFrom (3.9), (3.10) we clearly get ¥ = |D?f(Du)||Du — Q|?, which
together with (3.8) gives the proof of Lemma 3.6. [
4 Blow-Up

Now we fix a local minimizer u which by Lemma 3.4 is known to be of class
qu,loc(Q, RY). The final step is to prove partial regularity of u via a blow—up
procedure. As usual, the main tool is the decay estimate given in Lemma
4.1. The iteration of Lemma 4.1 leading to partial regularity is well known.
Depending on the cases ¢ > 2 and ¢ < 2 an appropriate excess function has

to be introduced: in the case ¢ > 2 we let for balls B,(z) € Br C 2

Et(z,r) := ][ |Du — (Du)w|2dy + ][ |Du — (Du) .| dy,
B, (z) B, (z)

where (g),,, denotes the mean value of the function g with respect to the ball
B.(z). In the case ¢ < 2 we define for all £ € R*, k € N,

V) = (1+e3)Te.

The properties of V' are studied for example in [CFM], in particular we refer
to Lemma 2.1 of [CFM]|. With these preliminaries we let for g < 2

E(z,r) = ][ V(Du(z)) — V((Du)a,) 2 dy,
B, (z)

a definition which makes sense since ¢/2 is the growth rate of V. In both
cases we have
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LEMMA 4.1 Fiz L > 0. Then there exists a constant C.(L) such that for
every 0 < 7 < 1/4 there is an ¢ = (L, T) satisfying: if B.(x) € Bg and if
we have

|(Du)ay| < L, E(z,r) < e(L,7),
then
E(z,7r) < C.(L)T*E(z,7).
Here and in the following F denotes — depending on ¢ — E™ or E~ respectively.

Proof of Lemma 4.1. The proof is organized in four steps, always distin-
guishing the cases ¢ > 2 and ¢ < 2. If ¢ > 2 then we mostly refer to [FO],
the case ¢ < 2 follows the lines of [CFM] and [EM2].

Step 1. (Blow—up and limit equation) To argue by contradiction, assume that
L > 0 is fixed, the corresponding constant C, (L) will be chosen later on (see
Step 4). If Lemma 4.1 is not true, then for some 0 < 7 < 1/4, there are balls
B, (z,,) @ Bg such that

|(Du)$m,,~m‘ < L, E@mrm) = X, =5 0, (4.1)

m

E(Zm, Trm) > Co.T2A2. (4.2)

Now a sequence of rescaled functions is introduced by letting

am = (Wamgms Am = (DU)sprm
1
um(z) = 3 [u(@m + Tmz) — am — Tm Am 2] if [2] < 1.
mrm

Passing to a subsequence, which is not relabeled, (4.1) implies
A, —:A in RY, (4.3)
We also observe that
Dum(2) = M [Du(@m+7Tmz) — Am] . (Umog = 0, (Dum)oy = 0,

and concentrate for the moment on the case ¢ > 2. Using (4.1) and (4.2) we
have

][|Dum|2 dz + \22 ][|Dum|qdz = N2EY (o, rm) = 1, (4.4)

Bl Bl

][ Dty — (D)o dz 4+ A2 ][ Dt — (Dt )o.»
Bl Bl

dz > C,1%. (4.5)
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With (4.4) we obtain as m — oo

Um —: G in Wy (B, R™Y),
AmDun, — 0 in L*(B;,R™) and almost everywhere, (4.7)

_2
Am Dt — 0 in LI(B,,R™) if ¢> 2. (4.8)

Considering the case ¢ < 2 we follow [CFM], Poposition 3.4, Step 1, to see

FV (D)= < en), w9)

B

hence the “q/2-growth” of V' (compare [CFM]|, Lemma 2.1, (i)) implies the
existence of a finite constant, independent of m, such that

||Dum||Lq(Bl’RnN) S C.
Thus, in the subquadratic situation (4.6)—(4.8) have to be replaced by

Um —: @ in W, (B, R™), (4.10)
AmDuym — 0 in LY(By,R™) and almost everywhere. (4.11)

In both cases the limit 4 satisfies a blow—up equation stated in

PROPOSITION 4.2 There is a constant C*, only depending on L, such
that for all ¢ € C}(B1,RY)

D?*f(A)(Da,Dp)dz = 0,
B
][|Da—(Da)T|2dz < Cc*'r2. (4.12)

