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Abstract

The shape-from-shading (SfS) problem in computer vision is to
compute at hand of the shading variation in a given 2-D image the
3-D structure of depicted objects. We introduce an efficient numerical
method for a new perspective SfS model for general non-Lambertian
surfaces. First, the modelling process is given in detail. The model
is based on the perspective model for Lambertian surfaces recently
studied by Prados et al., which we extend by use of the Phong re-
flection model incorporating ambient, diffuse and specular compo-
nents. The arising partial differential equation (PDE) is a non-linear
time-independent Hamilton-Jacobi equation. In order to compute the
sought viscosity supersolution of the PDE, we introduce an artificial
time into the equation and solve for the steady state. Based on a
multi-scale analysis of the PDE, we construct a fully explicit numer-
ical method and elaborate on its stability. In order to achieve fast
convergence of the resulting iterative scheme, a coarse-to-fine strategy
combined with a sweeping technique is employed. Numerical experi-
ments show the benefits of our approach: While computational times
stay reasonable even for quite large images, a substantial qualitative
gain can be achieved by use of the new model. Moreover, the compu-
tational technique is relatively easy to implement compared to other
approaches in the field.

Introduction

Given exactly one grey value image, the Shape from Shading (SfS) problem
consists of computing the 3-D depth of depicted objects. It is a classical
problem in computer vision with many potential applications; see e.g. [13,
34, 29] and the references therein for an overview.
The camera model. A basic key ingredient of mathematical models for
such computer vision problems is the camera model, i.e, the mathematical
representation of the projection performed when mapping the 3-D world to
2-D images by the camera; see for instance [7, 11, 31] for detailed discussions
of this topic. In ’classical’ SfS models, the camera is assumed to perform an
orthographic projection of the scene of interest. Concerning this type of early
models, let us especially mention the pioneering works of Horn [9, 10, 12, 13]
who was also the first one modelling the SfS task using a partial differential
equation (PDE).
Modelling of surface properties. A further important modelling issue
is concerned with the reflectance properties of depicted objects. This deter-
mines how light is reflected by the scene and, consequently, how objects are
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perceived when acquired by the camera. The most easily accessible model
for this purpose is the model of Lambertian surfaces. This model describes
surfaces with diffuse light reflection: The perceived light intensity of some
point on an object surface depends on the angle between light source direc-
tion and surface normal in this point; it is independent from the point of
view of an observer. For descriptions of various surface models, see e.g. [8].
The assumption of Lambertian surfaces is the classical choice for modelling
SfS, e.g., the mentioned models of Horn [13, 12] also incorporate it, and
Lambertian surfaces are also used in many modern works [26, 27, 28, 30,
22, 19, 23, 25, 24, 20, 6]. However, Lambertian models exclude important
real-world optical phenomena like e.g. specular light reflections.
For orthographic SfS models, there have been some attempts to extend the
range of applicability to non-Lambertian surfaces [2, 14]. A drawback of
orthographic SfS models is that they usually suffer from ill-posedness, espe-
cially in the form of so-called convex-concave ambiguities [6]. Moreover, the
orthographic camera model does not yield reconstruction results of convinc-
ing quality in most situations, see e.g. the extensive comparisons with results
computed using a perspective model in [19, 25].
Perspective Shape from Shading. The problem of ill-posedness can be
dealt with successfully by using a perspective camera model instead of an
orthographic one, in conjunction with the use of a light source given in one
point and a so-called light attenuation term as described below; see e.g.
[19, 25]. As we refer in this work to a corresponding model for Lambertian
surfaces, let us briefly mention some details on it here.
Assuming a point light source at the optical center, the perspective SFS
model described in [19] and investigated in [19, 32] amounts to the Hamilton-
Jacobi equation

If2

u

√
[
f2 |∇u|2 + (∇u · x)2] /Q2 + u2 = u−2 , (1)

where x ∈ R
2 is in the image domain Ω, |.| denotes the Euclidean vector

norm, and

• u := u(x) is the sought depth map,

• I := I(x) = E(x)
σ

is a normalised version of the brightness E(x) of
the given grey-value image, whereby σ depends on the albedo of the
surface, i.e., the extent to which it diffusely reflects light, as well as on
the brightness of the light source,

• f is the focal length relating the optical center of the camera and its
retinal plane,
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• Q := Q(x) :=
f

√

|x|2 + f2
.

As indicated, perspective models such as (1) yield superior depth maps com-
pared to orthographic models. However, also in the widely studied model
represented by (1) only Lambertian surfaces are taken into account.
On the numerical side, perspective models of the type (1) are dealt with by
use of the level set method in [27, 28, 30] and by employing the dynamic pro-
gramming principle in [19, 25]. As the numerical side is of importance in this
paper, let us note that the schemes relying on the dynamic programming
principle are generally advocated as they do not need any specific knowl-
edge about the true solution. We will pursue a different approach as in the
mentioned works here, discretising directly our new PDE.
Let us also note, that a first yet not very sophisticated attempt to incorporate
non-Lambertian surface reflectance into a perspective SfS model is described
in [16].
Our contributions. This work represents our results on the modelling as
well as on the numerical side. We give in detail the modelling of a new
Hamilton-Jacobi PDE for perspective SfS, thereby showing how to incorpo-
rate a model for non-Lambertian surfaces. For this, the Phong model well-
known in the area of computer graphics [18, 17] is used. We also state clearly
which physical assumptions are used that influence the computational set-
up. The second objective of us is to give a mathematically justified, efficient
and easy-to-code algorithm. We realise this aim by using a finite difference
discretisation of the arising PDE together with a sweeping method and a
coarse-to-fine strategy. The resulting method is shown to be much faster
than the schemes relying on the dynamic programming principle advocated
in previous works [19, 25], while it is at the same time much simpler to im-
plement. The finite difference method is analysed rigorously, especially with
respect to the choice of the time step size guaranteeing the stability of the
method. As shown by numerical experiments, we achieve a considerable gain
concerning the quality of computed depth maps compared to non-Lambertian
models, and we obtain reasonable results even for simple real-world images.
Relation to previous work. This paper represents a significant extension
of our conference contributions [32, 33]. In the mentioned works, we deal with
perspective SfS for Lambertian surfaces and a basic discussion of our non-
Lambertian model, respectively. In contrast to [33] we elaborate here in full
detail on the modelling process, thereby addressing some details important
for implementation. On the theoretical side, we extend the previous works
by addressing the choice of suitable time step sizes ensuring stability for
the general reflection model, incorporating here in this context a multi-scale
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analysis. Furthermore, we document in this work some further developments
on the numerical side. In previous works, we used a semi-implicit scheme
in order to handle convective terms and source terms separately, which is
a usual proceeding in the field. We improve this numerical scheme using a
coarse-to-fine strategy here as well as a sweeping technique combined with a
fully explicit ansatz motivated by the multi-scale analysis. This leads to a
significant efficiency improvement compared to results in [32, 33] while the
implementation effort does not increase dramatically.
Paper organisation. In Section 2, we give the modelling process in detail.
Then, in Section 3, we briefly discuss some theoretical properties of the PDE.
Especially, we illuminate by use of a multi-scale analysis some fundamental
properties of the resulting PDE of practical interest for the numerics. A
detailed description of the numerical scheme we use is given in Section 4.
This is followed by the stability investigation in Section 5. After an extensive
discussion of numerical experiments in Section 6, the paper is finished by
concluding remarks.

