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Abstract

We consider incremental problem arising in elasto-plastic models
with isotropic hardening. Our goal is to derive computable and guar-
anteed bounds of the difference between the exact solution and any
function in the admissible (energy) class of the problem considered.
Such estimates are obtained by an advanced version of the variational
approach earlier used for linear boundary-value problems and nonlin-
ear variational problems with convex functionals [19, 23]. They do no
contain mesh-dependent constants and are valid for any conforming
approximations regardless of the method used for their derivation. It
is shown that the structure of error majorant reflects properties of
the exact solution so that the majorant vanishes only if an approx-
imate solution coincides with the exact one. Moreover, it possesses
necessary continuity properties, so that any sequence of approxima-
tions converging to the exact solution in the energy space generates a
sequence of positive numbers (explicitly computable by the majorant
functional) that tends to zero.

1 Introduction

Incremental models in the theory of elasto-plasticity are among the most
widely used in the numerical analysis of processes that include plasticity
phenomenon. These typically include memory effect and exhibit hysteresis
[6, 17] behavior which are described by time-dependent variational inequal-
ities. If an implicit Euler scheme is used, then the evolutionary variational
inequality is approximated by a sequence of stationary variational inequalities
of the second kind [16, 3] in which the unknown functions are displacement u
and plastic strain p. Each of these inequalities is equivalent to a minimization
problem with a convex but non-smooth energy functional, J(u, p) → min.
The minimization problem is solved by iterative methods like a classical re-
turn mapping algorithm [26], inexact Newton methods [10] or SQP method
[27] among many others.

The main focus here is not to develop new methods for solving the mini-
mization problems, but to deduce a guaranteed a posteriori estimate of the
difference between exact and numerical solutions. A posteriori estimates are
intended to (a) give an indication of the overall accuracy of an approximate
solution and (b) serve as an error indicator that show regions with exces-
sively high errors (typically a new finite dimensional space constructed on
the basis of this information has extra trial functions in each regions). There
exist various approaches to the construction of a posteriori error estimates
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(a discussion of them can be found e. g., in the monographs [5, 1, 7, 19] or
in the recent overview [23], whereas for applications to elasto-plasticity, we
refer to the works [20, 12].

In this paper, we apply the framework introduced in the book [19], where
the estimates are derived by the analysis of the variational problem and its
dual counterpart. A computable upper bound of the error is obtained on
a purely functional level without exploitation of specific properties of the
approximation or the method used for its computation. Estimates of such
a type are often called “functional a posteriori estimates”. One of the first
publications presenting this method was [25] where a posteriori estimates
were derived for a deformation plasticity model with hardening. Recently, the
method was applied to the Ramberg-Osgood model (sometimes also called
Norton-Hoff) in the theory of nonlinear solid media [9], to nonlinear viscous
flow problems [8, 14] and to problems with nonlinear boundary conditions
[24].

2 Minimization problem and variational in-

equality

We consider the first time-step problem for the elasto-plasticity model with
isotropic hardening and von Mises yield criterion. It can be represented in a
variational form as an energy minimization problem (see [3], Definition 3.3)

J(v, q) :=
1

2

∫
Ω

(
C(ε(v) − q) : (ε(v) − q) + σ2

yH
2|q|2) dx

+

∫
Ω

(σy|q| − fv) dx → min, (2.1)

for an unknown displacement v and a plastic strain q. Here, Ω ⊂ Rd is a
bounded connected domain with Lipschitz boundary Γ. In (2.1), ε(·) denotes
the linearized Green-St. Venant strain tensor defined as