B,

Proof of Proposition 4.2. The proof of the limit equation for ¢ > 2 is well
known and can be taken from [EV], p. 236. The subquadratic case again is
treated in [CFM], Step 2. Inequality (4.12) of Proposition 4.2 follows from
the theory of linear elliptic systems (compare [Gi], Chapter 3) where the
subquadratic case also involves Proposition 2.10 of [CFM]. [

Step 2. Proceeding in the proof of Lemma 4.1 we have to show the following
proposition which will imply strong convergence in the third step.
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PROPOSITION 4.3 Let ¢ > 2 and 0 < p < 1 or consider the case ¢ < 2
together with 0 < p < 1/3. Then

e
lim [ (14 |An+ A Di+ Ay, Dwy|?)” 2| Dwy?dz = 0,

m—00 Bp

A

where we have set w,, = U, — U.

REMARK 4.4 The restriction p < 1/3 in the case g < 2 is needed to apply
the Sobolev-Poincaré type inequality, Theorem 2.4 of [CFM].

Proof of Proposition 4.3. Again ¢ > 2 is the first case to consider, where
the basic ideas are given for example in [EG1]. Here we argue exactly as in
[FO], pp. 410, i. e. we use the minimality of u together with the convexity of
f, and conclude for all ¢ € C}(B;,RY), ¢ >0,

/B /Olgosz(Am + A\ D1+ sAmem)(Dwm,Dwm) (1—s)dsdz
1
_ )\m2/B O {F(Am + Am D) — f(Am + A Di2) } dz
1

- A;nl/B ¢ Df(Ap + A D) : D,y dz

1
c{/ |Dg0|2|wm|2dz+)\fn2/ |Dg0|q|wm|qdz} (4.13)

B1 B

+ A;,}/B Df(Am+)\m((1—go)Dum+<pDﬂ)>:

IN

(D @ (4 — um)) dz
-2t / oDf(Am + A D) : Dw, dz .
B1
Clearly, (4.13) is the analogue to inequality (6.6) in [FO]. As demonstrated
in [FO] we can discuss the last two integrals on the right—hand side of (4.13)

which finally bounds the left-hand side of (4.13) by the quantity ¢{I; + I +
I3} where we have

I, = / |Dg0|2\wm|2dz+)\7‘{nz/ | Do|? |wp,|Tdz m2).
B B

The limit behaviour follows from the weak convergence of u,, in Wy (B, R™V)
and from

_2
Am “wm — 0 in L(B;,RY) as m — oo. (4.14)
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In fact, the latter convergence is obtained by (4.8) and by Poincaré’s inequal-
ity which together with (w,,)o,1 = 0 implies (4.14). Further we have

I, = / ‘DmeD(Pme‘dz""\gn_Z/ | Dwin| "™ [ Dep| [wi| dz
B B

< [ 1Dwnl 1Dl | a2
B,
q—1 1

(D) </ Ag;2|Dwm|qdz> ' (/ Ag,;2|wm|wz)q
Bl Bl

and again we use (4.14) to see I, — 0 as m — oc. The third part

1
I = ‘/ / D2f (A + $ A Dit) (Dit, D(pw,,)) ds dz
B1 J0

is immediately seen to vanish as m — oo and the proposition is proved if
q=>2.

For ¢ < 2 we now benefit from [EM2| (compare [EV]) since the proof of
higher integrability given in [CFM], Step 3, is adapted to balanced structure
conditions. Thus, let for £ € R*Y

(€)= F(Ap 4+ A &) — f(z;l;n) — A Df(An) : €

and define for 0 < p < 1/3, w € W} ,.(By/s,RY)
IM'(w) = fm(Dw)dz.
B,

The first claim to prove is

lim sup{I;”(um) - Im(ﬁ)} < 0 for almost every p € (0,1/3). (4.15)

p
m—r0o0

To verify (4.15) we fix p as above, choose 0 < s < p,n € Ci°(B,), 0 <n <1,
n=1on By, |Vn| < c¢/(p—s) and define ¢,,, = (4—u,,)n. Now, u,, obviously
is a local minimizer of I" and together with Lemma 3.3 of [CFM] this yields

17 (um) = LM(@) < L7 (um + o) — 157(11)

- /B N [fm(DuerDsom)—fm(Dﬁ)] dz <
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c(q,A\, L) .
< T/BPNBS [‘V()‘mDU)

4 [V (A~ ) @ D+ Ay Dit 4 Ay (1 — ) Dusy) )] 2

2

¢ [\V(Am Da)

8

+ (p= )2V (@ = 1)) |2] dz.

