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Abstract

Tensor fields are important in digital imaging and computer vi-
sion. Hence there is a demand for morphological operations to per-
form e.g. shape analysis, segmentation or enhancement procedures.
Recently, fundamental morphological concepts have been transferred
to the setting of fields of symmetric positive definite matrices, which
are symmetric rank two tensors. This has been achieved by a matrix-
valued extension of the nonlinear morphological partial differential
equations (PDEs) for dilation and erosion known for grey scale im-
ages. Having these two basic operations at our disposal, more ad-
vanced morphological operators such as top hats or morphological
derivatives for matrix fields with symmetric, positive semidefinite ma-
trices can be constructed. The approach realises a proper coupling of
the matrix channels rather than treating them independently. How-
ever, from the algorithmic side the usual scalar morphological PDEs
are transport equations that require special upwind-schemes or novel
high-accuracy predictor-corrector approaches for their adequate nu-
merical treatment. In this chapter we propose the non-trivial exten-
sion of these schemes to the matrix-valued setting by exploiting the
special algebraic structure available for symmetric matrices. Further-
more we compare the performance and juxtapose the results of these
novel matrix-valued high-resolution-type (HRT) numerical schemes by
considering top hats and morphological derivatives applied to artificial
and real world data sets.

1 Introduction

Initiated by Serra’s and Matheron’s work on binary morphology [33, 46] in the
sixties, mathematical morphology has developed into a powerful discipline
that provides versatile tools to the image processing community. Over the
last four decades morphological concepts have been generalised and extended
not only to greyscale images but also to vector-valued images and image
sequences. Numerous monographs, e.g. [26, 34, 47, 48, 51], and conference
proceedings, e.g. [21, 22, 27, 32, 53], bear testimony to the variety and the
success of mathematical morphology.
Recently, the fundamental morphological operations of dilation and erosion,
and with it some other basic morphological operators, have been made avail-
able for matrix-valued data, matrix fields for short [11].
The interest of the image processing community in matrix-valued data has
been triggered mainly by the advent of diffusion tensor magnetic resonance
imaging (DT-MRI) [3]. This 3-D medical imaging technique assigns to each
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voxel a tensor, i. e., a positive semidefinite 3 × 3-matrix, which provides in
vivo information about the diffusion of water molecules in biological tissue.
As such it mirrors the geometry and organisation of the tissue under exam-
ination and is a very valuable diagnostic tool [39]. Furthermore, in image
analysis itself tensors turned out to be a useful concept [23]: The structure
tensor [18], for instance, (also known as Förstner interest operator, second
moment matrix or scatter matrix) is used for corner detection [25], but also
for motion [4] and texture analysis [40]. Finally, in physics and engineering
anisotropic behaviour of quantities is described by tensors such as inertia,
diffusion, permittivity and stress-strain tensors. Hence, modern image pro-
cessing should provide appropriate tools to analyse matrix fields.
To fix notation we consider a matrix field as a mapping

F : Ω ⊂ IRd −→Mn(IR) (1)

from a d-dimensional image domain into the set of k × k-matrices with real
entries, F (x) = (fp,q(x))p,q=1,...,n . Unless otherwise stated we will concentrate
throughout this chapter on matrix fields with values in the set Sym(k) of all
symmetric matrices, Sym(k) ⊂ Mk(IR). In most applications this type of
matrices is of practical relevance.
In [10] novel matrix-valued partial differential equations governing dilation
and erosion for matrix fields have been proposed and numerically solved by a
first-order scheme of Osher and Sethian generalised to the setting of matrices.
However, in the case of scalar images the morphological differential equations
of dilation and erosion can also be solved numerically by a flux corrected
transport (FCT) scheme as introduced in [8]. This scheme follows a predictor-
corrector strategy which allows for an almost perfect preservation of edges
and discontinuities outperforming even a high-resolution scalar variant of
the Osher-Sethian scheme. In what follows, we denote the corresponding
Osher-Sethian schemes by OS-I and OS-II, respectively.
As a novelty we propose in this chapter high-resolution-type matrix-valued
extensions of OS-II as well as of the FCT scheme. Furthermore, we compare
in experiments on matrix fields the performance of OS-I, OS-II, FCT, and
we juxtapose the results to the output of the ordering based morphological
operators which were introduced and investigated in [15, 12].
The paper has the following structure: First we deal in Section 2 with math-
ematical morphology for grey scale images. We present the ordering and
the PDE-based approach for the two fundamental operations, dilation and
erosion. For the nonlinear hyperbolic PDEs governing dilation and erosion
we present three schemes for their numerical solution. The section ends with
a short review of some basic morphological derivative operators. Section 3
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gives a compact description how the operations of dilation and erosion can be
defined for matrix fields. To this end we utilise the Loewner partial ordering
for symmetric matrices to define a supremum and infimum of a finite set of
symmetric matrices. In Section 4 we establish matrix-valued PDEs for dila-
tion and erosion, and we introduce matrix-valued counterparts of the three
schemes for the numerical solution of the dilation/erosion equations in the
setting of matrix fields. In our experiments we apply morphological opera-
tions to artificial and real DT-MRI data sets. The operations are realised via
ordering and via the three numerical schemes of the PDE-based approach.
We report on the comparison of the results in Section 5. The remarks in
Section 6 conclude this chapter.