1 The model

Analogously to the procedure described in [19, 32], let us consider the surface
S representing an object or scene of interest depicted in a given grey value
image. Let S then be parameterised by use of the function S : Ω̄ → R

3, Ω ⊂
R

2, with

S(x) =
fu(x)

√

|x|2 + f2
(x,−f)T

︸ ︷︷ ︸

∈R2×R

. (2)

As the two columns of the Jacobian J [S(x)] are tangent vectors to S at the
point S(x), their cross-product is a normal vector to S. One can compute
then a normal vector ~n(x) at the point S(x) as

~n(x) =

(

f∇u(x) − fu(x)

|x|2 + f2
x ,∇u(x) · x +

fu(x)

|x|2 + f2
f

)T

. (3)

By (2)–(3), we just followed the procedure in [19, 32].
New contributions. We assume that the reflectance properties of the con-
sidered surface can be described by the Phong reflection model, see e.g. [18],
and thus we introduce the brightness equation

I(x) = kaIa +
∑

lights

1

r2

(
kdId cos φ + ksIs(cos θ)α

)
(4)
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where I(x) is the normalised grey value of the image pixel located at x.
For the convenience of the reader, let us give some comments on the bright-
ness equation (4). Ia, Id, and Is are the intensities of the ambient, diffuse,
and specular components of light, respectively. Accordingly, the constants
ka, kd, and ks with ka + kd + ks ≤ 1 denote the ratio of ambient, diffuse,
and specular reflection. The light contributions of all light sources are added
up, i.e., practically one needs to compute the light contribution of each light
source separately. Concerning the individual reflection contributions, let us
note that the ambient light models light present everywhere in a given scene,
i.e., it is a base intensity. The intensity of diffusely reflected light in each
direction is proportional to the cosine of the angle φ between surface normal
and light source direction. The amount of specular light reflected towards
the viewer is proportional to (cos θ)α, where θ is the angle between the ideal
(mirror) reflection direction of the incoming light and the viewer direction,
α being a constant modelling the roughness of the material. For α → ∞ this
describes an ideal mirror reflection.
Note especially, that the so-called light attenuation factor 1/r2, where r is
the distance between light source and surface, is taken into account. This is
noteworthy as including this factor does not only support the well-posedness
of the model, it also yields an improved quality of surface reconstructions
if comparing with computational results neglecting it; compare [19] for the
case of Lambertian surfaces.
In the following, we employ some simplifications. First, we restrict the model
to a single light source at the optical center of the camera [19, 32]. As in this
case the view direction and light source direction are the same, we obtain
θ = 2φ. Then, while in the original Phong model the light intensities are
assumed to be RGB (colour) values, we restrict the model to scalar valued
intensities as we only consider grey value images.
With these simplifications, equation (4) becomes

I(x) = kaIa +
1

r2

(

kd(~N · ~L)Id + ks(2(~N · ~L)2 − 1)αIs

)

, (5)

where ~N = ~n(x)
|~n(x)|

denotes the unit normal vector at the surface at point x,

and where ~L is the unit light vector pointing towards the optical center of
the camera. In (5), we used the reformulation

cos θ = cos 2φ = (cos φ)2 − (sin φ)2 = 2(cosφ)2 − 1 = 2(~N · ~L)2 − 1 . (6)

Note here, that by the ansatz (5) the Lambertian model (1) is included as a
special case, i.e., for ka = ks = 0 and kd = 1.
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As the normalised light source direction ~L is given by

~L (S(x)) =
1

√

|x|2 + f2
(−x, f)T , (7)

we can evaluate the inner product ~N · ~L as

~N · ~L (S(x))

=

(

f∇u(x) − fu(x)

|x|2 + f2
x ,∇u(x) · x +

fu(x)

|x|2 + f2
f

)T

· (−x, f)T

|~n(x)|
√

|x|2 + f2
(8)

=

−f∇u(x) · x +
fu(x)

|x|2 + f2
x · x + (∇u(x) · x)f +

fu(x)

|x|2 + f2
f2

|~n(x)|
√

|x|2 + f2
(9)

=

fu(x)

|x|2 + f2
|x|2 +

fu(x)

|x|2 + f2
f2

|~n(x)|
√

|x|2 + f2
=

fu(x)

|~n(x)|
√

|x|2 + f2
. (10)

By use of r = fu(x), we obtain from (5)-(10)

I(x) = kaIa +
1

f2u(x)2

(

kd

u(x)Q(x)

|~n(x)| Id + ks

(
2u(x)2Q(x)2

|~n(x)|2 − 1

)α

Is

)

, (11)

with

|~n(x)| =
√

f2|∇u(x)|2 + (∇u(x) · x)2 + u(x)2Q(x)2 , Q(x) =
√

f2/(|x|2 + f2) .
(12)