ε(v) :=
1

2

(∇v + (∇v)T
)
, (2.2)

where ∇ denotes a vector gradient operator. J(v, q) is minimized over

v ∈ V0 + u0 :=
{
w + u0 | w ∈ H1

0 (Ω; Rd)
}

,
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and
q ∈ Q0 := {q ∈ Q := L2(Ω; Rd×d

sym) : tr q = 0 a. e. in Ω},
where the function u0 ∈ H1(Ω; Rd) defines a nonhomogeneous Dirichlet
boundary condition on Γ (which is understood in the sense of traces) and
tr denotes the trace operator defined by the relation trA = A : I for all
A ∈ R

d×d with I ∈ R
d×d meaning the identity matrix. The positive scalar

constants H and σy represent the modulus of hardening and yield stress,
respectively, and

C ∈ L(Rd×d
sym, Rd×d

sym)

denotes the fourth-order elastic stiffness tensor which satisfies the relation
(for known positive constants c1 ≤ c2)

c1|q|2 ≤ Cq : q ≤ c2|q|2 (2.3)

for all q ∈ Rd×d
sym. Finally, the vector

f ∈ L2(Ω; Rd)

expresses external forces acting on an elastoplastic continuum located in the
domain Ω. For more details on mechanical aspects of this mathematical
model and its possible generalization please refer to [16, 11].

Theorem 1 There exists a pair (u, p) ∈ (V0 + u0) ×Q0 that solves (2.1). It
satisfies the variational inequality

a(u, p; v − u, q − p) + Ψ(q) − Ψ(p) − l(v − u) ≥ 0, (2.4)

where

a(u, p; v, q) :=

∫
Ω

(
C(ε(u) − p) : (ε(v) − q) + σ2

yH
2p : q

)
dx,

Ψ(q) :=

∫
Ω

σy|q| dx,

l(v) :=

∫
Ω

fv dx

for all (v, q) ∈ V0 × Q0.

Proof. Existence of (u, p) ∈ (V0 +u0)×Q0 follows from known results in the
calculus of variations. Indeed, the functional J(v, q) is convex and coercive on
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(V0 + u0)×Q0, which is a convex closed subset of the product space V ×Q,
where V = H1(Ω, Rd) and Q are reflexive spaces. Due to the assumption
(2.3), the ellipticity and boundedness of the bilinear form a(u, p; v, q) are
easily proved. Then, the equivalence of the variational inequality (2.4) and
(2.1) follows from the Lions-Stampacchia Theorem [18]. �

Remark 1 By the variation of the energy functional J(v, q), it is simple
to show that the minimizer (u, p) must satisfy the following relations almost
everywhere in Ω:

σ := C(ε(u) − p), (2.5)

div σ + f = 0, (2.6)

σD = σ2
yH

2p + σyλ, (2.7)

λ ∈
{

Λ if p = 0,
p
|p| otherwise,

(2.8)

where σ is the stress tensor associated with the exact solution. These relations
have a clear physical meaning: (2.5) expresses an exact stress tensor σ as an
additive decomposition of a linearized elastic strain ε(v) and a plastic strain p
combined with a Hook’s law. (2.6) formulates an equilibrium of internal and
external forces in the quasistatic case. (2.7) and (2.8) formulate a plasticity
flow law in the case of von Mises yield function. See [3] for more details on
the mechanical model and its mathematical aspects.

3 Basic estimate of the deviation from exact

solution

Theorem 2 For any (v, q) ∈ (V0 + u0) × Q0, the estimate

1

2
|||(u − v), (p − q)|||2 ≤ J(v, q) − J(u, p) (3.1)

holds, where the norm in the left hand side is defined by the relation

|||(u − v), (p − q)|||2 := a(u − v, p − q; u − v, p − q) (3.2)

= ‖C(ε(u − v) − p + q)‖2
C−1;Ω + σ2

yH
2 ‖p − q‖2

Ω

and

‖κ‖2
C−1;Ω :=

∫
Ω

C
−1κ : κ dx.
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Proof. The direct calculation shows

J(v, q) − J(u, p) = 1
2
a(v, q; v, q)− 1

2
a(u, p; u, p) + Ψ(q) − Ψ(p) − l(v) + l(u)

= 1
2
a(u − v, p − q; u − v, p − q) + a(u, p; v − u, q − p) + Ψ(q) − Ψ(p) − l(v − u).