2 Morphology for Greyscale Images

In this section we briefly recall the definitions of some basic scalar-valued
morphological operators whose matrix-valued generalisations will be of in-
terest in this chapter. First we focus on the two very different approaches
to the fundamental operations of mathematical morphology: Dilation and
erosion.
The first approach is based on ordering leading to the so-called flat mor-
phology while the continuous-scale morphology relies on partial differential
equations. After introducing these approaches, we briefly recall some im-
portant morphological operations based on subsequent applications of dila-
tion/erosion.
A second topic addressed here are numerical schemes for scalar-valued PDE-
based morphology. After a general discussion, we introduce the methods
we use in this paper, giving them a formulation easily carried over to the
tensor-valued setting discussed later.

2.1 Erosion and dilation based on ordering

In flat morphology for a scalar image f(x, y) the so-called structuring element
(SE) is a set B ⊂ IR2 that determines the neighbourhood relation of pixels
with respect to a shape analysis task. Often convex sets such as disks, ellipses
or squares are used as structuring elements.
Grey scale dilation ⊕ replaces the greyvalue of the image f(x, y) by its supre-
mum/maximum within a mask defined by B,

(f ⊕ B) (x, y) := sup {f(x−x′, y−y′) | (x′, y′)∈B}, (2)
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while erosion ⊖ is determined by taking the infimum/minimum,

(f ⊖ B) (x, y) := inf {f(x+x′, y+y′) | (x′, y′)∈B}. (3)

The notions of supremum and infimum only make sense if an ordering of the
grey values is possible. The following PDE-based approach is in principle
free from this requirement.

2.2 Erosion and dilation by PDEs

In ([43, 44]) nonlinear partial differential equations were proposed that mimic
the process of dilation and erosion of an image f with a ball as structuring
element. These Eikonal equations read

∂tu = ±‖∇u‖ :=
√

(∂xu)2 + (∂yu)2 on Ω×]0,+∞[

∂nu = 0 on ∂Ω×]0,+∞[ (4)

u(x, y, 0) = f(x, y) for all (x, y) ∈ Ω

The evolution process governed by (4) is initialised with the original image f
and yields transformed versions u(·, t) for any t ∈]0,+∞[. Here ∂nu denotes
the outward normal derivative of u at the boundary ∂Ω of the image domain
Ω. The plus sign + realises the dilation, while the minus sign − corresponds
to erosion.
The dilation/erosion PDEs (4) belong to the class of hyperbolic PDEs, see
e.g. [16, 17] for introduction. Hyperbolic processes describe transport pro-
cesses and are strongly linked to wave propagation. An important property
of solutions to hyperbolic PDEs is that discontinuities, often called shocks,
generally arise. Note in the context of this work, that the resolution of shocks
requires specifically tailored numerical schemes, see e.g. [31].

2.3 Morphological operations

The combination of dilation and erosion lead to various other morphological
operators such as opening and closing,

f ◦B := (f ⊖ B) ⊕ B , f •B := (f ⊕ B) ⊖ B , (5)

the white top-hat and its dual, the black top-hat,

WTH(f) := f − (f ◦B) , BTH(f) := (f •B) − f , (6)

and finally, the self-dual top-hat,

SDTH(f) := (f •B) − (f ◦B) . (7)
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Boundaries of objects are loci of high grey value variations in an image, and
as such they can be detected by derivative operators. The so-called Beucher
gradient

̺B(f) := (f ⊕B) − (f ⊖ B) , (8)

as well as the internal and external gradient,

̺−B(f) := f − (f ⊖ B) , ̺+
B(f) := (f ⊕B) − f , (9)

are morphological counterparts of the norm of the gradient f , ‖∇f‖, if f is
considered as a differentiable image.
In [55] a morphological Laplacian has been introduced. But we define a
variant by

∆Bf := ̺+
B(f) − ̺−B(f) = (f ⊕B) − 2 · f + (f ⊖ B) . (10)

This Laplacian is a morphological equivalent of the second derivative ∂ηηf

where η stands for the unit vector in the direction of the steepest slope. It
allows us to distinguish between influence zones of minima and maxima of
the image f . This is a vital property for the construction of so-called shock
filters [24, 30, 37]. Shock filtering amounts to applying either a dilation or
an erosion to an image, depending on whether the pixel is located within the
influence zone of a minimum or a maximum:

SBf :=











f ⊕ B , ∆Bf < 0,

f , ∆Bf = 0,

f ⊖ B , ∆Bf > 0.

(11)

A considerable number of variants of shock filters have been considered in
the literature [1, 20, 36, 41, 45, 56]. When they are applied iteratively, exper-
iments show that their steady state is given by a piecewise constant image
with discontinuities (“shocks”) between adjacent segments of constant grey
value. For more details about the morphological shock filter as introduced
above see [12].

These operators are at our disposal once we have succeeded to performing
dilation and erosion on matrix fields. Depending on the quality of the discrete
realisations these two operations we will see considerable differences in the
output of the composed morphological operators.