Let us point out here, that (11) is a hyperbolic partial differential equation
(PDE) of Hamilton-Jacobi-type. We rewrite (11) yielding the more conve-
nient formulation

(I(x)−kaIa)
f2|~n(x)|

Q(x)u(x)
− kdId

u(x)2
− |~n(x)|ksIs

u(x)3Q(x)

(
2u(x)2Q(x)2

|~n(x)|2 − 1

)α

= 0 . (13)

We now employ for our numerical implementation – as it is usual when
dealing with this problem – that the surface S is visible, i.e., it is in the front
of the optical center, so that u is strictly positive. Then we use the change

6



of variables v = ln(u) which especially implies

|~n(x)|
u(x)

=

√

f2|∇u(x)|2 + (∇u(x) · x)2 + u(x)2Q(x)2

u(x)
(14)

=

√

f2|∇u(x)|2 + (∇u(x) · x)2 + u(x)2Q(x)2

u(x)2
(15)

=
√

f2|∇v(x)|2 + (∇v(x) · x)2 + Q(x)2 , (16)

since ∇v(x) =
1

u(x)
∇u(x). After some further simple computations, we

finally obtain the PDE

J(x)W (x)−kdId exp (−2v(x))−W (x)ksIs

Q(x)
exp (−2v(x))

(
2Q(x)2

W (x)2
− 1

)α

= 0

(17)
where

J(x) = (I(x) − kaIa)f
2/Q(x) , W (x) =

√

f2|∇v|2 + (∇v · x)2 + Q(x)2 .
(18)

The PDE (17) is the basis for our numerical implementation. Note that in
the Phong model, the cosine in the specular term is usually replaced by zero

if cos θ = 2Q(x)2

W (x)2
− 1 < 0.

Some modelling assumptions imposed indirectly by this set-up are pointed
out in the section concerned with the derivation of a suitable stability con-
dition.

2 Theoretical discussion

Existence, uniqueness and well-posedness. A point of general interest
in the context of this work is the existence and uniqueness of an analytical
solution of the model. For this, we need to consider the PDE together with
appropriate boundary conditions ϕ over a finite domain, i.e., over a given
image.
Let us clearly point out, that the appropriate notion of solutions for Hamilton-
Jacobi equations of the type discussed here is the notion of viscosity solutions,
see for instance [5]. Also, it should be understood clearly, that in the case
of Hamilton-Jacobi equations there is in general more than one allowed vis-
cosity solution, two of which can be distinguished as the viscosity sub- or
supersolution, respectively. This linguistic usage stems from the fact that
the viscosity supersolution is in a pointwise sense larger or equal to all other
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Table 1: Units
Term Unit

[f], [x1], [x2] m
[v], [ka], [kd], [ks], [Id], [Is] 1

[vx], [vy] 1/m
[I], [Ia] 1/m2

possible viscosity solutions. The viscosity subsolution is the analogous lower
bound solution in the described sense.
We are especially interested in computing the viscosity supersolution, as by
this unique choice we avoid strange artefacts like convex/concave ambigui-
ties. In order to do this, it is recommended for theoretical purposes to set
Dirichlet boundary conditions ϕ ≡ +∞ as already elaborated in [19]. Note
that this theoretical setting does not imply numerical problems or difficul-
ties; as a practical consequence the boundary condition becomes virtually
unimportant, and we can use Neumann boundary conditions in our imple-
mentation without any problems. However, let us stress, that this particular
consequence arises by an Eulerian formulation of the problem. It does not
hold, e.g., in the case of the recent semi-Lagrangian method for Lambertian
SfS of Cristiani et al. [6].
The Hamiltonian corresponding to the model can be verified to fit into the
framework presented in [20, 21], and thus the described boundary value prob-
lem is well-posed; compare the investigations in [19, 20, 21] to which we have
nothing to add here.

Multi-scale analysis. We now give a multi-scale analysis of the problem,
which illuminates an important construction point of our numerical solver.
In a multi-scale analysis as done, e.g., in the context of computational fluid
dynamics [15], the variables of interest are expressed via a reference value
times a normalised dimensionless new variable. In many cases, it is then
useful to do all computations in the dimensionless variables, multiplying just
for the final output the computed values with the corresponding reference
values.
As a side effect of such a proceeding, it is possible to check if the dimensions
in a new model are put together correctly. Table 2 shows the units of the
occuring terms in the PDE.
It follows easily, that [Q] = 1 and [J ] = 1

m2 m
2 = 1. For [W ], we obtain

[W ] =

√

m2

m2
+
(m

m
+

m

m

)2

+ 12 =
√

12 = 1 (19)
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which means all occuring terms in the PDE (17) are dimensionless.
Now we focus on the influence of different orders of magnitude of contribu-
tions, as this sheds light on the computational set-up. In order to conquer a
useful result, it turns out that it makes sense to employ scalings in the point
location x = (x1, x2)

T as well as in the focal length f. These are parameters
by which we may finally describe the ratio of image size and distance of the
retinal plane – where x is located – from the optical center. More specifically,
we consider

x := xref · x̂ and f := fref · f̂ , (20)

with the obvious scalar reference values xref , fref , and where x̂ = (x̂1, x̂2)
T , f̂

are the scaled variables.
Note that f is a constant parameter for one single given image, so that it
may seem at first glance that it is not a reasonable choice for our analysis.
However, introducing a scaling of f as in (20) enables us to compare the
difficulty of experiments, see the section on numerical tests.
Pure convection – the term JW . We consider first the terms contributing
to the part of (17) corresponding to the Lambertian model, i.e., (i) J(x), and
(ii) W (x). For J(x) we obtain

(I(x) − kaIa) f2

Q(x)

= (I(x) − kaIa)
(

fref · f̂
)2

√

|xref · x̂|2 +
(

fref · f̂
)2

fref · f̂
(21)

= fref (I(x) − kaIa) f̂ 2 ·

√

|x̂|2 · x2
ref + f̂ 2 · f 2

ref

f̂
(22)