In view of (2.4), we obtain (3.1). �
Remark 2 Since σ2

yH
2 > 0, the term σ2

yH
2 ‖p − q‖2

Ω can be dropped to ob-
tain a weaker estimate (formulated as (28) in [12])

1

2
‖σ − τ‖2

C−1;Ω ≤ J(v, q) − J(u, p),

where σ := C(ε(u)−p) and τ := C(ε(v)−q) have meaning of an exact stress
σ and an approximate stress τ .

In the following, we will bound the difference J(v, q) − J(u, p) in (3.1) from
above by a directly computable and physically meaningful term, which does
not involve the exact solution (u, p).

4 Perturbed problem and Lagrangian

The value of J(u, p) is unknown in the estimate (3.1). To use this estimate,
we need to find a computable lower bound of this quantity. For this purpose,
we introduce a ”perturbed” functional

Jλ(v, q) :=
1

2
a(v, q; v, q) +

∫
Ω

σyλ : q dx − l(v),

where the multiplier λ belongs to the set

Λ := {λ ∈ L∞(Ω, Rd×d) : |λ| ≤ 1, trλ = 0 a. e. in Ω}.
The relation of the original and the perturbed problem is given by

sup
λ∈Λ

Jλ(v, q) = J(v, q) (4.1)

for all (v, q) ∈ (V0 + u0) × Q0. Further we define the respective ”perturbed”
Lagrangian

Lλ(v, q; τ, ξ) : =

∫
Ω

(
τ : (ε(v) − q) − C−1τ : τ

2
+ ξ : q − |ξ|2

2σ2
yH

2

)
dx

+

∫
Ω

(σyλ : q − fv) dx, (4.2)
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where new tensor-valued functions τ ∈ Q, ξ ∈ Q0. Since

sup
τ∈Q

∫
Ω

(
τ : (ε(v) − q) − C−1τ : τ

2

)
dx =

1

2

∫
Ω

C(ε(v) − q) : (ε(v) − q) dx,

sup
ξ∈Q0

∫
Ω

(
ξ : q − |ξ|2

2σ2
yH

2

)
dx =

1

2

∫
Ω

σ2
yH

2|q|2 dx,

it is easy to see
sup
τ∈Q
ξ∈Q0

Lλ(v, q; τ, ξ) = Jλ(v, q) (4.3)

for all (v, q) ∈ (V0 + u0) × Q0. Thus, the combination of (4.1) and (4.3)
provides an estimate

J(u, p) = inf
v∈V0+u0

q∈Q0

J(v, q) ≥ inf
v∈V0+u0

q∈Q0

Jλ(v, q) = inf
v∈V0+u0

q∈Q0

sup
τ∈Q
ξ∈Q0

Lλ(v, q; τ, ξ)

≥ sup
τ∈Q
ξ∈Q0

inf
v∈V0+u0

q∈Q0

Lλ(v, q; τ, ξ)

≥ inf
v∈V0+u0

q∈Q0

Lλ(v, q; τ, ξ)

whose substitution in (3.1) yields the inequality

1

2
|||(u − v), (p − q)|||2 ≤ J(v, q) − inf

v∈V0+u0
q∈Q0

Lλ(v, q; τ, ξ) =: M(v, q; τ, ξ, λ)

valid for all τ ∈ Q, ξ ∈ Q0. The right hand side of the last estimate defines
an error majorant M(v, q; τ, ξ, λ). Its explicit form of is derived in the next
section.