2.4 Numerical schemes for PDEs of erosion or dilation

In the context of PDE-based mathematical morphology, first-order finite dif-
ference methods such as the Osher-Sethian scheme [35, 38, 49] and the Rouy-
Tourin method [42, 54] are adequate choices. A typical design feature of such
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PDE-based algorithms for mathematical morphology consists of diffusive nu-
merical effects necessary to capture propagating shocks. Unfortunately, this
also leads to a blurring of edges.
The construction of an accurate method yielding sharp edges is a non-trivial
task. In [50, 52], the attempt to circumvent this blurring by means of using
higher-order ENO1 interpolants within numerical schemes was investigated
in scalar-valued morphology. However, schemes like these are very difficult to
implement in a tensor-valued setting since the mathematical concept behind
ENO interpolants does not carry over. On the other hand, as we show in
this work, it is possible to define a reasonable tensor-valued analogue of the
high-resolution extension of the first-order Osher-Sethian scheme, and also
the flux-corrected transport (FCT) scheme introduced in [8] for scalar-valued
morphology can be extended to the tensor-valued setting. Consequently, we
denote the resulting schemes as being of high-resolution-type (HRT), and
these are to the knowledge of the authors the first schemes in the area of
tensor-valued data constructed for the purpose of a high-quality resolution.

In this section, we briefly review the first-order Osher-Sethian scheme (OS-
I) as well as its high-resolution extension (OS-II), and the FCT scheme for
the scalar-valued 2-D case. Restricting the presentation to this setting, all
numerical aspects will become evident while the notation is not overloaded.
We employ the notation un

ij as the grey value of the image u at the pixel

centred at (ihx, jhy) ∈ IR2 at the time-level nτ of the evolution. For the
convenience of the reader, the formulae are already given in a format so
that the coding procedure is extendable to the 3-D tensor-valued setting in
a straightforward fashion:

• Instead of grey values un
ij the reader may employ tensors Un(ihx, jhy).

• Instead of the minmod-function defined below in a scalar-valued set-
ting, the reader may employ its tensor-valued generalisation discussed
in Paragraph 4.

• The formulae can be extended straightforwardly to tensors in 3-D
Un(ihx, jhy, khz).

Also, we only describe the schemes for morphological dilation, as algorithms
for erosion just incorporate a switch of sign, compare (4).

For a compact notation, we employ the usual abbreviations for forward and
backward difference operators, i.e.,

Dx
+u

n
i,j := un

i+1,j − un
i,j and Dx

−
un

i,j := un
i,j − un

i−1,j . (12)

1ENO means essentially non-oscillatory
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These operators can be defined analogously with respect to the y-direction,
and they can be formally concatenated yielding the obvious results. It also
turns out to be advantageous to define the central difference operator

Dx
cu

n
i,j := un

i+1,j − un
i−1,j (13)

which should be understood accordingly.

2.5 The basic Osher-Sethian scheme

The first-order-accurate Osher-Sethian scheme for morphological dilation re-
ferred to as OS-I is given by

un+1
i,j = un

i,j + τ

(

(

1

hx

min
(

Dx
−
un

i,j, 0
)

)2

+

(

1

hx

max
(

Dx
+u

n
i,j, 0

)

)2

+

(

1

hy
min

(

Dx
−
un

i,j, 0
)

)2

+

(

1

hy
max

(

Dx
+u

n
i,j, 0

)

)2
)1/2

. (14)

The scheme (14) is largely identical to the first-order upwind scheme of Rouy
and Tourin [42, 54], but with the exception of the treatment of extrema of
un

i,j.

2.6 The Osher-Sethian scheme with high-resolution cor-
rection

For notational convenience, we first write down this enhanced scheme, named
OS-II, in semidiscrete form keeping the time derivative, compare [38]. Note,
that it is at this stage identical to (14) with the exception of terms tweaking
the numerical derivatives:

∂

∂t
ui,j(t) =

(

(

1

hx

min

(

Dx
−
un

i,j +
1

2
mm

(

Dx
−
Dx

+u
n
i,j, D

x
−
Dx

−
un

i,j

)

, 0

))2

+

(

1

hx
max

(

Dx
+u

n
i,j −

1

2
mm

(

Dx
+D

x
+u

n
i,j, D

x
−
Dx

+u
n
i,j

)

, 0

))2

+

(

1

hy
min

(

D
y
−u

n
i,j +

1

2
mm

(

D
y
−D

y
+u

n
i,j, D

y
−D

y
−u

n
i,j

)

, 0

))2

+

(

1

hy
max

(

D
y
+u

n
i,j −

1

2
mm

(

D
y
+D

y
+u

n
i,j, D

y
−D

y
+u

n
i,j

)

, 0

))2
)1/2

.(15)
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In (15), the function mm(·, ·) denotes the so-called minmod-function defined
as

mm(a, b) :=







min (a, b) if a > 0 and b > 0 ,
max (a, b) if a < 0 and b < 0 ,

0 else .

(16)

It is left to define the time stepping method discretising the time derivative
in (15), whereby we denote the right hand side of (15) as L (un, i, j). This is
done by the method of Heun, yielding the final update formula

ūn+1
i,j = un

i,j + τ L (un, i, j) (17)

un+1
i,j =

1

2
un

i,j +
1

2
ūn+1

i,j +
τ

2
L
(

ūn+1, i, j
)

. (18)

2.7 The Rouy-Tourin scheme

Another first-order-accurate scheme has been proposed by Rouy and Tourin
in [42]. The variant we employ in this chapter reads

un+1
i,j = un

i,j + τ

(

max

(

1

hx
max

(

−Dx
−
un

i,j, 0
)

,
1

hx
max

(

Dx
+u

n
i,j, 0

)

)2

+ max

(

1

hx
max

(

−Dy
−u

n
i,j, 0

)

,
1

hx
max

(

D
y
+u

n
i,j, 0

)

)2
)1/2

(19)

It displays a performance very similar to that of the first-order scheme OS-
I, hence we refrain from showing experiments based on this scheme alone.
However, we use it as a predictor step in the FCT scheme as it will be pointed
out in the following subsection.

2.8 The FCT scheme

The FCT scheme summarised below is by construction a new variant of a
technique originally proposed by Boris and Book [5, 6, 7] in the context of
fluid flow simulation. As shown in [8], the FCT scheme results in accurate
and (largely) rotationally invariant discrete representations of continuous-
scale morphological dilation/erosion.
The proposed FCT scheme relies on one-sided upwind differences as both
schemes previously presented above. Instead of terms refining the gradient
approximation as in (15), the idea behind the FCT scheme is to quantify the
undesirable blurring effects introduced by upwinding and to negate the cor-
responding quantity in a corrector step by stabilised inverse diffusion (SID).
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Note that due to the stabilisation, the SID process is not ill-posed, compare
[9].
In order to define the FCT scheme, let us give the abbreviations

⌈xun
i,j :=

τ

2hx

∣

∣Dx
cu

n
i,j

∣

∣ +
τ

2hx

Dx
+u

n
i,j −

τ

2hx

Dx
−
un

i,j , (20)

⌈yun
i,j :=

τ

2hy

∣

∣Dy
cu

n
i,j

∣

∣+
τ

2hy
D

y
+u

n
i,j −

τ

2hy
D

y
−u

n
i,j . (21)

Let us stress, that the quantities ⌈xun
i,j and ⌈yun

i,j just describe the upwinding
incorporated in (19), see [8] for details. An important observation is, that
the central differences above incorporate a second-order error which is non-
diffusive, while the one-sided differences are discrete diffusive fluxes. Thus,
a spatial discretisation relying on (20)–(21) such as the Rouy-Tourin scheme
(19) introduces exactly these diffusive fluxes. The FCT procedure then in-
verts the corresponding numerical diffusion using the predicted data in the
corrector step.
Using the method (19) as a predictor denoting the result pointwise as un+1,pred

i,j ,
we are now concerned with the corrector step, which will finally read as

un+1
ij = u

n+1,pred
ij + q

n+1,pred

h − q
n+1,pred

d . (22)

The FCT scheme then consists of a subsequent application of (19) and (22).
We now define the terms occurring in (22). As indicated, it is essential for
the FCT procedure to split the diffusive part from the second-order part. To
this end, let us note that the discretisation of the dilation PDE using central
differences only,

u
n+1,pred
i,j = un

ij +

√

(

τ

2hx

∣

∣Dx
cu

n
i,j

∣

∣

)2

+

(

τ

2hy

∣

∣D
y
cun

i,j

∣

∣

)2

, (23)

incorporates no numerical diffusion in the spatial discretisation part.
Let us now consider predicted data as arguments in the formulae of our nu-
merical schemes. Then, adding zero by adding and subtracting the square
root below (23) on the right hand side of (19), we can easily identify the
higher-order part qn+1,pred

h in (22) as

q
n+1,pred

h :=

√

(

τ

2hx

∣

∣

∣
Dx

cu
n+1,pred
i,j

∣

∣

∣

)2

+

(

τ

2hy

∣

∣

∣
D

y
cu

n+1,pred
i,j

∣

∣

∣

)2

. (24)

For the lower-order term q
n+1,pred

d in (22) we have to take into account the
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stabilisation of the backward diffusive fluxes. This is done making use of

gi+1/2,j := mm

(

Dx
−
u

n+1,pred
i,j ,

τ

2hx
Dx

+u
n+1,pred
i,j , Dx

+u
n+1,pred
i+1,j

)

, (25)

gi,j+1/2 := mm

(

D
y
−u

n+1,pred
i,j ,

τ

2hy
D

y
+u

n+1,pred
i,j , D

y
+u

n+1,pred
i,j+1

)

, (26)

where mm(·, ·, ·) is a straightforward extension of the minmod-function de-
fined in (16) to three arguments. Employing then the stabilised fluxes within
the formulae of (20)-(21), but applied at predicted data, we obtain

δxu
n+1,pred
i,j :=

τ

2hx

∣

∣

∣
Dx

cu
n+1,pred
i,j

∣

∣

∣
+ gi+1/2,j − gi−1/2,j , (27)

δyu
n+1,pred
i,j :=

τ

2hy

∣

∣

∣
Dy

cu
n+1,pred
i,j

∣

∣

∣
+ gi,j+1/2 − gi,j−1/2 , (28)

yielding the second new term in (22) as

q
n+1,pred

d :=

√

(

δxu
n+1,pred
i,j

)2

+
(

δyu
n+1,pred
i,j

)2

. (29)

We now conclude our review of morphology in the scalar setting and proceed
with the transfer to the matrix-valued case.

3 Ordering Based Morphology for Matrix Fields

Since dilation resp. erosion of flat morphology are defined via supremum
and infimum, see (2) and (3), a suitable ordering on the set of image values
is necessary. Dealing with symmetric matrices as image values the so-called
Loewner ordering is a natural choice. We introduce this partial ordering and
other useful concepts from matrix analysis in the next subsection.