= f 2
ref (I(x) − kaIa) f̂ 2 ·

√

|x̂|2 · γ + f̂ 2

f̂
︸ ︷︷ ︸

=: 1/Q̂γ

= f 2
ref ·

(I(x) − kaIa) f̂ 2

Q̂γ

(23)

with γ :=
x2

ref

f 2
ref

. Now we turn to W (x). Plugging in the terms from (20), a

9



simple computation yields

√

f2|∇v|2 + (∇v · x)2 + Q(x)2

=

√
√
√
√
√
√

(

fref · f̂
)2

|∇v|2 + (xref∇v · x̂)2 +

(

fref · f̂
)2

|xref · x̂|2 +
(

fref · f̂
)2 (24)

= fref ·
√

f̂ 2|∇v|2 + γ(∇v · x̂)2 +
1

f 2
ref

· Q̂2
γ . (25)

Putting (23) and (25) together gives

J(x)W (x) = f 3
ref ·

(I(x) − kaIa) f̂ 2

Q̂γ

·
√

f̂ 2|∇v|2 + γ(∇v · x̂)2 +
1

f 2
ref

· Q̂2
γ

︸ ︷︷ ︸

=: Wγ

.

(26)
At this point of the discussion, let us consider the range of variables in (26):

• (I(x) − kaIa) is in [0, 1].

• f̂ is in (0, 1]; if not used as a comparison tool, it holds f̂ = 1.

• Using the point (0, 0)T in the center of any given image, the components
of x̂ = (x̂1, x̂2)

T are in [−1, 1].

• γ is typically in the range of
[

1
2
, 1
]

in our experiments.

• The latter point implies Q̂γ ∈ (0, 1].

• fref ist typically of the order 102 to 103 in our experiments.

These aspects lead to some conclusions, which we discuss now in some detail.

(a) By the factor f 3
ref it becomes clear that the PDE is quite stiff. Moreover,

this problem becomes even more significant for large focal lengths.

(b) The term 1/f 2
ref ·Q̂2

γ is virtually unimportant; its strongest contribution
is close to the image center, roughly decreasing quadratically. In our
experiments, this means it decreases to approximately 10−1 ·1/f 2

ref with
the distance from the center.
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(c) The factor 1/Q̂γ grows from 1 at the image center to (2γ+ f̂ 2)/f̂ at the
image boundary. In our experiments, this is roughly a factor of 2 − 3
for x̂ near the image boundary.

(d) If x̂ is close to the image corners, i.e., for x̂ ≈ (±1,±1)T , we obtain a
notable contribution from the term γ(∇v · x̂)2. Simplifying terms below

the root, we obtain at the image corners approximately

√

f̂ 2 + γ · |∇v|.

In our experiments,

√

f̂ 2 + γ amounts to a factor around 5/4. Hence,

approaching the boundary the term γ(∇v · x̂)2 may become slightly
more important than the term f̂ |∇v|2.

These conclusions show that there are spatially dependent factors involved
within the computation which are especially important close to the boundary,
see (c)-(d). Especially, a multiplier of the considerable number f 3

ref arises,
increasing its importance. This fact will influence the construction of our
scheme, see the next paragraph.
Let us also note that the term 1/f 2

ref · Q̂2
γ is negligible compared to all other

contributions. Thus, we may safely neglect it during the computation of a
suitable time step size.
The specular term. We now consider the contribution due to the specular
term. For this, let us note that it can be rearranged as

W (x)ksIs

Q(x)
exp (−2v(x))

(
2Q(x)2

W (x)2
− 1

)α

= ksIs exp (−2v(x))

(
2Q(x)2

W (x)2
− 1

)α

︸ ︷︷ ︸

=: A

·W (x)

Q(x)
. (27)

Thus, it can be written in the same fashion as J(x)W (x) which can be
arranged as

J(x)W (x) = (I(x) − kaIa)f
2 · W (x)

Q(x)
. (28)

A quick glance at the content of the bracket in A in (27) reveals

2Q2

W 2
− 1 =

2Q2 − f2|∇v|2 + (∇v · x)2 + Q2

W 2
=

Q2 − f2|∇v|2 + (∇v · x)2

W 2
.

(29)
Analogously to the procedure leading to (25), we may draw a factor f 2

ref out
of the nominator and the denominator in (29). Thus, in total no contribution
in terms of a factor fref arises by A. Therefore, we will not consider A further
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and leave it unchanged, just looking after the other factors in the specular
term.
Note that considering the terms in A it is clear that A will finally be in the
range of [−1, 1], whereby a negative number will be mapped to zero. Also, as
α is usually quite large, a strong damping except for points with highlights
is usual with respect to the specular contribution.
By simply identifying terms in (26) and (28), we obtain from (27)-(29)

ksIs exp (−2v(x))

(
2Q(x)2

W (x)2
− 1

)α

· W (x)

Q(x)

= fref ·
ksIs

Q̂γ

exp (−2v(x))

(
2Q(x)2

W (x)2
− 1

)α

︸ ︷︷ ︸

=: A

·Ŵα . (30)

Let us stress, that (29)-(30) reveals an important working mechanism of our
model. As the factor f 3

ref in (26) is a considerable order of magnitude larger
than the factor fref arising in (29), in most parts of a given grey value image
the Lambertian SfS model dominates the reconstruction of the 3-D shape.
Only in parts where the factor exp (−2v) in (29) is of the same order of
magnitude as f 2

ref we obtain an important contribution of the specular term.
Let us briefly comment on the logic behind the latter argumentation, sharp-
ening by this an intuitive understanding of our new model. At a specular
reflection, i.e., at a highlight, the grey value can be expected to be near 255
(white). The SfS assumption, especially the light attenuation term, implies
that a bright image location is closer to the camera than a dark image region.
Thus, the value u describing the shape at a highlight will be close to zero,
as u is given in terms of the distance to the retinal plane. By the change of
variables v = ln u used before (14), this means that at a bright image point
with 0 < u ≪ 1 we have v ≪ 0, and exp (−2v) will be very large. The
minus sign before the specular term then implies, that a surface point with
a highlight is pushed a bit into the direction of the darker background.
The diffuse part. Dividing equation (17) by f 3

ref , we observe that also a
contribution by the diffuse term mainly arises at highlights. The smallness of
this term renders it quite unimportant compared with other contributions, so
that we deal with it explicitly, which is in contrast to previous works [19, 32]
where the intuition to discretise source terms implicitly was employed.