24 [V (A Dug) [

2
)‘m By~B

Next, a family of positive, uniformly bounded Radon measures y™ on B3
is introduced by letting

um™(S) = /S%“V(AMDQ)2+|V(AmDum)|2] dz .

We may assume that p™ converges in measure to a Radon measure p ob
B/s. Exactly as in [EM2], the Sobolev-Poincaré type inequality proved in
[CFM], Theorem 2.4, gives for some 1 < 6 < 2

17 (um) — LM(1) < c

W (B, ~ Bs)+ (p—s) (/Bl |t — 0] dZ> 29] :

hence, by taking first the limit m — oo and then the limit s 1 p, we get
(4.15) for any 0 < p < 1/3 such that u(0B,) = 0 which is true for a. a. p.
Once (4.15) is established for some 0 < p < 1/3, the following identity is the
starting point to derive an estimate for the left-hand side:

[™(up) — IM(0) = A2 /B [ F(Am + A D) — f (A + A D)
A Df(A) : Dwm} dz
Aml/B /01 [Df(Am + A Dt + t Ay D)
— Df(Am + A Da)] : Dy, dt dz
+ A;f/B [Df(Am £ A Dit) — Df(An)] : Dwn dz

P

= Dpm+{TDy.
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Local smoothness of 4 immediately implies lim;, ;o0 ({),, = 0. On account
of

1 pl
Dm = / / / tD*f(Ap + A Dt + 5t Ay Dwpy) (Dwyn, Dwyy,) ds dt dz
B, Jo Jo

N 0% 2
> c/ (1+|Am+)\mDu+)\mem|) 2| Dwy,|* dz

P

and by (4.15) the proposition is proved for almost all, hence for any p €
(0,1/3). m

Step 3a. (Strong convergence for g > 2)
PROPOSITION 4.5 In the case ¢ > 2 we have as m — 00

(i.) Du,, — Di in L}

loc

(B, R™) (4.16)

(@)  Am®Dum — 0 in L

loc

(B, R™) if ¢>2.

Proof of Proposition 4.5. Here we have to distinguish two subcases: For
i < 0 the first convergence follows directly from Proposition 4.3. Using this
fact, local smoothness of 4 and again Proposition 4.3, the next conclusion is

/ A\ Dwy P Pdz ™23 0 forall 0<p<1. (4.17)

By

The proceed further, we introduce the auxiliary functions 1, (see [FO]),

2;&
4

B (1 + |Am‘2)

and by Lemma 3.6, (4.6), (4.8), (1.7) we can estimate (0 < p < 1)

Y = At [(1+] A+ An Due?) L (a8)

2—p
4 }

D Pdz < c(p)/ D% (A + A D) |[Dum*dz < (p).
B

By

If we now let ©(Z) := (1 + |Z|>)?W/4 Z € RV, then

1
/£®(Am+t)\mDum)dt‘
o di

1
< c‘/ Dum:DG(Am—i—t)\mDum)dt‘
0

W’m‘ = )"r_nl

1 _®
< c/ Dt (1+ [ A + tAm D) dt
0
_n -
< c(|Dum\ + A’ | Dty 2) )
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With this inequality we obtain
|Ym|*dz < c(p) forall 0<p<1. (4.19)
B,

In fact, (4.19) is obvious for p = 0. If u < 0, then (4.19) is just a consequence
of (4.17). Thus, we have proved that

sup [[Ymlwas,) < clp) < oo forall 0<p<1 (4.20)

and this will imply (4.16), (ii.): to this purpose we fix some real number
M > 1andlet U, = Un,(M, p) :={z € B, : Ay |Duyp| < M}. On one hand,
local L?-convergence and g > 2 prove

/Ag,;2|pum|qdz < / )\?n‘2|Dwm|‘1dz+/ =2 | Dl

m

< c/ A$;2<\Dum\q‘2+\Da|q‘2> | Diw|?
Un (4.21)

+/ M2 Dl dz
—+ 0 as m— o0.
On the other hand, observe that for M sufficiently large and for z € B, ~ Uy,
2— o
¥n(2) > XA [Dun(2)|2, ie
_Ba_ 29

A TR () > A2 [ Dug(2)]7.

Since (1.8) guarantees 2q/(2—u) < 2n/(n—2), since by (4.20) 1, is uniformly
bounded in L?"/("=2) and since ¢ — 2+ pug/(2 — p) > 0 follows from ¢ > 2 — p,
we can conclude

/ M2 Dupl?dz — 0 forall 0<p<1 (4.22)
By~Un,

as m — 00. Summarizing the results, (4.21) and (4.22) prove Propostion 4.5
in the case pu < 0.

Now suppose that ;4 > 0. Proposition 4.3 implies in the case at hand for any
0<p<l1

2\~ % 2
(1+ (A Dw|?)” ? [Dwnm|?dz — 0 as m — oo
BP
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which immediately gives

/ |Dwp,|?dz — 0 as m — o0. (4.23)

m

Here U, is defined as above for fixed M and p. Also as above we introduce
¥m and observe that now |¢,,| < ¢|Duy,| is obvious, i. e. (4.20) remains to
be true in the case p > 0. If M is chosen sufficiently large, then

2u
|75 AZ* > |Dugl> on B, ~ U,

and since 4/(2 — u) < 2n/(n — 2) < p < 4/n, the last inequality being true
on account of ¢ > 2, we get

/ |Dwp?dz ™=3 0 forall 0<p<1. (4.24)
By~Up,

With (4.23) and (4.24) the first claim of (4.16) also is proved in the case
p > 0. (4.16), (ii.), for u > 0 follows exactly as for the case u < 0 and the
proof of the proposition is complete. [ |

Step 3b. (Strong convergence for g < 2)

PROPOSITION 4.6 If q < 2, then for any 0 < p < 1/3

lim i/ V(A Dw,)|[*dz = 0.
By

M—00 )\%n

Proof of Proposition 4.6.
In the subquadratic case, the auxiliary function ), introduced in (4.18) is
handled via Lemma 2.1, (vi.) of [CFM]. We have

q—

2
|Dip|*dz < c/ (1 + [AmDum|?) * |Dup|* dz
B

By,

c 2

< A—Q][‘V(/\mDum)| dz
m B
c 2

< 5% ][ V(Du — Ap)|” dx
i B(zm,Rm)
C(L) 2

< 32 ][ |V(Du) = V(4,)| dz < const.
™ B(wm,Rm)
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for any 0 < p < 1. In addition we have [i,| < ¢ |Duy,|, hence ¥, €
W, 10e(By), thus ¥, € L} (By) with ¢, := ng/(n—q). Tterating this argument
we again have verified

sup [[Ymllwys,) < clp) < oo forall 0<p<1. (4.25)

Assume now that 0 < p < 1/3. With M and U, as before, (4.23) is again a
consequence of Proposition 4.3. Let us write ([CFM], Lemma 2.1)

)\LQ/ |V()\mem)‘2dz < )\% ‘V()\mem)‘de
m J B, m JUn
+ |V (A Do) |” d2
/\m By~Un,
+ |V (A D] dz .
)‘m By~Um

Then, by (4.23)
1 2 a=2
. |V()\mem)| dz < / |Dw,,|* (14 A2, |Dw,|?) ® dz

< / |Dw,,|>dz ™25 0.
The second term vanishes as m — oo provided that

/ A2 | Dy |9dz — 0 as m— 00
Bp~Unm

To see this we recall the estimates for v, stated after (4.21) being valid also
in the case under consideration and with the same reasoning we obtain (4.22)
where now we make use of the apriori bound (4.25). Finally, we use the local
boundedness of D to see

1

2
)‘m By~Um

|V (A Dal)

2dz < / |Dif? dz
Bp~Unm

< ”DQH%W(BP,RTLN)‘BpNUM =0

on account of A\, Du,, — 0 a. e. on B; as m — oo (see (4.11)). This com-
pletes the proof of Proposition 4.6. [ |
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Step 4. (Conclusion) Proposition 4.5 together with (4.5) gives in the case
q=>2

][\Da _ (D), [Pdz > C.r,

B,

thus we have a contradiction to (4.12) if we choose C, = 2C*.

If ¢ < 2, then we estimate according to [CFM], p. 24,

. E (xzp,TRy) ) c 2
Jim = < o {1V Om D)
BT

+|V (Am(Dia — (Da),)) |
+ [V (A ((DB) = (Du),))[*} dz,

where the first integral is handled by Proposition 4.6. The last one vanishes
when passing to the limit m — oo since we may first estimate

FIV O (D), = Dun) )} dz < 3, (D), = (D), s

and then use (4.10) for the right—hand side. The second integral again is
estimated by (4.12). Thus, choosing C, sufficiently large we also get the
contradiction in the case ¢ < 2 and the lemma is proved. |
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