3.1 Matrix Analysis

Of particular importance for us is the subset Sym(k) of symmetric k × k-
matrices with real entries. They form a vector space endowed with the scalar
product

〈A,B〉 :=
√

trace(A⊤B) . (30)

Note that at each point the matrix F (x) of a field of symmetric matrices can
be diagonalised and decomposed into its spectral components yielding

F (x) = V (x)⊤D(x)V (x) =

n
∑

i=1

λi(x) vi(x)v
⊤

i (x) . (31)
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Here V (x) ∈ O(k) is a matrix field of orthogonal matrices V (x) with column
vectors vi(x), i = 1, . . . , n, while D(x) is a matrix field of diagonal matri-
ces with entries λi(x), i = 1, . . . , n. In the sequel we will denote n × n -
diagonal matrices with entries λ1, . . . , λn ∈ IR from left to right simply by
diag(λ1, . . . , λn), and O(k) stands for the matrix group of orthogonal n× n-
matrices.
We need to define functions h of symmetric matrices. The most common way
to do this is as follows [29]. Let diag(α1, . . . , αn) denote a diagonal matrix
with entries α1, . . . , αn. We define for a symmetric matrix A ∈ Sym(k) with
eigenvalue decomposition A = V diag(α1, . . . , αn)V

⊤ and orthogonal matrix
V ∈ O(k) the matrix h(A) by

h(A) := V diag(h(α1), . . . , h(αn))V ⊤ (32)

provided the αi‘s lie in the domain of definition of h. Note that the out-
come of that operation is rotational invariant, h(WAW⊤) = Wh(A)W⊤,
W ∈ O(k), and preserves symmetry, h(A) ∈ Sym(k).
For example, specifying h as the absolute value function, h(x) = |x|, asso-
ciates with a matrix A its absolute value |A|. This |A| denotes a positive
semidefinite matrix and must not be confused with the norm or determinant
of A.
The set of positive (semi-)definite matrices, denoted by Sym+(k) (Sym++(k),
resp.), consists of all symmetric matrices A with 〈v, Av〉 := v⊤Av > 0 (≥
0, resp.,) for v ∈ IRn \ {0} .
The set Sym+(k) forms a cone, that is, a set that is invariant under addition
of matrices as well as multiplication with a positive scalar. This cone is used
to define a partial ordering on Sym(k), the Loewner ordering:

A,B ∈ Sym(k) : A ≥ B :⇔ A− B ∈ Sym+(k), (33)

i. e. A ≥ B if and only if A− B is positive semidefinite.
A subset K of a cone C is called base if every y ∈ C, y 6= 0 is uniquely
representable as y = r · x with x ∈ K and r > 0. For instance, the set of
positive semidefinite matrices with trace 1 form a convex and compact base
K1 of Sym+(k): K1 := {M ∈ Sym+(k) : trace(M) = 1}.
A point x is an extreme point of a convex subset S ⊂ V of a vector space
V if and only if S \ {x} is still convex. The set of all extreme points of S is
denoted ext(S).
All the important information of a convex compact set is captured in its
extreme points. The theorems of Minkowski and Krein-Milman state that
each convex compact set S in a finite dimensional vector space can be re-
constructed as the set of all finite convex combinations of its extreme points
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[2, 28]:

S = convexhull(ext(S))

=

{

N
∑

i=1

λi ei |N ∈ IN, ei ∈ ext(S), λi ≥ 0, for i = 1, . . . , N,

N
∑

i=1

λi = 1

}

.

It is known [2] that the matrices v v⊤ with unit vectors v ∈ IRn, ‖v‖ = 1
are exactly the extreme points of a base K1 of Sym+(k). Because of this
extremal property the matrices v v⊤ with ‖v‖ = 1 carry the complete in-
formation about the base of the Loewner ordering cone and hence the cone
itself: convexhull({v v⊤ : v ∈ IRn, ‖v‖ = 1}) is a base for the Loewner or-
dering cone. Such extreme points of bases of translated Loewner cones will
play a decisive role in the explicit calculation of the supremum/infimum of a
finite number of symmetric matrices.

3.2 Maximal / Minimal Matrices in the Loewner
Ordering

The supremum of two symmetric matrices A1 and A2 is obtained easily. As
it was pointed out in [10] the quantity

sup(A1, A2) =
1

2
(A1 + A2) +

1

2
|A1 −A2| , (34)

well known to hold for real numbers, indeed provides the supremum of the
two matrices with respect to the Loewner ordering. The infimum of two
matrices we obtain through

inf(A1, A2) =
1

2
(A1 + A2) −

1

2
|A1 − A2| . (35)

We will need in Section 5 a minmod-function for matrix fields, and to this
end the supremum/infimum of three symmetric matrices A1, A2, A3 has to
be calculated. However, the iteration of (34) leads to the upper bounds

S1 := sup(A1, sup(A2, A3)) , S2 := sup(A2, sup(A3, A1)) ,

S3 := sup(A3, sup(A1, A2)) ,
(36)

for the set {A1, A2, A3} that in general do not coincide:

S1 6= S2 6= S3 . (37)
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We construct an approximate supremum of {A1, A2, A3} in the following
manner. Since each Si dominates {A1, A2, A3} so does their arithmetic mean:

Sm :=
1

3
(S1 + S2 + S3) ≥ Ai, i = 1, 2, 3 . (38)

We can improve this upper bound Sm by finding an optimal τ ≥ 0 such that

Sm − τI ≥ Ai, i = 1, 2, 3, (39)

holds, where I denotes the identity matrix. If µij ≥ 0, j = 1, . . . , k, are the
eigenvalues of Sm −Ai for i = 1, 2, 3, this optimal τ is given by the minimum
of all these eigenvalues

τopt = min
i=1,...,3

j=1,...,k

(µij) (40)

yielding a suitable supremum of three matrices

supopt(A1, A2, A3) = Sm − τoptI . (41)

The infimum of three matrices is calculated by

infopt(A1, A2, A3) = −supopt(−A1,−A2,−A3) . (42)

It is clear that an extension of this approach to four or more matrices is not
feasible. To extend the notions of dilation (2) and erosion (3) to matrix fields
a different method to calculate the supremum/infimum of a larger number of
matrices Ai has to be employed. Such a technique has been developed and
described in detail in [10, 12]. However, in order to keep this presentation as
self-contained as possible we sketch this approach in the following.
Using the customary notation a+ r S := {a+ r · s : s ∈ S} for a point a ∈ V ,
a scalar r ∈ IR and a subset S ⊂ V , we define the penumbra P (M) of a
matrix M ∈ Sym(k) as the set of matrices N that are smaller than M w.r.t.
the Loewner ordering:

P (M) := {N ∈ Sym(k) : N ≤M} = M − Sym+(k) . (43)

The penumbra P (M) is a reverted and translated version of the Loewner cone
geometrically characterising all matrices that are smaller than the matrix M
marking its vertex.
Using this geometric description the problem of finding the maximum of a
set of matrices {A1, . . . , Am} amounts to determining the minimal penumbra
covering their penumbras P (A1), . . . , P (Am). Its vertex represents the matrix
supremum A := sup(A1, . . . , Am) we are searching for and that dominates all
Ai w.r.t the Loewner ordering.
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To this end we associate with each matrix M ∈ Sym(k) a ball in the subspace
{A : trace(A) = 0} of all matrices with zero trace as a completely descriptive
set. For the sake of simplicity we will assume that trace(M)≥ 0. We deter-
mine the center and the radius of this enclosing ball: First, we note that the
set
{

M − trace(M) · convexhull{v v⊤ : v ∈ IR, ‖v‖ = 1}
}

is a base for P (M)
contained in the subspace {A : trace(A) = 0}. The orthogonal projection of
M onto {A : trace(A) = 0} is given by

m := M − trace(M)

n
I . (44)

Second, the extreme points of the base of P (M) are lying on a sphere with
center m and radius

r := ‖M − trace(M)v v⊤ −m‖ = trace(M)

√

1 − 1

n
. (45)

If the center m and radius r of a sphere in {A ∈ Sym(k) : trace(A) = 0} are
given the vertex M of the associated penumbra P (M) is obtained by

M = m+
r

n

1
√

1 − 1

n

I . (46)

With this geometric interpretation in mind we may reformulate the task of
finding a suitable maximal matrix A dominating the matrices {A1, . . . , Am}:
The smallest sphere enclosing the spheres associated with {A1, . . . , Am} de-
termines the matrix A that dominates the Ai. It is minimal in the sense,
that there is no smaller one w.r.t. the Loewner ordering which has this “cov-
ering property” of its penumbra. For each i = 1, . . . , m, we sample within
the set of extreme points {Ai − trace(Ai)v v

⊤} of the base of P (Ai) by ex-
pressing v in 3d-spherical coordinates, v = (sinφ cosψ, sinφ sinψ, cosφ) with
φ ∈ [0, 2π[, ψ ∈ [0, π[. ‘Vectorising‘ these matrices, that is, writing the entries
of each of these matrices in a n2-dimensional vector provides us with points
for which a smallest enclosing ball has to be found. This is a non-trivial
problem of computational geometry and we tackle it by using a sophisti-
cated algorithm implemented by B. Gaertner [19]. The algorithm returns
the center and the radius of the smallest enclosing ball from which we obtain
with the help of the relations (44) – (46) the corresponding maximal matrix
A. As in (42) we set

inf(A1, . . . , Am) = − sup(−A1, . . . ,−Am) . (47)

As a consequence the notion of dilation/erosion and with them many other
morphological operations are available now for matrix fields.

In the next section we turn to the PDE-based approach to dilation and
erosion in the matrix setting.
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4 PDE-Based Morphology for Matrix Fields

In order to find the matrix-valued counterparts of the scalar morphological
PDEs (4) it is necessary to establish a rudimentary calculus for fields of
symmetric matrices. For a more extended calculus for matrix fields the reader
is referred to [13, 14].

4.1 Matrix-valued PDEs for dilation and erosion

The nonlinear PDEs (4) create a dilation and erosion process correspond-
ing to a ball-shaped SE for grey value images. These equations contain the
gradient operator ∇ := (∂x, ∂y, ∂z)

⊤ with its partial derivatives and the Eu-

clidean vector norm ‖(v1, v2, v3)
⊤‖ :=

√

v2
1 + v2

2 + v2
3. For both we have to

find suitable analogs for matrices. To this end we have to clarify what a par-
tial derivative, the absolute value and a square root of a symmetric matrix
is. It is important not to consider a matrix norm as the extension of the
vector norm in (4).

It is natural to define the equivalent ∂α of the partial derivative ∂α, spatial
(α ∈ {x, y, z}) or temporal (α = t), of a scalar function for a matrix-valued
function U(x, y, z, t) = (ui,j(x, y, z, t))i,j=1,...,n by componentwise application
of ∂α:

∂αU := (∂αui,j)i,j=1,...,n . (48)

Note that the subscript indicate the matrix components and not the grey
value of an image u at pixel (ihx, jhy). Due to the linearity of matrix
multiplication and differentiation the application of ∂α preserves symmetry,
U ∈ Sym(k) =⇒ ∂αU ∈ Sym(k), and is rotational invariant:
∂α(WUW⊤) = W (∂αU)W⊤ holds for any constant orthogonal matrix W .
With definition (32) the notion of a function of a symmetric matrix is already
at our disposal. Hence, specifying the functions h(x) = |x|2 and h(x) =

√
x

we have equipped the matrix-valued expression
√

|∂xU |2 + |∂yU |2 + |∂zU |2
with meaning. The latter is in fact a positive definite matrix if U is a non-
constant matrix field, and it can be seen as a direct analog of the Euclidean
norm of a vector.
Now we are in the position to establish the matrix-valued counterpart of (4):

∂tU = ±
√

|∂xU |2 + |∂yU |2 + |∂zU |2 , (49)

where “+“ governs the dilation-like, and “–“ rules the erosion-like evolution
process.
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4.2 Numerical schemes for matrix-valued PDEs
of dilation and erosion

In order to solve the matrix-valued PDEs of dilation/erosion we transfer the
numerical schemes OS-I, OS-II, and FCT presented in the previous section
to the setting of matrix fields. Linear combinations and elementary functions
such as the square, square-root or absolute value function for matrix fields
are now at our disposal. Hence it is straightforward to define one sided
differences in x-direction for 3D matrix fields of k × k-matrices:

Dx
+U

n(i, j, k) := Un((i+1)hx, jhy, khz)−Un(ihx, jhy, khz) ∈ Sym(k) , (50)

Dx
−
Un(i, j, k) := Un(ihx, jhy, khz)−Un((i−1)hx, jhy, khz) ∈ Sym(k) . (51)

In order to avoid confusion with the subscript notation for matrix components
we used the notation U(i, j, k) to indicate the (matrix-) value of the matrix
field evaluated at the voxel centred at (ihx, jhy, khz) ∈ IR3. The central
difference operator in x-direction is interpreted as

Dx
cU

n(i, j, k) := Un((i+ 1)hx, jhx, khx) − Un((i− 1)hx, jhy, khz) ∈ Sym(k)
(52)

The y− and z−directions are treated accordingly. The notion of supremum
and infimum of two matrices – as needed in a matrix variant of OS-I – has
been provided by (34) and (35). However, care has to be taken for functions
that are defined piecewise such as the minmod functions for two or three
arguments. We generalise the minmod functions to the matrix setting by
invoking the Loewner ordering

mm(A1, A2) :=







inf(A1, A2) for A1 > 0 and A2 > 0 ,
sup(A1, A2) for A1 < 0 and A2 < 0 ,
0 else ,

(53)

in the case of two matrices, while for three matrices we set

mm(A1, A2, A3) :=







infopt(A1, A2, A3) for Ai > 0, i = 1, 2, 3 ,
supopt(A1, A2, A3) for A1 < 0, i = 1, 2, 3 ,
0 else ,

(54)

with supopt and infopt given in (41) and (42).
Having these generalisations at our disposal the numerical schemes OS-I,
OS-II, and finally the FCT scheme are available now in the setting of matrix
fields.
The case differentiation necessary for shock filtering (11) is handled differ-
ently and utilises the trace-function: The sign of tr(∆BU) of the matrix
∆BU provides the switching mechanism for shock filtering in the matrix field
setting.
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5 Experimental Comparison of the Numeri-

cal Schemes

The hyperbolic morphological PDEs of dilation/erosion are numerically tack-
led with three specialised schemes: The first- and second-order schemes of
Osher and Sethian (OS-I, OS-II) and the FCT scheme of Breuß and Weick-
ert. We compare the results of basic morphological operations on images for
ordering-based morphology and PDE-based methods obtained with the nu-
merical schemes OS-I, OS-II and FCT. We restrict ourselves to the self-dual
top hat (SDTH), the Beucher gradient, and the matrix-valued variant of a
morphological Laplacian and shock filter. Note that the dilation and erosion
are performed with respect to a ball-shaped structuring element. In extension
of the experiments in [8] we first turn our attention to the scalar case in the
next subsection.

5.1 Scalar valued data

In the scalar case we apply the morphological self-dual top hat and the
Beucher gradient to the grey value test image of size 256 × 256 depicted
in Figure 1.
We juxtapose the results of these operations when the underlying dilation/
erosion operations stem from the classical ordering-based definitions, or from
the PDE-based approach with resolved with the three numerical schemes
OS-I, OS-II, and FCT discussed above.
In the case of the self-dual top hat we performed 40 steps with time step
size 0.1 resulting in an evolution time of 4 which corresponds to a ball with
4 pixel radius as SE. In Figure 2 we clearly see the superior performance
of FCT when compared to OS-I and OS-II: The FCT-based SDTH selects
the smaller details of the image almost as good as the ordering-based SDTH.
Both OS-I and OS-II produce blurring artefacts due to the inherent numerical
dissipation.
Let us now turn to the Beucher gradient ρB as our last example in the
scalar setting. We performed 20 steps with time step size 0.1 resulting in
an evolution time of 2 which corresponds to ball with 2 pixel radius as SE.
The results displayed in Figure 3 confirm the advantage of the FCT scheme
over the standard schemes. The edges are enhanced as in the ordering-based
Beucher gradient while the schemes OS-I and OS-II suffer from blurring.
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Figure 1: The grey value test image of size 256×256 used for the experiments
in the scalar setting.

5.2 Matrix-valued data

In order to assess the quality of our numerical approach, we first show two
experiments with matrix-valued data in two dimensions. Afterwards, a cor-
responding 3-D experiment is given.
In our first two numerical experiments for matrix data we use an artificial
20 × 20-field as well as an 128 × 128 slice of 3-D positive definite matrices
originating from a 3-D DT-MRI data set of a human head, see figures 4, 6,
7, and 8.
The data are represented as ellipsoids via the level sets of the quadratic form
{x⊤Ax : x ∈ IR3} associated with a matrix A ∈ Sym+(3). Using A−2 the
length of the semi-axes of the ellipsoid correspond directly with the three
eigenvalues of the positive definite matrix.
The artificial data constitute a circular structure where the ellipsoids in the
center are elongated, while those outside the circle are simple balls.
In Figure 5, the results with artificial test data are displayed. It is clearly
visible that the ordering-based approach leads to sharp edges while the elon-
gated tensors change their shape towards a round appearance. Note that the
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sharp edges stem from a discrete approximation of the structuring element in
the pixel grid. The PDE-based methods better preserve the initial shape of
the tensors, but the Osher-Sethian approaches introduce numerical blurring
of the edges. The FCT scheme performs better with this respect. The small
tensors near the edges arise by geometrical effects as the structuring element
is a perfect ball given by the Euclidean norm.
Exactly the analogous numerical behaviour is observable in our experiment
with real-world data shown in Figure 6. The same assertion applies with
respect to Figure 7. However, in the latter experiment, it becomes even
clearer than in Figure 5 that the ordering-based approach and the PDE-
based approach in the matrix-valued setting are not equivalent and thus
cannot be expected to yield the same results.
In our last experiment in two dimensions we investigate the shock filter. For
this morphological operation the differences between the numerical schemes
are hardly visible. We included this example in order to show that it depends
on the underlying process of interest if it pays off to use a high-resolution-type
scheme.
In our last experiment, we show that the schemes for matrix-valued mor-
phology can also be applied in three dimensions. Figure 9 shows that the
qualitative behaviour of the FCT scheme worked out before carries over to
the 3-D setting.

6 Conclusion

In this work we were concerned with numerical solution schemes for the mor-
phological PDEs for dilation and erosion in the setting of matrix fields. It
has been demonstrated that, firstly, it is possible to extend even sophisti-
cated high-resolution schemes for morphological PDEs, such as the FCT, in
a rather straightforward manner once the suitable matrix-algebraic founda-
tions a properly prepared. Secondly, we showed in experiments that the use
of a computational more expensive FCT indeed pays off in the matrix setting:
It preserves or enhances edges and contours in matrix fields transformed with
top-hats, morphological derivatives and shock filters better than the first or
even second order schemes of Osher and Sethian. The findings reported on
in this work confirm that the elaborate numerical machinery for PDE-based
scalar morphology is now at our disposal for matrix-valued morphology as
well.
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Figure 2: Top left: Ordering-based SDTH with ball-shaped SE of size 4.
Top right: PDE-based SDTH via OS-I with time step size 0.1 and total
evolution time 4. Bottom left: The same with OS-II. Bottom right: The
same with FCT scheme.
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Figure 3: Top left: Ordering-based Beucher gradient with ball-shaped SE
of size 2. Top right: PDE-based Beucher gradient via OS-I with time step
size 0.1 and total evolution time 2. Bottom left: The same with OS-II.
Bottom right: The same with FCT scheme.
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Figure 4: Left: Artificial matrix field. Right: 2D-slice of a real 3D DT-MRI
data set.
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Figure 5: Top left: Ordering-based Beucher gradient with ball-shaped SE
of size 2. Top right: PDE-based Beucher gradient via OS-I with time step
size 0.1 and total evolution time 2. Bottom left: The same with OS-II.
Bottom right: The same with FCT scheme.
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Figure 6: Top left: Ordering-based SDTH with ball-shaped SE of size 3.
Top right: PDE-based SDTH via OS-I with time step size 0.1 and total
evolution time 3. Bottom left: The same with OS-II. Bottom right: The
same with FCT scheme.
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Figure 7: Top left: Ordering-based Beucher gradient with ball-shaped SE
of size 3. Top right: PDE-based Beucher gradient via OS-I with time step
size 0.1 and total evolution time 3. Bottom left: The same with OS-II.
Bottom right: The same with FCT scheme.
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Figure 8: Top left: Ordering-based shock filter with ball-shaped SE of size
3. Top right: PDE-based shock filter via OS-I with time step size 0.1 and
total evolution time 3. Bottom left: The same with OS-II. Bottom right:
The same with FCT scheme.
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Figure 9: Left: Real-world 3-D matrix-valued of size 40 × 50 × 5 voxels.
Right: PDE-based self-dual top hat via FCT scheme with time step size 0.1
and total evolution time 3.
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