3 Description of the numerical scheme

Artificial time. In order to solve the arising boundary value problem, we
employ the method of artificial time. This means, we introduce a pseudo-
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time variable t writing v := v (x, t), x := (x1, x2)
T ∈ R

2, and we iterate in
this pseudo-time until a steady state defined by vt = 0 is attained. This
proceeding has the following properties desired by us:

• It fits our philosophy as it allows to define an easy-to-code numerical
solver.

• Beginning to evolve in time with an initial state close to the viscosity
supersolution of the PDE, see [1, 5, 19], the iterates reliably converge
to an approximation of the sought viscosity supersolution.

Convection dominant form. We incorporate the information on the rel-
ative size of terms we obtained in the last paragraph by dividing the whole
equation by f 3

ref . This emphasizes the dominance of the transport term JW
over the sources present in all points but highlights.
Setting up the discretisation. Dropping for abbreviation the dependence
on spatial and temporal variables, we thus opt to solve the time-dependent
PDE reading as

vt = f−3
ref JW − f−3

ref

WksIs

Q
exp (−2v)

(
2Q2

W 2
− 1

)α

︸ ︷︷ ︸

=: B

−f−3
ref kdId exp (−2v) .

(31)
Notation. In order to present the basic components of our numerical
method, we employ the following notation:

• vn
i,j denotes the approximation of v (ih1, jh2, nτ),

• i and j are the coordinates of the pixel (i, j) in x1- and x2-direction,
respectively,

• h1 and h2 are the corresponding mesh widths,

• τ is a time step size which needs to be chosen automatically or by the
user.

Temporal discretisation. For the discretisation of the time derivative
vt (x, t) we use the well-known Euler forward method, i.e.,

vn+1
i,j − vn

i,j

τ
(32)

approximates vt (x, t) at (x, t) = (ih1, jh2, nτ).
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As indicated, the value of τ can be defined by the user, however, the restric-
tion applies that the scheme shall be stable. In Section 4, we will derive a
stability condition on the time step size.
In defining τ we apply our knowledge from the multi-scale analysis and com-
pute it in a pointwise fashion, i.e., τ = τi,j . The reason for this is the spa-
tially dependent factor analysed in the previous section, see the conclusions
(c) and (d) there. If we would define τ as a constant number globally for
the whole image, our iterates would satisfy the stability condition near the
image boundary which is the critical region in this context, but at the price
of converging very slowly in the center region of the image. Note also, that
our aim is to compute the steady state defined by vt = 0, so that a pointwise
choice of τ is feasible without introducing a consistency problem. This also
holds with respect to the factor f−3

ref , as in the steady state one may safely
multiply the PDE with f 3

ref .
Spatial discretisation. Let us now consider the spatial terms. Here, the
discretisation will be more intricate. The discretisation of I(x) and Q(x)
is simple as these terms can be evaluated pointwise at all pixels (i, j). As
a building block for the discretisation of spatial derivatives incorporated in
W , we use the stable upwind-type discretisation of Rouy and Tourin [26],
reading

vx1
(ih1, jh2, ·) ≈ min

(

0,
vi+1,j − vi,j

h1
,

vi−1,j − vi,j

h1

)

, (33)

vx2
(ih1, jh2, ·) ≈ min

(

0,
vi,j+1 − vi,j

h2

,
vi,j−1 − vi,j

h2

)

. (34)

Note, that in (33)-(34) the time level is not yet specified. The reason for this
is that we use a combination of (i) a sweeping technique and (ii) a Gauß-
Seidel-type iteration in order to accelerate convergence, leading to a different
choice of values for each sweeping direction.
Let us elaborate on this as follows, beginning with the description how to
incorporate the Gauß-Seidel-idea. Notice that at pixel (i, j) the data

vi,j+1

vi−1,j vi,j vi+1,j

vi,j−1

(35)

are used in (32)-(33) because of the upwind differences. Let us assume for the
moment that we iterate pixel-wise from left to right and, beginning with the
top line, from top to bottom over the computational grid. Thus, ascending
in i and descending in j, we incorporate the already updated values into the
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scheme. This procedure yields the formulae

vx1
(x, t)|(x,t)=(ih1,jh2,t) ≈ min

(

0,
vn

i+1,j − vn
i,j

h1
,

vn+1
i−1,j − vn

i,j

h1

)

, (36)

vx2
(x, t)|(x,t)=(ih1,jh2,t) ≈ min

(

0,
vn+1

i,j+1 − vn
i,j

h2
,

vn
i,j−1 − vn

i,j

h2

)

. (37)

Let us emphasize, that the data vn+1
i,j+1 and vn+1

i−1,j in (36)-(37) are already
computed via the described procedure, so that they are fixed and one can
safely use them for the computation of vn+1

i,j .
Sweeping. We now turn to the sweeping technique which we adopt from the
works [35, 36]. The idea behind this technique is as follows. For hyperbolic
equations like the Hamilton-Jacobi PDEs we are dealing with, information is
transported along characteristics. Thus, iterating in only one manner – e.g.,
always ascending in i and descending in j as described above – information
flow may not be realised numerically in an optimal way.
Staying within the Gauß-Seidel-type framework of our example, in a pixel
(i, j) updated values are always taken into account just from the left, see (36),
and from above, see (37). Therefore, information is numerically propagated
faster in the directions “from left to right” and “from top to bottom” as in all
other possible directions. As a remedy, it is obvious to switch the iteration
directions in the following cyclic fashion:

1. Left → Right, and Top → Bottom

2. Top → Bottom, and Right → Left

3. Right → Left, and Bottom → Top

4. Bottom → Top, and Left → Right

Exactly this procedure is called sweeping. As is easily seen, defining the
sweepings as above different values vn+1

i±1,j±1 are needed to be taken into ac-
count in (33)-(34) depending on the sweeping direction.
Source terms. Being a factor within the part of the scheme where upwind-
ing is employed, we discretise ksIse