5 Derivation of the error majorant

The infimum of Lagrangian (4.2) can be rewritten in the form

inf
v∈V0+u0

q∈Q0

Lλ(v, q; τ, ξ) = inf
w∈V0
q∈Q0

Lλ(w + u0, q; τ, ξ)

= −1

2

∫
Ω

(
C

−1τ : τ +
|ξ|2

σ2
yH

2

)
dx +

∫
Ω

(τ : ε(u0) − fu0) dx

+ inf
w∈V0

∫
Ω

(τ : ε(w) − fw) dx + inf
q∈Q0

∫
Ω

(ξ + σyλ − τ) : q dx. (5.1)

6



Note it holds

inf
w∈V0

∫
Ω

(τ : ε(w) − fw) dx =

{
0 if div τ + f = 0 a. e. in Ω,
−∞ otherwise,

inf
q∈Q0

∫
Ω

(ξ + σyλ − τ) : q dx =

{
0 if τD = ξ + σyλ a. e. in Ω,
−∞ otherwise,

where ·D denotes a deviatoric operator, i.e., AD = A− tr A
d

I, for all A ∈ Rd×d.
Hence, we arrive at the following result.

inf
v∈V0+u0

q∈Q0

Lλ(v, q; τ, ξ) =

⎧⎪⎨
⎪⎩

− ∫
Ω

(
C−1τ :τ

2
+ |ξ|2

2σ2
yH2 − τ : ε(u0) + fu0

)
dx

if (τ, ξ) ∈ Qfλ
,

−∞ otherwise,

(5.2)

where

Qfλ
:= {(τ, ξ) ∈ Q × Q0 : div τ + f = 0, τD = ξ + σyλ a. e. in Ω}. (5.3)

The combination of (2.1) and (5.2) yields an explicit form of the error ma-
jorant estimate under the assumption (τ, ξ) ∈ Qfλ

,

1

2

∫
Ω

(
C(ε(v) − q) : (ε(v) − q) + σ2

yH
2|q|2) dx +

∫
Ω

(σy|q| − fv) dx

+
1

2

∫
Ω

(
C

−1τ : τ +
|ξ|2

σ2
yH

2

)
dx −

∫
Ω

(τ : ε(u0) − fu0) dx

=
1

2

∫
Ω

(
C(ε(v) − q − C

−1τ) : (ε(v) − q − C
−1τ) + σ2

yH
2(q − ξ

σ2
yH

2
)2

)
dx

+

∫
Ω

σy|q| dx−
∫
Ω

(q : τ − ξ : q) dx +

∫
Ω

(τ : ε(v − u0) − f(v − u0)) dx.

After the simplification of the last integral terms due to the constrain
(τ, ξ) ∈ Qfλ

,

∫
Ω

q : τ − ξ : q dx =

∫
Ω

σyλ : q dx for all q ∈ Q0,

∫
Ω

τ : ε(v − u0) − f(v − u0) dx = 0,
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we deduce an explicit form of the error majorant

M(v, q; τ, ξ, λ) =
1

2

∫
Ω

C(ε(v) − q − C
−1τ) : (ε(v) − q − C

−1τ) dx

+
1

2

∫
Ω

σ2
yH

2

(
q − 1

σ2
yH

2
ξ

)2

dx +

∫
Ω

(σy|q| − σyλ : q) dx. (5.4)

Summarizing the above considerations, we formulate the following result.

Theorem 3 The majorant (5.4) represents a guaranteed upper bound of the
combined error norm

1

2
|||(u − v), (p − q)|||2 ≤ M(v, q; τ, ξ, λ). (5.5)

It is valid for any (v, q) ∈ (V0 + u0) × Q0, λ ∈ Λ, and (τ, ξ) ∈ Qfλ
.

Remark 3 The majorant (5.4) was derived by purely functional analysis of
the problem in question. It does not involve mesh-dependent constants and
is valid for any admissible (conforming) approximations from the respective
functional classes associated with the primal variational problem. For this
reason, error majorants (or a posteriori error estimates) of this type are
called functional.

Remark 4 In order to get the upper bound as sharp as possible, we should
minimize the right hand side with respect to free functions and use the esti-
mate

1

2
|||(u − v), (p − q)|||2 ≤ inf

(τ,ξ)∈Qfλ

M(v, q; τ, ξ, λ) (5.6)

This estimate is also valid for any (v, q) ∈ (V0 + u0) × Q0, λ ∈ Λ.

