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Abstract

We present a variational framework for the registration of tensor-
valued images. It is based on an energy functional with four terms:
a data term based on a diffusion tensor constancy constraint, a com-
patibility term encoding the physical model linking domain deforma-
tions and tensor reorientation, and smoothness terms for deformation
and tensor reorientation. Although the tensor deformation model em-
ployed here is designed with regard to diffusion tensor MRI data, the
separation of data and compatibility term allows to adapt the model
easily to different tensor deformation models. We minimise the energy
functional with respect to both transformation fields by a multiscale
gradient descent. Experiments demonstrate the viability and potential
of this approach in the registration of tensor-valued images.

1 Introduction

Image registration denotes the transformation of multiple images of the same
object into a common coordinate system [10]. It is of particular importance
in medical imaging where data from different imaging modalities or images
taken at different times need to be fused to allow diagnosis, surgery or treat-
ment planning.
Registration involves two tasks: first, to find a map that yields for each loca-
tion in the template image the corresponding location in the reference image;
second, to deform the template image accordingly such that the coordinates
of corresponding locations in the reference and deformed template image are
identical. From the computer vision viewpoint, the first task is a correspon-
dence problem, similar to optic flow or stereo vision, while the second one
consists in a geometric transformation commonly known as warping.
Compared to the case of scalar-valued images, like computerised tomography
or standard magnetic resonance (MR) images, registration of tensor fields [16]
involves a substantial additional difficulty: While deforming scalar-valued
images comes down to a simple relocation of values in the image domain
(which usually will entail a resampling and thus some interpolation), the
values of tensor fields refer to the geometry of the underlying domain, and
have therefore to be modified to conform with the transformation of the
domain. The local deformation that takes effect here is given by the Jacobian
of the location map. Moreover, this induced transformation of tensors does
not only affect the warping step but needs to be accounted for already in
establishing the correspondence map.

Our contribution. This paper is dedicated to a variational framework for
the registration of tensor-valued images that combines the correspondence
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and warping problems in a single minimisation task solved by a gradient de-
scent procedure. A preliminary version of this framework has been presented
at the CVPR workshop Tensors in Image Processing and Computer Vision
[3].
In this approach, directional information is used throughout the method by
consistently integrating reorientation information. The physical model un-
derlying the relation between domain transformation and tensor reorientation
is tailored to basic requirements of DT-MRI processing but not specifically
adjusted to empirical (biological, physiological) parameters.
An advantage of the variational approach is that it makes the assumptions
of the model explicit and permits to manipulate them in a highly flexible
way. In this sense our model is generic: For example, the physical model
for tensor deformation could well be replaced with a refined model based
on the physiology of neural tissue, or likewise with a completely different
transformation behaviour if required so by the physical nature of some tensor
imaging application.
We present here the variational model and demonstrate experimentally its
potential as a versatile tool for image registration of tensor data.

Related work. Different approaches to DT-MRI registration have been
proposed in the literature. One group of approaches treats the correspon-
dence and warping problems independently. In this case, the reorientation is
often entirely avoided in the correspondence part by relying only on derived
quantities that do not involve directional information [12, 15, 19, 13]. From
the so obtained transformation of the image domain one has then to extract
the reorientation information for the warping step. Based on a single-fibre
model, it is often assumed herein that the shape of the tensors remains un-
changed, such that only a rotation needs to be extracted. Strategies for this
problem are discussed in [1]: first, the finite-strain method that relies on
a polar decomposition of the local deformation matrix of the domain, and
second, the preservation of principal directions approach in which the effect
of the transformation on the principal eigenvector of each tensor determines
the local reorientation. A direct application of the local deformation to the
tensors, which does not preserve the shapes of the tensors, is discussed in
[13]. An overview of these techniques is found in [7].
An algebraic approach to DT-MRI registration is proposed in [8]. Here, ten-
sor transformation is restricted to rotations, and the correspondence problem
is solved by a local optimisation of transformation parameters. Furthermore,
a multi-scale refinement and the inclusion of feature correspondences are
discussed. A feature-based registration approach is also found in [14].
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An approach that integrates directional information already into the compu-
tation of correspondences can be found in [17, 18]. It uses a diffusion tensor
constancy constraint that combines an affine domain transformation with a
rotation of the tensor values by polar decomposition, and fits a piecewise
affine transformation to the image data. A gradient descent method pro-
posed in [5] is based on a variational model in which tensor reorientation
follows the action of the deformation field on the principal eigenvector. In
[6] a variational model is proposed that incorporates the deformation by the
Jacobian of the displacements in the data term.
In [11], registration based on direction-insensitive quantities is compared with
one using the matrix entries. For the registration of DT-MRI data with data
from other imaging modalities, one can use mutual information approaches,
see [9]. Here again the warping has to be performed as a separate step. Also
fluid dynamics PDEs have been used to attack registration problems of this
type [4].

Structure of the paper. Our variational model is presented in Section 2.
We develop the energy functional in detail and give an outline of the min-
imisation procedure. Section 3 is devoted to the experimental evaluation.
A series of experiments in 2D on synthetic and DT-MRI data demonstrates
basic features of the method. By two 3D experiments the viability of the
approach for 3D data is verified, and a comparison to a finite-strain based
registration procedure is made. A summary and outlook is presented in
Section 4.

2 The Variational Model

Assume we are given two tensor fields R, T : R
d → SPD(d) where SPD(d)

denotes the cone of symmetric positive definite real d × d-matrices. The
tensor field R is the reference image, while T is the template image. We
aim at recovering from these images two maps: first, the displacement field
u : R

d → R
d that encodes the transformation of the image domain R

d, and
second, the reorientation field P : R

d → G that governs the corresponding
transformation of the tensor values. Here, G ⊂ GL(d, R) is the group of
admissible transformation matrices.
This separation serves two purposes. On one side, it allows the variational
formulation to be simple, because it is not necessary in this way to solve
the equations that relate both fields for one of them. On the other side, it
keeps the model generic in the sense that a different relationship between the
two fields that may be imposed in a different physical setting can easily be
plugged into the same model.

3



2.1 Energy Functional

Following this idea, our variational registration model requires minimisation
of an energy functional

E[u, P ] = D[u, P ] + w1C[u, P ] + w2Su[u] + w3SP [P ] (1)

with four components:

• a data term D that enforces the match between the transformation
fields and the tensor fields,

• the compatibility term C that encodes the physically motivated relation
between the displacement and reorientation fields,

• the displacement smoothness term Su that implements a regularity as-
sumption on the displacement field, and

• the reorientation smoothness term SP that promotes regularity of the
reorientation field.

Each term penalises violations of the respective model requirement by a
nonnegative value. The weights w1, w2, and w3 balance the influences of the
different terms. Let us now discuss these four terms in detail.

Data term. The requirement that under the displacement and reorientation
as prescribed by u and P the template T should become as similar as possible
to the reference R is expressed by the diffusion tensor constancy constraint
(DTCC)

(PT)−1T (x + u(x))P−1 = R(x) . (2)

For the further mathematical derivations it is advantageous to distribute the
actions of u and P to the two tensor fields, i.e., T (x + u) = P TRP , see also
[8, 17].
Using the Frobenius norm ‖ · ‖F of the matrix difference, we formulate even-
tually

D[u, P ] =

∫

Ω

‖T (x + u) − PT(x)R(x)P (x)‖2
F dx , (3)

where Ω ⊂ R
d is the image domain.