−2v at pixel (i, j) using the known data
at point (i, j), i.e., setting ksIse

−2vn
i,j . Note, that this is also adequate as the

corresponding specular term in practice only yields notable contributions at
highlights, compare our discussion in Section 3.
Finally, let us consider the source term f−3

ref kdIde
−2v. Source terms like this

typically enforce the use of very small time step sizes when evaluated explic-
itly, leading in this case to very long computational times. However, we have
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seen in our multi-scale analysis, that this source term generally yields a very
small contribution, and even at highlights its contribution is of one order in
fref lower than the specular contribution. Thus, we discretise it explicitly,
i.e.,

f−3
ref kdIde

−2v(x,t)|(x,t)=(ih1,jh2,nτ) ≈ f−3
ref kdIde

−2vn
i,j . (38)

Scheme summary. Letting B̂ denote the discretised version of term B from
(31), we obtain pixelwise the update formula

vn+1
i,j = vn

i,j − τB̂ − τf−3
ref kdIde

−2vn
i,j . (39)

Thus, by (39) we obtain a completely explicit scheme which needs to evalu-
ated pixelwise, iterating over the grid.
Coarse to fine. In addition to the sweeping technique, we employ a cascad-
ing multigrid method, compare [4]. This actually amounts to a coarse-to-fine
algorithm, where we interpolate the input image linearly on coarser grids
from the original input image. In the restriction step, we take the maximum
over all neighbouring depths as initialization for new grid points. This en-
sures consistency of our scheme, since we rely on being above the viscosity
solution. This accelerates the convergence of our iterative solver.

4 The choice of the time step size

Conditional stability. The method of artificial time we use is relatively
easy to implement, as it does not rely on solving systems of linear or nonlinear
equations. This is very important, as it enables a large spectrum of image
processing researchers to access and use the model. However, the price one
has to pay for this desirable property is that a consistent explicit method like
(39) is typically conditionally stable, i.e., the use of a too large time step size
leads to a blow-up of numerical solutions.
In practice, estimates for an upper bound on the time step size are often too
pessimistic for direct use. In our case we will employ – motivated by the
discussion in Section 3 – a local estimate leading to a convenient pixelwise
computation of a suitable time step size. Moreover, as we will also see, a
stability investigation as performed here encourages to write down clearly
the underlying modelling assumptions in the discrete setting.

Discrete minimum-maximum principle. A meaningful stability no-
tion in the context of the discussed PDE is a discrete minimum-maximum-
principle, i.e., the solution obeys an upper and lower bound determined by
the data. To ensure the validity of this criterion, we impose a local version
of it, namely that the update is not allowed to become smaller or larger
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than all neighbouring data taken into account within the stencil. If this
corresponding condition is met pixelwise, the validity of the global discrete
minimum-maximum-principle is implied as can easily be seen. Let us remark,
that this stability notion relates to the corresponding property of viscosity
solutions of the discussed PDE [5].
Let us stress here, that the model (31) is too nonlinear to obtain an elegant
and nice formula for a stability condition on τ . A mathematically correct,
but impractical means of computing a suitable τ would be to compute point-
wise all occuring terms in their discrete representation, and compute τ so
that the discrete minimum-maximum-principle holds. Besides the arising
numerical effort to check several inequalities, this brute force method does
not emphasise an understanding of the underlying process. In particular, it
turns out that one can gain valuable insights into our model by use of some
slight simplifications.
In order to realise the described concept, we first consider the update formula
(39) without the diffuse source term:

vn+1
i,j = vn

i,j − τB̂ . (40)

As in

B̂ = f−3
ref JW − f−3

ref

WksIs

Q
exp (−2v)

(
2Q2

W 2
− 1

)α

, (41)

the term f−3
ref JW and the specular term arise additively, and we can pro-

ceed by considering the contributions separately adding up the resulting con-
straints in the end. The diffuse part is discussed separately at the end of this
paragraph.
Convection. Taking into account only the term f−3

ref JW , a local discrete
minimum-maximum principle is satisfied provided τ satisfies the condition
∣
∣τf−3

ref JW
∣
∣ ≤ δv with

δv := max

(∣
∣
∣
∣

vi+1,j − vi,j

h1

∣
∣
∣
∣
,

∣
∣
∣
∣

vi−1,j − vi,j

h1

∣
∣
∣
∣
,

∣
∣
∣
∣

vi,j+1 − vi,j

h2

∣
∣
∣
∣
,

∣
∣
∣
∣

vi,j−1 − vi,j

h2

∣
∣
∣
∣

)

.

(42)
As indicated before, we do not specify the time level in (42) because of the
employed sweeping algorithm. The data in δv are taken from time level n or
n + 1, depending on the sweeping direction, respectively.
Employing the notation ∇v̂ for the discretisation of ∇v within W , we com-
pute the following estimates:

|∇v̂|2 ≤
(√

2δv2
)2

= 2δv2 and (∇v̂ · x)2 ≤ ((x1 + x2) δv)2 = (x1 + x2)
2 δv2 ,

(43)
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where we make use of the pixel coordinates x = (x1, x2). At the pixel with
index (i, j) this is equal to (ih1, jh2), i.e., a scaling by use of xref is not taken
into account in the above formulation. Note, that we could estimate globally
(x1 + x2)

2 = x2
ref (x̂1 + x̂2)

2 ≤ x2
ref (1 + 1)2 = 4x2

ref , but instead we follow a
local formulation taking into account x̂ = (x̂1, x̂2). Denoting then by Ŵ the
discretised version of W and using Q̂2

i,j ≤ 1, we arrive at

Ŵ ≤ fref ·
√

2f̂ 2δv2 + γ (x̂1 + x̂2)
2 δv2 +

1

f 2
ref

. (44)

Employing then the complete expression f−3
ref JW at pixel (i, j) as well as the

discussion below (26), we obtain

f−3
ref JW

∣
∣
(i,j)

≤ (Ii,j − kaIa) f̂ 2

Q̂γ

·
√

2f̂ 2δv2 + α (x̂1 + x̂2)
2 δv2 +

1

f 2
ref

≈ (Ii,j − kaIa) f̂ 2

Q̂γ

·
√

2f̂ 2δv2 + α (x̂1 + x̂2)
2 δv2

=
(Ii,j − kaIa) f̂ 2

Q̂γ

·
√

2f̂ 2 + α (x̂1 + x̂2)
2 · δv . (45)

See also the remark at the end of this paragraph with respect to the slight
simplification used above. Note that Q̂γ depends on (i, j). The resulting
expression (45) implies for all reasonable δv 6= 0 the pointwise stability con-
dition

τ ≤ Q̂γ

(Ii,j − kaIa) f̂ 2

√

2f̂ 2 + γ (x̂1 + x̂2)
2
. (46)

Specular source term. We now turn to the discretised specular source
term

f−2
ref

ŴγksIs

Q̂γ

exp (−2vn
i,j)

(
2Q2

i,j

Ŵ 2
− 1

)α

, (47)

see in particular (30) and (41).
The following time step size estimate is interesting, as it nicely illustrates
the influence of some underlying modeling assumptions. As noted below
(18), the term (·)α is nonnegative. Thus, one could estimate the power of
2Q2

i,j/Ŵ
2 − 1 via

2Q2
i,j

f2|∇v̂|2 + (∇v̂ · x)2

︸ ︷︷ ︸

≥0

+Q2
i,j

− 1 ≤
2Q2

i,j

Q2
i,j

− 1 = 1 (48)
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by 1α = 1. However, let us point out clearly, that this estimation is at first
glance very pessimistic in a local setting as exactly the strong damping via
(·)α is responsible for the negligible size of contributions of the specular term
at non-highlights within computations. Thus, the above simplification may
be understood as a reasonable estimate at highlights. This fact needs to be
kept in mind in interpreting other occuring contributions.
Diffuse source term. It remains to discuss the factor exp (−2vn

i,j) which
proves to be a bit more intricate. As v = ln u, we take into account the

Modelling assumption No. 1 u ≥ umin > 0 , (49)

where umin denotes the minimal distance an object is away from the camera.
Note, that this assumption is not really a restriction, as (i) by it, we avoid
division by zero, and (ii) the situation that an object is directly before the
camera is not of practical interest. We would also like to impose

Modelling assumption No. 2 ∀ i, j : f
√

Ii,j − kaIa ≥ 1 . (50)

As I is normalised, we have substituting f2u2 for r2

Ii,j − kaIa ≤ 1

f2u2
, (51)

see (4). After some trivial manipulations, the latter inequality leads to

u ≤ 1

f
√

β
, where β := min

i,j
(Ii,j − kaIa) , (52)

and where we set β > 0, again in accordance with (4). Thus, by (52) we
impose an upper bound umax with umax ≤ 1, i.e, we assume that there are no
black pixels in the input image for the SfS process. Note, that this assumption
is usually made for SfS algorithms without a detailed explanation, see e.g.
[19, 25]. As a second consequence of the basic relation (51), we can fix umin

via

f2 max
i,j

(Ii,j − kaIa) =
1

u2
min

. (53)

In summary, it follows

u ∈ [umin, umax] ⇒ ln(u) ∈ [ln (umin) , ln (umax)] ⊂ (−∞, 0] . (54)

For a global estimate of the exponential term in (47), we thus could employ

exp (−2vn
i,j) ≤ exp (−2 ln (umin)) =

1

u2
min

. (55)
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In a similar fashion as in (45), we can then find the estimate

τ ≤ f 2
refu

2
minQ̂γ

ksIs

√

2f̂ 2 + γ (x̂1 + x̂2)
2
. (56)

Note that, by (53), the number f 2
refu

2
min is in general larger than 1, so that

the specular part only implies a restriction on τ for reasonably large numbers
Is, i.e., at highlights. Also, a highlight implies that u is identical or close to
umin, so that also the numerator is concerned with this situation. Thus, a
necessary condition for (56) to hold is given by

τ ≤ Q̂γ

ksIs

√

2f̂ 2 + γ (x̂1 + x̂2)
2
. (57)

At this point of the discussion, we may summarise the conditions (46) and
(57) as

τ ≤ Q̂γ
√

2f̂ 2 + γ (x̂1 + x̂2)
2
·
(

1

ksIs

+
1

(Ii,j − kaIa) f̂ 2

)

. (58)

It remains to discuss the influence of the diffuse term f−3
ref kdIde

−2vn
i,j . As seen

in (55), one could estimate e−2vn
i,j by u−2

min; then (53) shows that f−2
ref u

−2
min is

identical to maxi,j (Ii,j − kaIa), which should be close to 1 in many situations
of interest. A factor f−1

ref remains, implying that the diffuse term yields
a minor contribution at specular highlights, while at all other points the
contribution is damped exponentially.
Let us remark here, that instead of making use of the scaling argument to
neglect 1/f 2

ref in (45), one could estimate the root from above by a Taylor
linearisation at 1/f 2

ref . Then this term would be counted to the sources,
having the same order of magnitude as the diffuse part. This proceeding
would appeal to be a bit more rigorous, but it is also longer and bears no
additional content.
In a similar fashion as the slight simplification leading to (45) and (56), we
neglect the minor diffuse term, defining for practical purposes τ as

CFL · Q̂γ
√

2f̂ 2 + γ (x̂1 + x̂2)
2
·
(

1

ksIs

+
1

(Ii,j − kaIa) f̂ 2

)

(59)

where CFL := 0.7 < 1 to ensure stability.
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5 Experiments

In this section, we give both quantitative and qualitative experimental eval-
uations of our method on synthetical and real images.

Figure 1: Synthetic wheat beer glass input images. Left: f = 251.7, Right:
f = 1000.