Remark 5 It is easy to see that the functional error majorant M(v, q; τ, ξ, λ)
defined in (5.4) reflects natural conditions (2.5)–(2.8). Indeed, it attains the
zero value if and only if the following conditions hold almost everywhere in
Ω:

τ = C(ε(v) − q), (5.7)

div τ + f = 0, (5.8)

λ : q = |q|, λ ∈ Λ, (5.9)

τD = ξ + σyλ, (5.10)

ξ = σ2
yH

2q. (5.11)

These conditions mean that (v, q) and τ satisfy (2.5)–(2.8); in other words
they must be equal to the solution (u, p) of the minimization problem (2.1)
and the exact stress tensor σ, respectively.
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6 Modification of the majorant

For practical computation, an approximated displacement v ∈ (V0 + u0) and
q ∈ Q0 are computed numerically, e. g., by the finite element method. The
error of such approximation is bounded in the combined norm from above
by a functional majorant M(v, q; τ, ξ, λ) defined in (5.4). To obtain a finite
and therefore meaningful value of the functional majorant, free parameters
must satisfy the conditions (τ, ξ) ∈ Qfλ

and λ ∈ Λ. It is known that the
equilibrium constrain div τ + f = 0 or its equivalent weak formulation∫

Ω

(−τ : ε(w) + fw) dx = 0 for all w ∈ V0 (6.1)

is difficult to satisfy. Therefore, an upper bound of M(v, q; τ, ξ, λ) is derived
here. It does not contain the parameter ξ as well as it remains independent
of the equilibrium constrain, which is transformed into a penalty term. It
turns out useful to split the majorant (5.4) in three parts:

M1(v, q; τ) :=
1

2

∫
Ω

C(ε(v) − q − C
−1τ) : (ε(v) − q − C

−1τ) dx, (6.2)

M2(q; ξ) :=
1

2

∫
Ω

σ2
yH

2

(
q − 1

σ2
yH

2
ξ

)2

dx, (6.3)

M3(q; λ) :=

∫
Ω

(σy|q| − σyλ : q) dx. (6.4)

We exclude ξ by setting ξ = τD − σyλ according to (5.3) to rewrite

M2(q; ξ) =
1

2

∫
Ω

σ2
yH

2

(
q − 1

σ2
yH

2
(τD − σyλ)

)2

dx

=
1

2

∫
Ω

1

σ2
yH

2
(τD − ζ)2 dx =: M̄2(q; τ, λ),

where ζ := σ2
yH

2q + σyλ and obtain a simplified error majorant independent
of ξ

M̄(v, q; τ, λ) := M1(v, q; τ) + M̄2(q; τ, λ) + M3(q; λ),

which is defined on

τ ∈ Qf := {τ ∈ Q : div τ + f = 0 a. e. in Ω}.
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Let us decompose τ = τ − τ̂ + τ̂ , where

τ̂ ∈ Qdiv := {τ ∈ Q : div τ ∈ L2(Ω, Rd)},
i.e., τ̂ does not have to satisfy the equilibrium condition (6.1). Then, we
obtain

M1(v, q; τ) ≤ 1

2
(1 + β)

∫
Ω

C(ε(v) − q − C
−1τ̂) : (ε(v) − q − C

−1τ̂) dx

+
1

2
(1 +

1

β
)

∫
Ω

C
−1(τ − τ̂) : (τ − τ̂) dx,

M̄2(q; τ, λ) ≤ 1

2
(1 + δ)

∫
Ω

1

σ2
yH

2
(τ̂D − ζ)2 dx

+
1

2
(1 +

1

δ
)

∫
Ω

1

σ2
yH

2
(τD − τ̂D)2 dx,

which is valid for τ̂ ∈ Qdiv, τ ∈ Qf and for all β, δ > 0. Here, we used the
inequality