Compatibility term. This term depends on the physical model for the re-
lationship between displacements and tensor reorientation. Pure translations
do not require reorientation of tensors. The local deformation of the domain
that needs to be accounted for is expressed by the Jacobian J(x + u) of the
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location map x 7→ x + u. Geometrically, its influence can be decomposed
into three components: rotation, shearing, and scaling.
With focus on DT-MRI data, we assume that scaling of the domain does not
affect the tensors, since absolute diffusivities depend rather on the physiology
of the tissue on a microscopic scale. In contrast, it is natural to demand that
the local rotation should act on the tensors by appropriately rotating their
eigensystems.
The most difficult component from the modelling viewpoint is shearing. In
the case of DT-MRI, the way how diffusion tensors in tissue change when
this tissue is sheared may depend on the underlying fibre composition and
the physiology of the fibres, and can therefore not be inferred exactly from
the pure second-order tensor model. Based on the assumption that only
small shears take place, we propose two versions of the model: one in which
the shearing component of J(x + u) acts directly on the tensors, and one in
which no shearing at all takes place. The difference between the two lies in
the choice of the matrix group G: For the first model it is the group of all
matrices with determinant one, G = SL(d, R), while for the second model we
choose the group of (proper) rotation matrices G = SO(d).
In both cases, the actual compatibility between the displacement field and
the reorientation field is measured by

C[u, P ] =

∫

Ω

‖(P J(x + u))p − det(J(x + u))p/dI‖2
F dx , (4)

where I is the unit matrix. For the exponent p, the standard value in this
paper will be 1.1 This term expresses that P should equal the inverse of
J(x + u) except for its scaling component that is given by the determinant.
In the models without shear, the least-squares error from fitting the rotation
matrix P ∈ SO(d) to the rescaled Jacobian from SL(d, R) also accounts for
the shear.

Smoothness terms. Measured data are inevitably contaminated with
noise, an overfitting to which needs to be avoided. This is achieved by regu-
larity conditions imposed on the transformation fields.
To enforce regularity of the vector field u, we use the Euclidean norm ‖ · ‖2

of its spatial gradient, leading to

Su[u] =

∫

Ω

d
∑

j=1

‖∂ju‖
2
2 dx . (5)

1In our paper [3], we used p = 2 for 2D tensor registration, which seemed to be
advantageous in early experiments. However, the case p = 1 is algorithmically simpler, and
experimental exploration has proven its equal qualitative performance. One comparison
is presented in Section 3.
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Similarly, we impose regularity on the reorientation by

SP [P ] =

∫

Ω

d
∑

j=1

‖∂jP‖2
F dx . (6)

2.2 Gradient Descent

To minimise the functional (1), we use a gradient descent procedure. To this
end, we employ the Euler-Lagrange formalism from the calculus of variations
to obtain the variational derivatives of E with respect to u and P .
We must, however, take into account that u and P are already multi-channel
quantities, thus we need to specify suitable parametrisations. This is easy
for the displacement field u as its values belong to a vector space. Here, the
displacements u1, . . . , ud in the coordinate directions serve as parameters.
For P , however, we have to parametrise the Lie group SO(d) or SL(d, R).
We restrict our discussion here to the 2D case with and without shear, and
the 3D case without shear. Assuming small deformations (P close to I), the
following parameter sets can be used:

• Case SO(2) (2D, pure rotations): one rotation angle α, such that

P (α) =

(

cos α − sin α

sin α cos α

)

. (7)

• Case SL(2, R) (2D, rotations and shear): The action of P is decom-
posed into two rotations, with a shear inbetween that leaves the x axis
fixed. Representing the rotation angles as 1

2
(α ± β), we arrive at the

parametrisation

P (α, β, γ) =

(

cos α+β
2

− sin α+β
2

sin α+β
2

cos α+β
2

)(

1 0
2γ 1

)(

cos α−β
2

− sin α−β
2

sin α−β
2

cos α−β
2

)

(8)

in which α corresponds to the “net rotation”, β gives the shear direction
and γ the shear magnitude.

• Case SO(3) (3D, pure rotations): Making use of Euler angles α, β, θ,
we parametrise P by

P (α, β, θ) =





1 0 0
0 cos α − sin α

0 sin α cos α









cos β 0 sin β

0 1 0
− sin β 0 cos β









cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 .

(9)
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Denoting by F the integrand of the energy functional, the gradient descent
in 2D with the artificial time t reads

∂

∂t
u1 =

d

dx
Fu1x

+
d

dy
Fu1y

− Fu1
,

∂

∂t
u2 =

d

dx
Fu2x

+
d

dy
Fu2y

− Fu2
,

∂

∂t
α =

d

dx
Fαx

+
d

dy
Fαy

− Fα ,

∂

∂t
β =

d

dx
Fβx

+
d

dy
Fβy

− Fβ ,

∂

∂t
γ =

d

dx
Fγx

+
d

dy
Fγy

− Fγ ,

(10)

where the last two equations are omitted when no shear is used. Analogously,
the equations in the 3D case read

∂

∂t
u1 =

d

dx
Fu1x

+
d

dy
Fu1y

+
d

dz
Fu1z

− Fu1
,

∂

∂t
u2 =

d

dx
Fu2x

+
d

dy
Fu2y

+
d

dz
Fu2z

− Fu2
,

∂

∂t
u3 =

d

dx
Fu3x

+
d

dy
Fu3y

+
d

dz
Fu3z

− Fu3
,

∂

∂t
α =

d

dx
Fαx

+
d

dy
Fαy

+
d

dz
Fαz

− Fα ,

∂

∂t
β =

d

dx
Fβx

+
d

dy
Fβy

+
d

dz
Fβz

− Fβ ,

∂

∂t
θ =

d

dx
Fθx

+
d

dy
Fθy

+
d

dz
Fθz

− Fθ .

(11)

To compute these gradient descents, we use explicit (forward Euler) discreti-
sations. Higher order schemes bear no advantage as we aim at a steady state.
We discretise spatial derivatives by Sobel operators.
Note that the evaluation of T (x + u) involves a resampling which is per-
formed here by bilinear interpolation. While some interpolation artifacts
implied by this proceeding could be reduced by using a shape interpola-
tion approach, see e.g. [2], bilinear interpolation appears to be closer to the
physical sampling process which also leads to partial volume effects in the
measurements.

Multiscale procedure. A disadvantage of the gradient descent approach
is that it can be trapped in local minima, preventing it particularly from
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−5◦ 0◦ +5◦ α

−0.01 0.00 +0.01 γ

Figure 1: Colour coding schemes for visualisation of tensor field transforma-
tions. Left: (a) Displacement vectors in 2D. Right: (b) Scale for rotation
angles and shear factors.

capturing correctly large displacements (i.e., larger than 1 to 2 pixels). Even
when it converges to find large displacements, it is slow in this case. To
improve convergence in this situation, we use a simple multiscale procedure:
We perform the registration for a sequence of Gaussian-smoothed image pairs
(Rk, Tk), (Rk−1, Tk−1), . . . , (R0, T0) where R0 = R, T0 = T and Ri = Gσi

∗R0,
Ti = Gσi

∗ T0 with Gaussians Gσi
of decreasing standard deviation σk >

σk−1 > . . . > σ1 > 0, initialising the transformation fields in step i < k with
the results of the preceding step i + 1.

3 Experiments

We start with experiments in 2D. To visualise our results, we represent tensor
fields by ellipse glyphs where the directions and lengths of the principal axes
of each ellipse represent eigenvectors and eigenvalues of the corresponding
symmetric positive definite tensor. Colours encode the dominant eigenvector
direction. Displacement fields are converted into colour images using the
colour coding scheme shown in Figure 1(a). Angles α and shear factors γ

of the reorientation field are represented in separate colour images using the
scale given in Figure 1(b).
Weight parameters have been chosen manually in all of our experiments.
Further investigation will be necessary to address a possible automatic choice
of these parameters.

3.1 Synthetic 2D Experiment

In our first experiment (Figure 2), we use a synthetic 2D data set containing
a “fibre” as reference image (a). The template image (b) is obtained from
it by a consistent 3◦ rotation applied to the domain and tensors. A caveat
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a b c

d e f

g h i

Figure 2: Registration of a synthetic tensor field. (a) Top left: Clipping (rows
0 to 19, columns 54 to 73) from a 127×127 synthetic tensor field featuring a
simplified “fibre”, used as reference image. (b) Top middle: Template image
obtained by 3◦ rotation of (a). (c) Top right: Result of variational registra-
tion with deformation model involving rotation and shear. (d) Second row,
left: Displacement field computed in the registration process (all 127 × 127
pixels). (e) Second row, middle: Rotation angle α from the reorientation
field. (f) Second row, right: Shear factor γ. (g) Bottom left: Registration
result using the deformation model involving only rotations. (h) Bottom mid-
dle: Displacement field computed in registration with rotation-only model.
(i) Bottom right: Rotation angle α from rotation-only model. Inserts in (e),
(f) and (i) show correct parameter values (3◦, 0.0).
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about this test image pair is that the correspondence map is dramatically
underdetermined
For registration, we set the weights in (1) as w1 = 2 · 106, w2 = 5 · 107, w3 =
4 · 107. Our complete 2D model with rotation and shear yields the registered
image (c). No multiscale procedure has been used here. In (d–f) we show
the displacement field and two components of the reorientation field. Due
to the mentioned underdetermination of the example, the model attains an
optimum with nonzero shear. In particular, the vertically periodic structures
visible in (e, f) indicate that the process slightly overfits and matches aliasing-
type structures generated by the resampling of the rotated data. Subfigures
(g–i) show the results of registration with the rotation-only model.
As a measure of registration quality we use the value of the data term D[u, P ]
for the computed displacement and reorientation fields. By this means, we
can compare different registration models. As this measure could, how-
ever, be misled by overfitting, its utilisation is restricted to cases with equal
smoothness parameters. Table 1 comprises values of the data term for regis-
tration with and without shearing and, for comparison, for a model that does
not account for reorientation as well as for the known correct displacement
and reorientation field (ground truth). The nonzero error measured in the
latter case is caused by the resampling in generating the data and in the
registration itself.
As expected, the model with reorientation reduces the error considerably.
Since by construction the data fit a pure rotation model, it is naturally that
the gain by including shear is smaller. Nevertheless, the underdetermination
of the correspondence allows a further improvement by a nonzero shear. 2

2In [3], where p = 2 was used in the compatibility term, data term measurements for
the registration results were significantly lower than those reported here. It is only in this
synthetic example that such a large difference between p = 1 and p = 2 is observed. It can
be ascribed to the dramatic underdetermination of the correspondence map by the given
data.

Table 1: Data term values measured to assess registration quality for the
fibre images from Figure 2(a,b) by different models.

Model with rotation and shear 2.14 · 104

Model with rotation only 3.04 · 104

Model without reorientation 4.60 · 104

Ground truth 1.29 · 104
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a b

Figure 3: 127 × 127 fields of 2D tensors extracted from two DT-MRI data
sets of the same human brain. The data set in (a) was obtained with 10
times averaging, while that in (b) was measured without averaging, which
leads to a great difference in noise level.

3.2 Real-World 2D Experiments

For our next three experiments, we use 2D tensor fields extracted from two
DT-MRI data sets of the same human brain. The 2 × 2 tensors are made
up by the components of the 3 × 3 tensors referring to the section plane.
Figure 3 shows the images in a grey-value representation, where each of the
2 × 2 tiles of each image represents one matrix component.
We start by a setup similar to our synthetic experiment, registering the 2D
DT-MRI image from Figure 3(b) to a rotated version. The original image
serves as reference, and a copy rotated by 3◦ as template. Adapting to the
higher noise level, we set w1 = 3.6 · 107, w2 = 9 · 107, w3 = 7.2 · 108. We use
the multiscale procedure with k = 4 and standard deviations 4.0, 2.0, 1.0, 0.5.
In Figure 4 we show reconstructed displacement and reorientation fields to-
gether with clippings of the template and registered image superposed to the
reference image. Accuracy measurements are compiled in Table 2. It can
be seen in the colour-coded display, Figure 4(e,f) that the angle and shear
estimates in most of the image area approximate the correct (ground truth)
values 3◦ and 0, respectively. Histograms shown in Figure 5 confirm this.
Significant deviations occur only in those outer regions of the data set which
are dominated by noise tensors close to zero.
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a b c

d e f

Figure 4: Registration of a 127 × 127 field of 2D tensors extracted from a
DT-MRI dataset of a human brain as reference image and a copy rotated
by 3◦ as template. (a) Top left: Reference image, rows 55 to 66, columns
29 to 40 shown. (b) Top middle: Template image, same area. (c) Top
right: Registered image, same area. (d) Bottom left: Displacement field.
(e) Bottom middle: Rotation angle from the reorientation field. (f) Bottom
right: Shear factor. Inserts in (e), (f) show ground truth parameter values.
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Figure 5: Histograms of estimated deformation parameters for 2D tensors.
(a) Left: Rotation angles from Figure 4(e). (b) Right: Shear factors from
Figure 4(f).
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a b c

Figure 6: Registration of two 127 × 127 fields of 2D tensors extracted from
different DT-MRI data sets of a human brain. (a) Left: Colour-coded dis-
placement field that shows an approximately constant shift between the two
images. (b) Middle: Rotation angle from the reorientation field. (c) Right:
Shear factor from the reorientation field. – Inserts in (b), (c) show ground
truth values.

While the improvement by a model accounting for reorientation is again
evident, the remaining mismatch is much larger than in the synthetic model
due to the high spatial variation of the data and resulting large resampling
error.
We turn now to register the two different 2D DT-MRI images onto each other.
As both data sets were acquired during a single measurement, there is only
a slight displacement, and virtually no reorientation between them. Using
the same parameters as before, we obtain the values shown in Figure 6. In
this case, there is no significant influence of the reorientation, which indicates
that also no substantial overfitting takes place.
In our last 2D experiment, we use the same two 2D DT-MRI images as before
but rotate the reference image by 3◦. The weight parameters are the same
as before. Results are found in Table 3 and the Figure 7. In the top row
(standard setting), a good capture of rotation is achieved in the central region
where most anisotropic tensors reside (white matter). One observes, however,

Table 2: Data term measurements for the registration of a 2D DT-MRI data
set and its rotated version by different models.

Model with rotation and shear 1.02 · 106

Model with rotation only 1.70 · 106

Model without reorientation 2.39 · 106

Ground truth 0.89 · 106
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that angles are somewhat underestimated. The middle row demonstrates the
importance of the compatibility term in our model: By setting its weight to
zero, the displacements are still fairly well estimated but deformations are
estimated reasonably only in a part of the image domain. Finally, the bottom
row shows a result obtained by the model from [3] with exponent p = 2 in
the compatibility term. With a suitably adapted value of the compatibility
weight w1, results of both models (top row and bottom row) look almost
identical.

3.3 Experiments with 3D Data

In our first 3D experiment (Figure 8) we register a rotated volume taken
from one of our DT-MRI data sets onto its unrotated counterpart, using the
SO(3) reorientation model. For the visualisation of exemplary data we use
ellipsoid glyphs analogous to the ellipse glyphs mentioned above for the 2D
case. For the transformation fields we apply the 2D colour coding within the
planes shown. The results show that the homogeneous rotation field and cor-
responding displacements are captured well, again with an underestimation
of reorientation angles, see also the histograms in Figure 9.
Our second 3D experiment (Figure 10) consists in registering equally sized
volumes from both our DT-MRI data sets. First we use our variational model
with SO(3) reorientation. Similarly as in the registration of 2D sections, the
displacement field is dominated by an almost constant translation, whereas
the rotation angles range around zero, with absolute values not exceeding
0.1◦, see also the histogram in Figure 11(a). In order to visualise the small
deviations from zero, the angles have been amplified by a factor 10 before
applying the colour scale.
For comparison, we register the same volumes by a different model: Gradient
descent is performed only for the displacement field, while the reorientation
component is computed by the finite-strain model in each iteration step. The
resulting Euler angles are shown in the bottom row of Figure 10. It can be
seen that the reorientation fields are less smooth than before and vary in

Table 3: Data term measurements for the registration of two 2D DT-MRI
data sets, one of them rotated, by different models.

Model with rotation and shear 1.16 · 106

Model with rotation only 1.42 · 106

Model without reorientation 1.51 · 106
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fact up to absolute values of approx. 0.3◦, compare also the histogram in
Figure 11(b).

4 Summary and Outlook

We have introduced a flexible variational framework for the registration of
tensor data, based on a functional involving data, compatibility, and smooth-
ness terms. We have presented an experimental proof-of-concept with respect
to its applicability on synthetic and real-world data.
A more extensive evaluation of the model in 3D and its comparison to other
registration approaches are part of our ongoing work. We also aim at inves-
tigating the use of the framework with other physical compatibility models.
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Figure 7: Registration of two 127 × 127 fields of 2D tensors extracted from
different DT-MRI data sets of a human brain. The test images were the same
as in Figure 6 but with the reference image rotated by 3◦. Top row: Standard
model with exponent p = 1 and parameters w1 = 3.6 · 108, w2 = 9 · 107,
w3 = 7.2·108. (a) Top left: Displacement field showing a rotation superposed
to the constant shift. (b) Top middle: Rotation angle. (c) Top right: Shear
factor. Middle row, (d)–(f): Same but with suppressed compatibility term,
w1 = 0. While the displacement field (d) is almost identical to (a), both
deformation components are substantially misestimated. Bottom row, (g)–
(i): Model with p = 2 (compare [3]) and parameters w1 = 3.6 · 107, w2 =
9 · 107, w3 = 7.2 · 108. Note that the compatibility weight w1 is rescaled to
accommodate the change in the compatibility energy. – Inserts in angle and
shear fields show ground truth values.
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Figure 8: Registration of 3D tensor data. A 40 × 40 × 40 volume from a
human brain DT-MRI data set serves as reference image. The template is a
copy of the same data, rotated first by 5◦ around the x-axis and then by 5◦

around the y-axis. The reorientation model allows only rotations. Top row:
(a) Left: Voxels 20 to 35 in x direction, 5 to 20 in y direction from layer
30 in z direction of the reference volume. (b) Middle: Same voxels from
the template volume. (c) Right: Same voxels from the registered volume.
Second row: (d) Left: Displacement field in the x-y central plane. (e) Middle:
Displacement field in the x-z central plane. (f) Right: Displacement field in
the y-z central plane. Bottom row: Euler angles in the x-y central plane. (g)
Left: Angle α. (h) Middle: Angle β. (i) Right: Angle θ. Inserts in (g)–(i):
ground truth.
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Figure 9: 3D tensor registration results. (a) Left: Histogram of Euler angles
α from Figure 8(g). (b) Right: Histogram of Euler angles β estimated by
finite-strain model, see Figure 8(h).
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Figure 10: Registration of 3D tensor data. Reference and template were
40 × 40 × 40 regions of the 3D data sets from which also the 2D data in
Figure 3 have been extracted. A 40× 40× 40 volume from one human brain
DT-MRI data set is registered onto an equally sized volume from a different
DT-MRI measurement of the same subject. Top row: (a) Left: Displacement
field in the x-y central plane. (b) Middle: Displacement field in the x-z
central plane. (c) Right: Displacement field in the y-z central plane. Second
row: Euler angles in the x-y central plane, amplified by a factor 10 (i.e.,
the colour scale from Figure 1(b) covers the interval [−0.5◦, 0.5◦]). (d) Left:
Angle α. (e) Middle: Angle β. (f) Right: Angle θ. Bottom row: Same Euler
angles for a registration based on a finite-strain model (see text). (g) Left:
Angle α. (h) Middle: Angle β. (i) Right: Angle θ.
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Figure 11: Comparison of 3D tensor registration results. (a) Left: Histogram
of Euler angles β estimated by our variational method, see Figure 10(e). (b)
Right: Histogram of Euler angles β estimated by finite-strain model, see
Figure 10(h).
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