Synthetic experiment. This test case addresses two qualitatively different
situations, corresponding to different ratios xref/fref ; see the discussion in
Section 2.
Figure 1 shows images of a synthetic wheat beer glass, rendered with two
different focal lengths. The rendering parameters were f = 1000, h1 = h2 = 1,
kd = 0.7, ks = 0.3, Id = Is = 80 and f = 221.7, h1 = h2 = 1, kd = 0.7,
ks = 0.3, Id = Is = 4, respectively. The smaller focal length leads to extreme
perspective distortion. While perspective helps to make the problem well-
posed, too much perspective distortion can make the reconstruction more
difficult, e.g. because of occlusions at object boundaries.
Figure 2 shows the ground truth surfaces for both input images, i.e., the
surfaces that would be obtained when using the known correct depths. In the
following evaluation, we compare the reconstructed depth with the correct
depth from this known surface.
In Figure 3 we find reconstructions of the synthetic beer glass images using
both the Lambertian surface model [19, 32] as well as the reconstruction
using the method presented in this paper. Parameters of the reconstruction
are the correct ones we know from the rendering process. As we can see,
the reconstruction for both input images looks much better using the non-
Lambertian method. The Lambertian reconstruction looks distorted at the
specular highlights. In addition to that, it is estimated much too close to
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Figure 2: Ground truth surfaces for the beer glass experiment. Left: f =
251.7, Right: f = 1000.

Figure 3: Reconstructed surfaces of the beer glass experiment. Left: f =
251.7, Right: f = 1000. Top row: Lambertian surface model, Bottom row:
Phong surface model.

the camera. In contrast, the reconstruction using the Phong surface model
is much more accurate for both input images.
Comparing the average L1 error relative to the actual depth, we get the
values shown in Table 2. Using the Phong model for the reconstruction
clearly gives better results than using a Lambertian surface model, for both
input images. Note, however, that despite the fact that perspective is helpful
for the reconstruction, the reconstruction with the larger focal length has a
smaller error. Some parts of the surface might be occluded in the image with
large perspective distortion, which leads to missing information about the
surface. Since the background is black, the reconstruction will be as steep
as possible at the boundary of the glass, since the attenuation term implies
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an infinite depth there. For small focal lengths, the attenuation factor plays
a larger role in the reconstruction, which is mainly useful for transitions
between different objects. It is a tradeoff between a larger impact of the
attenuation factor and potential occlusions, but in general a very small focal
length makes the reconstruction difficult.

Table 2: Relative L1 depth errors for the beer glass experiment.
f = 251.7 f = 1000

Lambertian 30.79% 20.67%
Phong 9.59% 7.00%

Finally, Table 3 shows the computational times of the reconstruction of
our proposed method compared to the recent state-of-the-art (Lambertian)
method by Prados et al. [19, 25]. We can see that our method is considerably
faster than this Lambertian reference method, although more terms are con-
sidered due to the more complicated surface model. The reconstruction times
were obtained using a straightforward implementation in C of both methods
on a standard PC (Linux, Pentium IV, 3.2 GHz, 2 GB RAM). Employing a
coarse-to-fine strategy improves the times even further. In each experiment,
we stopped the iteration as soon as the maximum change in the depth u was
smaller than 10−7.

Table 3: Computation times for the beer glass experiment.
f = 251.7 f = 1000

Prados et al. (Lambertian) 263s 273s
Our method (Phong) 172s 164s

Our method (Phong) + coarse-to-fine 111s 104s

In summary, this experiment shows that using the Phong surface model
for shape reconstruction from shading on images including specular high-
lights drastically improves the reconstruction accuracy. Also, we see that our
method is significantly faster than the state-of-the-art Lambertian method
in the field.
The real beer glass experiment. In the second experiment, we test the
algorithm on a real-world image. Figure 4 shows an image of a beer mug.
The image was taken with a normal digital camera with built-in camera flash.
The surface was approximately 50 centimeters away from the camera.
Since the writings on the surface of the mug would violate the assumption
that objects have uniform reflectance properties, we interpolate the image
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Figure 4: Real-world experiment: Original image, interpolation mask and
input image.

using image inpainting with homogeneous diffusion [3] at these locations.
Figure 4 shows the interpolation mask and the resulting input image.
Figure 5 shows the reconstruction using both a Lambertian surface model
and the Phong model with the estimated parameters f = 3000, h1 = h2 = 1,
Is = Id = Ia = 2000, ka = 0.1, kd = 0.6, ks = 0.3. Again, we observe
a distortion of the surface at specular highlights. This distortion is much
stronger for the Lambertian reconstruction than for the reconstruction using
the Phong model. Still, the reconstruction is not perfect even with the Phong
model, but much closer. Also, the step at the lower half of the mug is far
too steep in the Lambertian reconstruction, while it is recovered pretty well
using the Phong model.
Additionally, the Lambertian method estimates the cup to be much closer to
the camera than it actually is, which is not observable in the shown images.
This results in a larger perspective distortion of the background, which is
reconstructed much better if using the Phong method. Note that in this
image, several model assumptions are violated, there is more than one surface
in the image, and the camera flash is not located at the optical center, causing
shadows that could not occur if this model assumption was fulfilled. This
shadow results in different reconstructions of both sides of the mug, on the
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Figure 5: Reconstructions of the beer mug. Left: Lambertian surface model.
Right: Phong surface model.

shadow side, the reconstruction is much steeper. This is natural, since the
darker pixel implies the depth to be larger because of the light attenuation
term.
In conclusion, the reconstruction using the Phong model is much better
than the one using the Lambertian model, in particular at specular highlights.
This illustrates that on real-world scenes, where a lot of highlights occur, our
new model can perform significantly better than other approaches in the
field.

6 Summary

We have introduced an important improvement in the promising class of
perspective shape from shading models, incorporating the possibility to use
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more realistic surface reflectance properties than before. Also, we have dis-
cussed in detail an efficient yet relatively simple and easy-to-code algorithm,
which is very important for a practical use of the model.
Our developments in the near future extending the discussed model will
center around a reasonable parameter estimation for the purposes of SfS,
especially concerning the albedo of objects. Furthermore, we seek further
improvements on the numerical side, although the proposed scheme seems
to be a good choice with respect to the balance of efficiency and coding
simplicity.
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