(a + b)2 ≤ (1 + β)a2 + (1 +
1

β
)b2

valid for all β > 0, a, b ∈ R and its modification for β = δ. Since the last
integral in the M̄2(q; τ, λ) estimate fulfills∫

Ω

(τD − τ̂D)2 dx ≤
∫
Ω

(τ − τ̂ )2 dx ≤ c2

∫
Ω

C
−1(τ − τ̂ ) : (τ − τ̂ ) dx,

we combine available bounds on M1(v, q; τ) and M̄2(q; τ, λ) to obtain an
ξ-independent estimate

M̄(v, q; τ, λ, β, δ) (6.5)

≤ 1

2
(1 + β)

∫
Ω

C(ε(v) − q − C
−1τ̂) : (ε(v) − q − C

−1τ̂) dx

+
1

2
(1 + δ)

∫
Ω

1

σ2
yH

2
(τ̂D − ζ)2dx +

∫
Ω

(σy|q| − σyλ : q) dx

+
1

2

[
(1 +

1

β
) +

c2

σ2
yH

2
(1 +

1

δ
)

] ∫
Ω

C
−1(τ − τ̂ ) : (τ − τ̂ ) dx (6.6)

=: M̄(v, q; τ, λ, β, δ, τ̂).

valid for τ̂ ∈ Qdiv.
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Lemma 1 Let τ̂ ∈ Qdiv. Then, it holds

inf
τ∈Qf

1

2

∫
Ω

C
−1(τ − τ̂) : (τ − τ̂ ) dx ≤ 1

2
C2 ‖div τ̂ + f‖2 ,

where C > 0 satisfies the inequality

‖w‖ ≤ C ‖ε(w)‖
C

for all w ∈ V0. (6.7)

Proof. The direct calculation reveals

I(τ̂ ) := inf
τ∈Qf

1

2

∫
Ω

C
−1(τ − τ̂) : (τ − τ̂) dx

= inf
τ∈Q

sup
w∈V0

1

2

∫
Ω

(
C

−1(τ − τ̂ ) : (τ − τ̂ ) + τ : ε(w) − fw
)

dx

the interchange of operators follows e. g., from [13], Theorem 4.1.

= sup
w∈V0

inf
τ∈Q

∫
Ω

(
1

2
C

−1(τ − τ̂ ) : (τ − τ̂ ) + τ : ε(w) − fw

)
dx

the infimum is attained in the argument τ = τ̂ − Cε(w)

= sup
w∈V0

⎛
⎝−1

2
‖ε(w)‖2

C
−

∫
Ω

(div τ̂ + f)w dx

⎞
⎠

≤ sup
w∈V0

(
−1

2
‖ε(w)‖2

C
+ ‖div τ̂ + f‖ ‖w‖

)

≤ sup
w∈V0

(
−1

2
‖ε(w)‖2

C
+ C ‖div τ̂ + f‖ ‖ε(w)‖

C

)

≤ sup
t≥0

(
−1

2
t2 + C ‖div τ̂ + f‖ t

)
=

1

2
C2 ‖div τ̂ + f‖2 ,

where the constant C > 0 comes from (6.7). The existence of such constant
follows from the Korn’s and Friedrichs’ inequalities. �
Lemma 1 allows for the reformulation of (6.7) in

M̄(v, q; τ, λ, β, δ) ≤ inf
τ∈Qf

M̄(v, q; τ, λ, β, δ, τ̂) =: M̂(v, q; τ̂ , λ, β, δ),
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where an non-equilibrated majorant M̂(v, q; τ̂ , λ, β, δ) is defined as

M̂(v, q; τ̂ , λ, β, δ) :=
1

2
(1 + β)

∫
Ω

C(ε(v) − q − C
−1τ̂) : (ε(v) − q − C

−1τ̂ ) dx

+
1

2
(1 + δ)

∫
Ω

1

σ2
yH

2
(τ̂D − ζ)2dx +

∫
Ω

(σy|q| − σyλ : q) dx

+
1

2

[
(1 +

1

β
) +

c2

σ2
yH

2
(1 +

1

δ
)

]
C2 ‖div τ̂ + f‖2 . (6.8)

It is clear that the majorant vanishes if and only if (v, q) and τ̂ satisfy (2.5)–
(2.8), i.e., if these functions coincide with exact solutions. Hence, we arrive
at the following result:

Theorem 4 The majorant (6.8) represents a guaranteed upper bound of the
combined error norm

1

2
|||(u − v), (p − q)|||2 ≤ M̂(v, q; τ̂ , λ, β, δ). (6.9)

It is valid for any (v, q) ∈ (V0 + u0) × Q0, λ ∈ Λ, τ̂ ∈ Qdiv, β, δ > 0. The
majorant vanishes if and only if (v, q) coincides with the solution (u, p) of
the minimization problem (2.1) and τ̂ coincides with the exact stress σ =
C(ε(u) − p).

Remark 6 We see that λ enters only the second and the third integral terms
of (6.8) so that the best λ can be found by minimizing them over λ ∈ Λ. If the
constrain is not active, then the variation of M̂(v, q; τ̂ , λ, β, δ) with respect
to λ provides the relation

(1 + δ)
1

σ2
yH

2
(ζ − τ̂D)

∂ζ

∂λ
+ σyq = 0,

which implies (we recall ζ = σ2
yH

2q + σyλ)

λ = λ0 :=
1

σy
τ̂D − δσyH

2q

1 + δ
.

If |λ0| > 1, then minimal value is attained for |λ| = 1, which yields

λ = λ1 :=
λ0

|λ0| .
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Remark 7 From Theorem 4 it follows that

1

2
|||(u− v), (p − q)|||2 ≤ inf

τ̂∈Qdiv
λ∈Λ

M̂(v, q; τ̂ , λ, β, δ) =: 
(v, q). (6.10)

By the construction, the quantity 
(v, q) gives the best upper bound of the
combined error norm. For practical applications, λ and τ̂ should be selected
such that the value of M̂(v, q, τ̂ , λ) does not differ much from 
(v, q). Finding
suitable λ is not a complicated task. A nature choice is to take λ as in (2.8),
i.e.,

λ = λ(q) ∈
{

Λ if q = 0,
q
|q| otherwise.

(6.11)

Hence, the third integral in (6.8) vanishes. The practical choice of τ̂ is not
studied here, but should be a topic of the forthcoming paper about implemen-
tation of the estimates derived here. The natural choice to consider is the
exact stress

τ̂ = C(ε(u) − p), (6.12)

which is only theoretically interesting, since the exact solution (u, p) is not
known. Then the last term in (6.8) also vanishes and we can take δ = β = 0
to simplify the majorant in

M̂(v, q; σ, λ(q)) =
1

2
‖C(ε(u − v) − p + q)‖2

C−1

+
1

2

∫
Ω

1

σ2
yH

2
(σD − σ2

yH
2q − σyλ(q))2dx.

The last integral is rewritten using (2.7) (i.e., σD = σ2
yH

2p + σyλ(p)) and
bounded as

1

2

∫
Ω

(
σ2

yH
2(p − q) + σy(λ(p) − λ(q))

)2

σ2
yH

2
dx ≤

∫
Ω

σ2
yH

2(p − q)2dx

+

∫
Ω

(λ(p) − λ(q))2

H2
dx.

By introduction of


1(p − q) :=
1

2

∫
Ω

σ2
yH

2(p − q)2dx +

∫
Ω

(λ(p) − λ(q))2

H2
dx,

13



we can write the estimate in the combined norm (3.2),

M̂(v, q; σ, λ(q)) ≤ 1

2
|||(u − v), (p − q)|||2 + 
1(p − q). (6.13)

The value of 
1(p − q) measures, how the majorant value M̂(v, q; σ, λ(q))
overestimates the value of error in the combined norm. