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Abstract

Uniqueness and regularity results for local vector-valued generalized minimizers
and for local stress tensors associated to variational problems with linear growth
conditions are established. Assuming that the energy density f has the structure
f(Z) = h(|Z|), only very weak ellipticity assumptions are required. For the proof
we combine arguments from measure theory and convex analysis with the regularity
results of [ABF].

1 Introduction

Let us first consider the global minimization problem

J [w, Ω] =

∫

Ω

f(∇w) dx → min (P)

w.r.t. prescribed Dirichlet boundary data u0 ∈ W 1
1 (Ω; RN), N ≥ 1, where Ω ⊂ R

n, n ≥ 2,
is a bounded Lipschitz domain and where f is supposed to be a convex function of linear
growth, i.e. with constants a, A > 0 and b, B ∈ R we have

a|Z| + b ≤ f(Z) ≤ A|Z| + B for all Z ∈ R
nN . (1.1)

Moreover, we assume that f satisfies suitable smoothness and ellipticity conditions to be
made precise in Section 2.

The most prominent example is given by the minimal surface integrand
f(Z) =

√

1 + |Z|2 which is discussed in numerous contributions. Here we just
mention the works of DeGiorgi (see [Gio] for selected papers), of Ladyzhenskaya,
Ural’tseva [LU], of Simon [Si], of Giaquinta, Modica, Souček [GMS] and the monograph
of Giusti [Gi].

For linear growth problems arising from physical applications we refer to the works
of Anzellotti, Giaquinta [AG1], [AG2], of Strang, Temam [ST], of Suquet [Su] and of
Seregin on perfect plasticity [Se1]–[Se4]. We also refer to the monographs of Temam [Te]
and of Fuchs, Seregin [FS]. Moreover, the theory of perfectly plastic fluids proposed by
v. Mises [Mi] has recently been discussed by Naumann and Bildhauer [BN].

These different examples have one essential point in common: since the energy densities
are just of linear growth, the natural classes to work in are non-reflexive spaces like

u0+
◦

W1
1(Ω; RN) and in general one cannot expect to find a minimizer within such classes

of comparison functions.

There are two known ways to overcome this difficulty.

AMS Subject Classification: 49N60, 49N15, 49M29, 35J
Keywords: variational problems with linear growth, local generalized minimizers, local stress tensors

1



a) The first possibility usually is prefered in the minimal surface case or in the setting
of related geometric problems: the functional J is relaxed to the space BV (Ω; RN)
of functions of bounded variation, which, following the representation formula of
Goffman and Serrin ([GS]), means to consider the functional (Ωext

⋑ Ω)

Ĵ [w, Ωext] :=

∫

Ωext

f(∇aw) dx +

∫

Ωext

f∞
(

∇sw/|∇sw|
)

d|∇sw|

for comparison functions w ∈ BV (Ω; RN) which are extended by the boundary

data u0 on Ωext−Ω. Here the absolutely continuous part of ∇w w.r.t. the Lebesgue
measure is denoted by ∇aw, the singular part by ∇sw and ∇sw/|∇sw| is the Radon-
Nikodym derivative. The symbol f∞ stands for recession function (w.l.o.g. f(0) = 0)

f∞(Z) := lim
t→∞

f(tZ)

t
.

The relaxation to the space BV is done in order to apply the lower semicontinuity
theorem of Reshetnyak [Re], which ensures the existence of generalized minimizers
by the direct method of the calculus of variations.

b) The mechanical point of view is emphasized in the second possibility: the physical
quantity of interest is not the strain but the stress tensor, which is a solution of
the dual variational problem w.r.t. the boundary data u0. In this case methods
from convex analysis provide the existence of a dual solution.

Once the existence of a generalized minimizer or of a dual solution is established, we
are interested in uniqueness results. For generalized minimizers we just can hope for
uniqueness up to a constant, see [Gi], Example 15.12, p.180. The uniqueness of the
stress tensor follows by assuming the strict convexity of the conjugate function of f , see
[ET], Chapter V, Section 3.2, which in general is hard to verify. An approach based on a
natural upper ellipticity bound for D2f is given in [Bi1].

Of course it remains to study the smoothness properties of generalized minimizers
and the dual solution based on suitable structure and ellipticity assumptions. For an
overview, some recent results and a list of references we refer to [Bi2].

Let us finally emphasize that both pictures a) and b) are strongly related through a
suitable variant of the duality relation

σ = ∇f(∇u)

being valid for the stress tensor σ and a generalized solution u.
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In this note we are interested in a local theory not depending on global boundary
data and applicable to energy densities f under quite weak ellipticity assumptions,
but assuming that f is of special structure in the sense that

f(Z) = h(|Z|) for a function h : R → R . (1.2)

There are several essential problems in the study of the local situation under weak
ellipticity assumptions.

i) In order to establish a priori bounds following the lines of [ABF] or [MP], we first
have to define a local regularization. Doing so, it is necessary to introduce a local
Dirichlet problem. Please note that in this step the arguments of [ABF], i.e. to
consider mollified boundary data of a given local minimizer, do not work in the
space of functions with bounded variation.

ii) Given Ω̃ ⋐ Ω, the interior and the exterior trace on ∂Ω̃ of a function w ∈ BV (Ω; RN)
in general are different and the relaxed functional is also supported on ∂Ω̃. Hence,
at the first glance it is not clear (and could not be traced in the literature) how to
define a suitable local Dirichlet problem. This in particular means that up to now
there is no notion of an appropriate local stress tensor σΩ̃. Both the local Dirichlet
problem and the corresponding dual solution σΩ̃ are introduced in the following.

iii) It is crucial to prove the uniqueness of σΩ̃.

iv) Even if we have the uniqueness of σΩ̃, we need the duality relation

σΩ̃ = ∇f(∇u) on Ω̃

for any generalized local minimizer u in order to show the convergence of the
regularization introduced in i).

v) Concerning iii) and iv) we emphasize that the arguments given in [Bi2] cannot be
carried over since they strongly depend on the W 1

2,loc-regularity of the (global) stress
tensor. In the situation at hand however, the ellipticity assumptions on the energy
density are too weak to imply this starting regularity.

Following more or less i)–v), our note is divided into a series of short sections which are
based on different kinds of arguments. Nevertheless, each section relies on the previous
one and their order is very essential.

2 Notation and main result

First we introduce the notion of a local minimizer of the functional J [·, Ω] in the BV -
setting. Exactly as in the global situation we let for any bounded Lipschitz domain Ω̃ ⊂ Ω
and any function w ∈ BV (Ω; RN)

Ĵ [w, Ω̃] :=

∫

Ω̃

f(∇aw) dx +

∫

Ω̃

f∞
(

∇sw/|∇sw|
)

d|∇sw| ,
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where the recession function is defined as above and where we assume that f satisfies
Assumption 2.1 stated below.

Definition 2.1. A function u ∈ BV (Ω; RN) is called a local Ĵ-minimizer on Ω if for any
w ∈ BV (Ω; RN) such that spt (u − w) ⋐ Ω

Ĵ [u, Ω] ≤ Ĵ [w, Ω] .

Remark 2.1. a) For a rigorous definition of a local minimizer we should suppose u ∈
BVloc(Ω; RN) and replace Ω in the following by a domain Ω′

⋐ Ω. This however
would just produce an even more technical notation without essential changes in our
local arguments and therefore we work with Definition 2.1.

b) If a local Ĵ-minimizer is supposed to be of class W 1
1,loc(Ω; Rn) and if we restrict

the admissible comparison functions to this class, then Definition 2.1 reduces to the
usual definition of a local J-minimizer within this Sobolev class.

Our general assumption on the energy density f is given in (compare hypothesis (H1)
and (H3) of [ABF])

Assumption 2.1. Suppose that f is of class C2 and that we have the structure condition
(1.2) with

h is strictly increasing and h′′(t) > 0 for all t > 0 together with

lim
t→0

h(t)

t
= 0 and lim

t→∞

h(t)

t
= c̄ ∈ (0,∞) . (2.1)

(Note that the first requirement in (2.1) is a consequence of the second and the third one.
Note also that the last condition stated in (2.1) implies the linear growth of f .)

Moreover, suppose that

there exist ε̄, h̄ > 0, T0, κ, µ ≥ 0 such that for all t ≥ T0

ε̄
h′(t)

t
(1 + t2)−

µ

2 ≤ h′′(t) ≤ h̄(1 + t2)−
κ
2 h(t) . (2.2)

Remark 2.2. Condition (2.2) is inspired by the hypotheses (2.9) and (2.13) of [MP],
which is outlined in the next remark, and we will use (2.2) for the study of the regularity
properties of locally bounded local minima as done in [ABF] for the superlinear case. The
boundedness assumption is justified in Remark 2.6, and without this requirement it is
possible to adjust our arguments in the spirit of [MP] which will lead us to assumptions
like (2.2) but with exponents depending on the dimension n.

Remark 2.3. Since h is convex with h(0) = 0, we have 0 ≥ h(t) − th′(t) and h(t) ≥
h(t/2) + (t/2)h′(t/2), i.e.

h(t)

t
≤ h′(t) ≤ 2

h(2t)

2t
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and therefore by the last assumption in (2.1)

0 ≤ h′(t) ≤ C for all t ≥ 0 (2.3)

for a suitable constant C. Since h′ is increasing, (2.3) clearly gives

0 < h′(1) ≤ h′(t) ≤ C for all t ≥ 1 .

Due to this observation we can replace (2.2) by the equivalent requirement

there exist ε̄, h̄ > 0, T0 ≥ 1, κ, µ ≥ 0 such that for all t ≥ T0

ε̄t−1−µ ≤ h′′(t) ≤ h̄t1−κ . (2.4)

Note that (2.4) gives κ ≤ 2 + µ. We observe that (2.4) is related to inequality (2.13) of
[MP] and reduces to this inequality if we let κ = 2, µ + 1 =: γ ∈ [1, 1 + 2/n), i.e. µ ∈
[0, 2/n). This choice of the parameters in connection with linear growth problems has also
been discussed in the paper [BF3].

Remark 2.4. The structure condition (1.2) implies for all Z, Y ∈ R
nN

min
[h′(|Z|)

|Z|
, h′′(|Z|)

]

|Y |2 ≤ D2f(Z)(Y, Y ) ≤ max
[h′(|Z|)

|Z|
, h′′(|Z|)

]

|Y |2 ,

so that by (2.3) and (2.4)

D2f(Z)(Y, Y ) ≤ Λ(1 + |Z|2)
q−2

2 |Y |2

for some positive constant Λ and for some exponent q ≥ 1. On account of the weak
ellipticity assumptions imposed on f we cannot suppose q = 2, which is of particular
importance for defining a suitable regularization (a quadratic regularization usually is
applied for problems with linear growth).

Now the main theorem reads as

Theorem 2.1. Suppose that Assumption 2.1 is satisfied and that u ∈ BV (Ω; RN) is a
locally bounded local Ĵ-minimizer in the sense of Definition 2.1. If

2µ < κ ,

then |∇u| is in the space L∞
loc(Ω). Moreover, for all Ω̃ ⋐ Ω there exists a unique stress

tensor σΩ̃ satisfying the duality relation

σΩ̃ = ∇f(∇u) a.e. in Ω̃ .

By definition, this local stress tensor arises as the solution of a suitable dual variational
problem (see Section 5 and Section 7).
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Remark 2.5. a) It is remarkable that the minimal surface case, which is discussed
several times in [Bi2] as a limit case, again exactly corresponds to the limit case
µ = 2, κ = 4 in the situation at hand although in general we now have weaker
ellipiticty assumptions. We mention the good correspondence to the counterexample
sketched in Section 4.4 of [Bi2] based on the ideas of [GMS].

b) Our requirement 2µ < κ (together with κ < 2 + µ) gives the restriction µ < 2.

Remark 2.6. If we return to the global problem (P) and if we assume that u0 is a bounded
function, then the maximum principle established in [BF4] shows the boundedness of any
generalized solution. Therefore our assumption u ∈ L∞

loc(Ω; RN) for the local minimizer u
discussed in Theorem 2.1 is quite natural.

Before we are going to prove our main theorem we like to recall the following measure
theoretic preliminaries:

Preliminaries 2.1. a) The exterior trace tr(w)ext on ∂B of a function w ∈
BV (Ω; RN) and similarly the interior trace tr(w)int on ∂B w.r.t. a ball B ⋐ Ω
are defined according to [Gi], Theorem 2.10. For Sobolev functions v both traces
coincide and we just use the symbol tr(v).

b) Both tr(w)ext and tr(w)int are of class L1(∂B; RN).

c) Following [Gi], Theorem 2.16, we may choose a function ψ ∈ W 1
1 (B; RN) such that

tr(ψ) = tr(w)ext.

d) The function ψ can be extended to a function (again denoted by ψ) ψ ∈
◦

W1
1(Ω; RN).

e) In particular we note that the W 1
1 -norm of ψ is bounded on the whole domain Ω.

We finally introduce the following notation: suppose that B := Br(x0) ⋐ Ω and that
w ∈ BV (B; RN), ϕ ∈ BV (Ω; RN). Then we let

wϕ :=

{

w on B ,
ϕ on Ω − B

and
BVϕ(B; RN) := {wϕ : w ∈ BV (B; RN)} .

Remark 2.7. Although the notation introduced in [Bi2], Appendix A, is motivated by
another (a global) point of view, we strictly follow this notation in order to have pre-
cise references. We emphasize that the space BVϕ(B; RN) by definition is a subspace of
BV (Ω; RN).

6



3 Local minimizers solve a Dirichlet problem w.r.t. a

W 1
1 -trace induced from the exterior

In the following we fix a ball B = Br(x0) ⋐ Ω and a local Ĵ-minimizer u defined on Ω.
For our purposes it is very important to have a rigorous proof that u satisfies on B a
Dirichlet problem for boundary data induced by the exterior trace of u and that this

boundary data are induced by a function of class
◦

W1
1(Ω; RN).

Lemma 3.1. Suppose that u is a local Ĵ-minimizer on Ω. Associated to u we choose

ϕ ∈
◦

W 1
1(Ω; RN) following Preliminaries 2.1, c), d), and define for w ∈ BV (B; RN) the

relaxed local functional Ĵϕ[w,B] w.r.t. the generalized notion of Dirichlet boundary data
ϕ, i.e. we let

Ĵϕ[w,B] :=

∫

B

f(∇aw) dx +

∫

B

f∞
(

∇sw/|∇sw|
)

d|∇sw|

+

∫

∂B

f∞((tr(ϕ) − tr(w)int) ⊗ ν) dHn−1 ,

where ν denotes the outer unit normal to ∂B. Then u minimizes Ĵϕ[·, B] w.r.t. all com-
parison functions w ∈ BV (B; RN).

Proof. Suppose that the lemma is false. Then there exists a function v ∈ BV (B; RN)
such that Ĵϕ[v,B] < Ĵϕ[u,B].

Moreover, recalling that on ∂B we have tr(ϕ) = tr(u)ext = tr(wu)
ext for any wu ∈

BVu(B; RN), we note that for any w ∈ BV (B, RN) it holds (see, e.g., [AFP], Theorem
3.77, p.171)

Ĵϕ[w,B] =

∫

B

f(∇awu) dx +

∫

B

f∞
(

∇swu/|∇
swu|

)

d|∇swu|

+

∫

∂B

f∞((tr(wu)
ext − tr(wu)

int) ⊗ ν) dHn−1

= Ĵ [wu, Ω] − Ĵ [wu, Ω − B] ,

i.e. with κ = κ(u,B) := Ĵ [u, Ω − B] independent of w we get

Ĵϕ[w,B] + κ = Ĵ [wu, Ω] for all w ∈ BV (B; RN) , i.e. for all wu ∈ BVu(B; RN) .

This means
Ĵ [vu, Ω] = Ĵϕ[v,B] + κ < Ĵϕ[u,B] + κ = Ĵ [u, Ω]

and we immediately obtain a contradiction to the local minimality of u w.r.t. the functional
Ĵ [w, Ω].

Corollary 3.1. Consider B, u and ϕ as in Lemma 3.1. Then uϕ minimizes Ĵ [·, Ω]
w.r.t. all comparison functions wϕ ∈ BVϕ(B; RN).
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Proof. As above we have using tr(ϕ) = tr(u)ext = tr(wϕ)ext for any w ∈ BV (B; RN) on
∂B

Ĵϕ[w,B] + κ̃ = Ĵ [wϕ, Ω] for all w ∈ BV (B; RN) , i.e. for all wϕ ∈ BVϕ(B; RN) ,

where κ̃ = κ̃(ϕ,B) := Ĵ [ϕ, Ω − B]. Lemma 3.1 shows for all w ∈ BV (B; RN)

Ĵ [uϕ, Ω] = Ĵϕ[u,B] + κ̃ ≤ Ĵϕ[w,B] + κ̃ = Ĵ [wϕ, Ω]

and the corollary is proved.

Remark 3.1. With Corollary 3.1 we are exactly in the situation studied in Appendix
A of [Bi2] (see also [BF2]), i.e. on B u is a solution of a generalized Dirichlet problem
with boundary data ϕ of class W 1

1 (B; RN). Then the boundary data as well as the relaxed
functional are extended to the exterior.

Finally we consider the Dirichlet problem

J [w,B] → min in ϕ+
◦

W
1
1(B; RN) (Pϕ)

and let

M := {v ∈ BV (B; RN) : v is the L1-limit of a J [·, B]-minimizing

sequence from ϕ+
◦

W1
1(B; RN)} .

Observing that the arguments of [BF2] and of Appendix A.1, [Bi2], work under the present
hypotheses, the proofs of [BF2], Theorem 1.2 and of [Bi2], Theorem A.3, give without
changes

Lemma 3.2. a) We have

inf
w∈ϕ+

◦

W 1
1
(B;RN )

J [w,B] = inf
w∈BV (B;RN )

Ĵϕ[w,B] .

b) Moreover it holds: u∗ ∈ M ⇔ u∗ is Ĵϕ[·, B]-minimizing in the class BV (B; RN).

4 Regularization

As in the previous section we fix a ball B ⋐ Ω and consider a local Ĵ-minimizer
u. W.r.t. these data we define the function ϕ associated to u as formulated in Pre-
liminaries 2.1. We recall that variational problems of a regularized type have been
investigated in [Bi2] assuming for technical simplicity the smoothness of the boundary
data (see [Bi2], p. 17, Remark 2.5). Boundary values of the natural class W 1

1 have
been treated in [Bi3] but both references are based on a quadratic regularization which
according to Remark (2.4) cannot be used in the present setting. Since in addition we
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definitively do not have more smoothness information on the data than being of class
W 1

1 , a careful look on the regularization is necessary and will be presented in this section.

We consider a sequence {ϕm}, ϕm ∈ C∞
0 (Ω) for all m ∈ N, such that

ϕm → ϕ in W 1
1 (Ω; RN) as m → ∞ . (4.1)

Let q̃ > max{2, q} with q taken from Remark 2.4, fδ := δ(1 + | · |2)q̃/2 + f and denote by
um

δ the unique solution of the minimzing problem

Jm
δ [w,B] :=

∫

B

fδ(∇w) dx → min in ϕm+
◦

W
1
q̃(B; RN) , (Pϕm,δ)

where 0 < δ < 1 and where we choose in the following δ = δ(m) sufficiently small.

The next lemma summarizes the first elementary properties of the approximation which
will be used to follow the regularity arguments of [ABF] and to prove by passing to the
limit that the approximation really produces a generalized minimizer u∗ ∈ M.

Lemma 4.1. a) There exists a positive number c which does not depend on δ, m such
that

δ(m)

∫

B

(1 + |∇um
δ(m)|

2)
q̃

2 dx ≤ c ,

∫

B

|∇um
δ(m)| dx ≤ c ;

b) ‖um
δ(m)‖L∞(B;RN ) is bounded independent of δ and m;

c) um
δ(m) is of class W 2

2,loc ∩ W 1
∞,loc(B; RN);

d) if we let wm
δ(m) = um

δ(m) + ϕ − ϕm, then the L1-cluster points of {wm
δ(m)} and {um

δ(m)}
coincide and

J [um
δ(m), B] → a as m → ∞ ⇔ J [wm

δ(m), B] → a as m → ∞ .

Proof. Ad a). By the minimality of um
δ(m) we have choosing δ(m) sufficiently small

Jm
δ(m)[u

m
δ(m), B] ≤ Jm

δ(m)[ϕ
m, B] ≤

1

m
+

∫

B

f(∇ϕm) dx . (4.2)

Moreover, (2.3) gives the existence of a constant c such that |f(Z)− f(Z̃)| ≤ c|Z − Z̃| for
all Z, Z̃ ∈ R

nN , hence by (4.1)

∣

∣

∣

∣

∣

∫

B

(f(∇ϕm) − f(∇ϕ)) dx

∣

∣

∣

∣

∣

≤ c

∫

B

|∇ϕm −∇ϕ| dx → 0 (4.3)

as m → ∞ and together with (4.2) the claim a) follows.
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Ad b). The maximum-principle of [DLM] gives b).

Ad c). We refer to [GM] and [Ca].

Ad d). The first claim is immediate by (4.1), for the second claim we just observe that
similar to (4.3)

∣

∣

∣

∣

∣

∫

B

(f(∇wm
δ(m)) − f(∇um

δ(m))) dx

∣

∣

∣

∣

∣

≤ c

∫

B

|∇wm
δ(m) −∇um

δ(m)| dx → 0

as m → ∞ and the proof of the lemma is complete.

Remark 4.1. The arguments leading to assertion d) of Lemma 4.1 immediately give

inf
w∈ϕm+

◦

W 1
1
(Ω;RN )

J [w,B] → inf
w∈ϕ+

◦

W 1
1
(Ω;RN )

J [w,B] as m → ∞ .

5 The local stress tensor

Based on the principles of convex analysis presented in the book [ET] of Ekeland and
Temam, Section 2.1.1 of [Bi2] summarizes the main results needed in our context. In
particular we recall:

i) the conjugate function f ∗: R
nN → R is defined as

f ∗(Z∗) := sup
Z∈RnN

{Z : Z∗ − f(Z)} ;

ii) the duality relation
f(Z) + f ∗(∇f(Z)) = Z : ∇f(Z)

holds for all Z ∈ R
nN ;

iii) we have the representation formula (w ∈ ϕ+
◦

W1
1(B; RN))

J [w,B] :=

∫

B

f(∇w) dx

= sup
κ∈L∞(B;RnN )

[

∫

B

κ : ∇w dx −

∫

B

f ∗(κ) dx

]

=: sup
κ∈L∞(B;RnN )

l(w, κ) ;

iv) the dual functional R[·, B]: L∞(B; RnN) → R is given by

R[κ, B] := inf
w∈ϕ+

◦

W 1
1
(B;RN )

l(w, κ) =

{

−∞ , if div κ 6= 0 ,
l(ϕ, κ) , if div κ = 0 ;
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v) the dual variational problem reads as

R[κ, B] → max in L∞(B; RnN) ; (P∗)

vi) when discussing Problem (P∗) we may assume w.l.o.g. that κ(x) ∈ dom f ∗ := {Z∗ ∈
R

nN : f ∗(Z∗) < ∞} a.e.;

vii) for any w ∈ ϕ+
◦

W1
1(B; RN) we have

J [w,B] ≥ sup
κ∈L∞(B;RnN )

R[κ, B] .

Referring to the notation of Section 4 we let

τm
δ(m) := ∇f(∇um

δ(m)) ,

σm
δ(m) := δ(m)Xm

δ(m) + τm
δ(m) = ∇fδ(m)(∇um

δ(m)) ,

Xm
δ(m) := q̃(1 + |∇um

δ(m)|
2)

q̃−2

2 ∇um
δ(m) .

Lemma 4.1, a), implies

‖δ(m)
q̃−1

q̃ Xm
δ(m)‖

L
q̃

q̃−1 (B;RnN )
≤ c ,

hence
δ(m)Xm

δ(m) → 0 in L
q̃

q̃−1 (B; RnN) as m → ∞ .

Recalling once more Lemma 4.1, a), and the boundedness of ∇f we find σ ∈ L
q̃

q̃−1 (B; RnN)
such that (without relabelling subsequences)

τm
δ(m) , σm

δ(m) ⇁: σ in L
q̃

q̃−1 (B; RnN) as m → ∞ . (5.1)

Lemma 5.1. With the notation introduced above we have:

a) the limit σ satisfies div σ = 0;

b) σ is a solution of the dual variational problem (P∗);

c) the “inf − sup” relation holds in the sense of

inf
w∈ϕ+

◦

W 1
1
(B;RN )

J [w,B] = sup
κ∈L∞(B;RnN )

R[κ, B] ;

d) δ(m)

∫

B

(1 + |∇um
δ(m)|

2)
q̃

2 dx → 0 as m → ∞;

e) we have
J [um

δ(m), B] → inf
w∈ϕ+

◦

W 1
1
(Ω;RN )

J [w,B] as m → ∞ ,

and on account of Lemma 4.1, d), any L1-cluster point of the sequence {um
δ(m)} is a

generalized minimizer of J [·, B], i.e. belongs to the class M.

11



Proof. Ad a). Since um
δ(m) is defined as the solution of (Pϕm,δ) we have the Euler

equation div σm
δ(m) = 0 and passing to the limit m → ∞ this claim follows.

Ad b). As in [BF1], proof of Lemma 3.1, or in [Bi2], Section 4.1.2, formula (10), p.102,
(compare also Section 2.1.1 of [Bi2]) we now obtain with the help of vii) mentioned above
and with the help of Remark 4.1 for any ε > 0 and m sufficiently large

R[κ, B] ≤ inf
w∈ϕ+

◦

W 1
1
(Ω;RN )

J [w,B] ≤ inf
w∈ϕm+

◦

W 1
1
(Ω;RN )

J [w,B] + ε

≤ Jδ[u
m
δ(m), B] + ε

≤

∫

B

(τm
δ(m) : ∇ϕm − f ∗(τm

δ(m))) dx + δ(m)

∫

B

Xm
δ(m) : ∇ϕm dx

+(1 − q̃)δ(m)

∫

B

(1 + |∇um
δ(m)|

2)
q̃

2 dx

+δ(m)q̃

∫

B

(1 + |∇um
δ(m)|

2)
q̃−2

2 dx + ε ,

where we have to observe that in contrast to the case of fixed boundary data we still have
ϕm in the first and the second integral on the r.h.s. However, since τm

δ(m) by definition is

uniformly bounded in L∞(B; RnN) and since we have
∣

∣

∣

∣

∣

∫

B

τm
δ(m) : (∇ϕm −∇ϕ) dx

∣

∣

∣

∣

∣

≤ c

∫

B

|∇ϕm −∇ϕ| dx

as well as
∣

∣

∣

∣

∣

δ(m)

∫

B

Xm
δ(m) : ∇ϕm dx

∣

∣

∣

∣

∣

≤ δ(m)
1

q̃ ‖δ(m)
q̃−1

q̃ Xm
δ(m)‖

L
q̃

q̃−1 (B;RnN )
‖∇ϕm‖Lq̃(B;RnN ) ,

we may choose δ(m) sufficiently small and argue exactly as in the proof of Lemma 4.8,
[Bi2]. This gives the lemma.

In order to prove smoothness results for any local generalized minimizer of the original
problem (P) (and not just for cluster points of the regularizing sequence), we have to
establish the uniqueness of the local stress tensor which of course also is a result of
general interest. The following lemma is a consequence of the structure condition (1.2)
and of some elementary properties of the function f ∗.

Lemma 5.2. The solution of the dual variational problem (P∗) is unique. On account of
Lemma 5.1, b), this solution is given by the limit σ defined in (5.1).

Proof. The uniqueness of the dual solution will follow as soon as we can show the strict
convexity of f ∗ on dom f ∗. From Assumption 2.1 and from (2.3) we first deduce that

K := lim
t→∞

h′(t)

12



exists in (0,∞). Note that K determines the set im (∇f): since

∇f(Z) =
h′(|Z|)

|Z|
Z , Z 6= 0 , ∇f(0) = 0 ,

it is elementary to show that ∇f is a one-to-one mapping from R
nN onto

the open ball BK(0) ⊂ R
nN . Observing that f ∗(Z) = h∗(|Z|) implies

dom f ∗ = {Z ∈ R
nN : |Z| ∈ dom h∗}, we have to discuss dom h∗.

If s > K, then

h∗(s) = sup
t≥0

[

ts −

∫ t

0

h′(r) dr

]

≥ sup
t≥0

[ts − Kt] = +∞ ,

and if s < K, then there exists t ∈ R such that s = h′(t), hence

h∗(s) = h∗(h′(t)) = th′(t) − h(t) < ∞ ,

so that either domh∗ = [0, K) or dom h∗ = [0, K] and in conclusion:

either dom f ∗ = BK(0) or dom f ∗ = BK(0) .

In the first case the lemma follows from dom f ∗ = im (∇f) and from the strict convexity
of f ∗ on im (∇f).

In the second case we note that lims↑K h∗(s) < h∗(K) immediately would give the
lemma and that h∗(K) < lims↑K h∗(s) would contradict the strict monotonicty and the
convexity of h∗ on [0, K]. Thus we may suppose that h∗ is a continuous function on
[0, K]. Moreover, by elementary calculations it is easy to see that a continuous function
φ: [a, b] → R satisfying φ′′ > 0 on (a, b) is strictly convex on [a, b]. Applying this to h∗

the lemma is proved.

6 A priori bounds

Theorem 6.1. Suppose that the assumptions of Theorem 2.1 are satisfied. Passing to
subsequences (again not relabelled) we have:

a) the sequence {um
δ(m)} is uniformly bounded in the space W 1

∞,loc(B; RN);

b) the sequence {|∇σm
δ(m)|} is uniformly bounded in the space L2

loc(B), hence (recall

q̃ ≥ 2) {σm
δ(m)} is uniformly bounded in W 1

q̃/(q̃−1),loc(B; RnN), so that in particular

σm
δ(m) → σ a.e. as m → ∞ .

Moreover, we have
∇um

δ(m) → ∇u∗ a.e. as m → ∞ ,

where u∗ denotes a L1-cluster point of the sequence {um
δ(m)};

13



c) the duality relation
σ = ∇f(∇u∗)

holds a.e. In particular σ takes its values in the open set im (∇f) = BK(0).

Remark 6.1. a) Once more we point out that local W 1
2 -regularity of the local stress

tensor does not follow along the lines of [Bi2] since we do not assume the condition

D2f(Z)(Y, Y ) ≤ c
1

√

1 + |Z|2
|Y |2 .

b) We also cannot refer to arguments as given in Corollary 6.10 of [Bi2], since these
arguments rely on a uniform local W 2

2 bound for {um
δ(m)} which in general cannot be

expected since D2f may be degenerated in the origin.

Proof. Ad a). For notational simplicity we drop the index m and proceed similar
to the proof of Theorem 1.1 in [ABF]. Let us also assume the validity of (2.2) and its
reformulation (2.4) for all t ≥ 0, i.e. we have T0 = 0. The necessary adjustments – being
of pure technical nature – which are needed for the treatment of the case T0 > 0, can be
found in [ABF]. With η ∈ C∞

0 (B), 0 ≤ η ≤ 1, Γ := 1 + |∇u|2 and s ≥ 0 we obtain with
the help of Lemma 4.1, b), c)

∫

B

η2h(|∇u|)Γ
s+2

2 dx =

∫

B

η2h(|∇u|)Γ
s
2 dx +

∫

B

∂αu · ∂αuη2h(|∇u|)Γ
s
2 dx

=

∫

B

η2h(|∇u|)Γ
s
2 dx −

∫

B

u · ∂α

[

∂αuη2h(|∇u|)Γ
s
2

]

dx

≤

∫

B

η2h(|∇u|)Γ
s
2 dx + c

[

∫

B

η|∇η|h(|∇u|)|∇u|Γ
s
2 dx

+

∫

B

η2|∇2u|h(|∇u|)Γ
s
2 dx +

∫

B

η2|∇u|h′(|∇u|)|∇2u|Γ
s
2 dx

]

.

Applying Young’s inequality to the second integral on the r.h.s and using h′(t)t ≤ ch(t)
we get

∫

B

η2h(|∇u|)Γ
s+2

2 dx ≤ c

[

∫

B

(η2 + |∇η|2)h(|∇u|)Γ
s
2 dx +

∫

B

η2|∇2u|h(|∇u|)Γ
s
2 dx

]

=: c[T1 + T2] (6.1)

with c depending on s, but being independent of the approximation parameter. Another
application of Young’s inequality yields

T2 ≤ τ

∫

B

η2h(|∇u|)Γ
s+2

2 dx + c(τ)

∫

B

η2|∇2u|2h(|∇u|)Γ
s−2

2 dx

14



and for τ small enough we deduce from (6.1)

∫

B

η2h(|∇u|)Γ
s+2

2 dx ≤ c

[

T1 +

∫

B

η2|∇2u|2h(|∇u|)Γ
s−2

2 dx

]

=: c[T1 + T3] , (6.2)

hence it remains to discuss T3. Recalling h(t) ≤ th′(t) and also the first inequality stated
in Remark 2.4 it is easy to see that (2.2) implies

T3 ≤

∫

B

η2D2f(∇u)(∂α∇u, ∂α∇u)Γ
s+µ

2 dx . (6.3)

Moreover, referring to the Caccioppoli-type inequality Lemma 2.2 in [ABF], we can bound
the r.h.s. of (6.3) by the quantity

c

∫

B

|D2f(∇u)|Γ
s+2+µ

2 |∇η|2 dx .

Again from (2.2) it follows that

|D2f(∇u)| ≤ ch(|∇u|)Γ
µ−κ

2 ,

thus (6.2) and (6.3) show the validity of

∫

B

η2h(|∇u|)Γ
s+2

2 ≤ c

[

∫

B

(η2 + |∇η|2)h(|∇u|)Γ
s
2 dx +

∫

B

|∇η|2h(|∇u|)Γ
s+2+2µ−κ

2 dx

]

.

(6.4)
Finally we replace η by ηl for l ∈ N large and apply Young’s inequality to the second
integral on the r.h.s. of (6.4), which is possible on account of

2µ < κ ,

to deduce from (6.4)

∫

B′′

h(|∇u|)Γ
s+2

2 dx ≤ c(s,B′′, B′)

∫

B′

h(|∇u|)Γ
s
2 dx

valid for balls B′′
⋐ B′

⋐ B. Starting with s = 0, it is now obvious that

|∇u| ∈ Ls
loc(B) (6.5)

for all finite s (uniformly w.r.t. the approximation). Proceeding similar as in [Bi2], proof
of Theorem 5.22, (see [ABF], Section 4, for the necessary adjustments) we obtain from
(6.5) the local boundedness of ∇u (uniformly w.r.t. m).
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Ad b). With a), in particular with the condition 2µ < κ and our structure assumptions,
we know that {∇um

δ(m)} is uniformly locally bounded and (11), Section 2.1.3 of [Bi2], gives
together with Young’s inequality

∫

B′

D2f(∇um
δ(m))(∂γ∇um

δ(m), ∂γ∇um
δ(m)) dx ≤ c

with a local constant c depending on B′
⋐ B. Thus, (13), Section 2.1.3 of [Bi2], implies

the claims for {σm
δ(m)} stated in b).

Since ∇f is a one-to-one mapping R
nN → BK(0) with inverse given by

Y 7→
1

|Y |
(h′)−1(|Y |)Y ,

we have the a.e. convergence of {∇um
δ(m)} by the a.e. convergence of {σm

δ(m)}, by the

definition of σm
δ(m) and by Lemma 5.1, d).

Ad c). This is an immediate consequence of b).

7 A uniqueness result for local generalized minimiz-

ers

In Lemma 5.1, e), it is established that each L1-cluster point ū of the regularizing
sequence {um

δ(m)} is a local generalized minimizer of Problem (P), i.e. ū ∈ M.

Moreover, we have the duality relation c) of Theorem 6.1, which gives information on
the unique stress tensor by knowing one particular generalized minimizer u∗ ∈ M. Since
BK(0) = im (∇f) is an open set and since ∇f is continuous, we have for any M > 0 and
for any ball BM(0) ⊂ R

nN with radius M and center 0 ∈ R
nN

∇f(BM(0)) ⋐ BK(0) . (7.1)

Now we refer to the local uniform bounds for {∇um
δ(m)} established in Theorem 6.1, a),

which together with the duality relation imply using (7.1): for any B′
⋐ B there is a ball

BM ⊂ R
nN such that {σ(x) : x ∈ B′} ⊂ BM . This means that on any ball B′

⋐ B the
stress tensor takes values in a compact set S(B′) ⋐ BK(0). Hence, given λ ∈ C∞

0 (B; RnN)
and t sufficiently small, the function σt := σ + tλ is an admissible variation of σ as first
observed by Seregin [Se4] in a different setting and later used in [BF3], Section 5, and in
the proof of [Bi2], Theorem A.9, p.182. Following this proof we additionally just need the
inf − sup relation and the maximality of the local stress tensor and finally arrive at

Theorem 7.1. Any generalized minimizer u∗ ∈ M satisfies a.e. in B the duality relation
σ = ∇f(∇u∗), hence on account of Lemma 5.2 and of Lemma 3.2, b), local generalized
minimizers in the sense of Definition 2.1 are unique up to a constant.
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Once more recalling Theorem 6.1, a), the proof of Theorem 2.1 is complete.

Remark 7.1. If a global Dirichlet problem is considered, then the above results show that
there is only one way to define a suitable local stress tensor associated to the global solution
of the original problem.

Appendix A Examples

Example 1. We fix r ∈ (0, 1) and let (compare [MP])

h(t) := t − tr + 1 for all t ≥ 1 .

For t < 1 the function h is extended as a smooth function satisfying our general
hypotheses. With µ := 1 − r and κ := 3 − r we then have Assumption 2.1 and the
example is admissible for our theory. However, we note that the arguments of Section
4.2, [Bi2], also apply to this example.

Example 2. For any k ∈ N we fix εk ∈ (0, 1/2) and ak > 0. With Ik := [k − εk, k + εk]
we then define θ: [0,∞) → [0,∞) via the following properties:

• θ ∈ C0([0,∞));

• θ ≡ 0 on [0,∞) −
⋃∞

k=1 Ik;

• θ ≤ ak on Ik and θ(k) = ak.

With

g(t) :=

∫ t

0

[

∫ s

0

θ(ξ) dξ

]

ds , t ≥ 0 ,

we claim that for a suitable choice of the parameters

lim
t→∞

g(t)

t
exists in (0,∞) . (A.1)

In fact, if for any k ∈ N

εk ≤
1

kαak

for some exponent α > 1 , (A.2)

then it follows that

0 ≤ g′(t) =

∫ t

0

θ(ξ) dξ ≤ 2
∞

∑

k=1

εkak < ∞ . (A.3)

Since g is a convex function, we get

0 = g(0) ≥ g(t) − tg′(t) ,
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and (A.3) gives
g(t)

t
≤ g′(t) ≤ const . (A.4)

Once more by the convexity of g we obtain for any 0 < γ < 1

g(γt) − g(0)

γt
≤

g(t) − g(γt)

t − γt
,

which is equivalent to
g(γt)

γt
≤

g(t)

t
.

This means that the function s 7→ g(s)/s is increasing and together with (A.4) the claim
(A.1) is established.

Adding the density from the first example, h̃(t) := h(t) + g(t), Assumption (2.1) is
satisfied for h̃ and we have (µ = 1 − r, κ = 3 − r) for constants ε̄, h̄ > 0

ε̄t−1−µ ≤ h̃′′(t) ≤ h̄t1−κ + θ(t) .

If r > 1/2, θ(k) = km for 0 < m < 2r − 1, then (2.4) is satisfied with upper exponent
κ̃ := 1 − m and the assumptions of Theorem 2.1 hold. However, the results of Section
4.2, [Bi2], do not apply.

Remark A.1. We have the duality relation

h̃∗(h̃′(t)) = th̃′(t) − h̃(t)

which implies
d

dt

[

h̃∗(h̃′(t))
]

= th̃′′(t) ,

i.e.

h̃∗(h̃′(t)) =

∫ t

0

th̃′′(t) dt .

Hence, still keeping (A.2), it is evident that in general one cannot decide whether dom h̃∗

is an open or a closed interval.
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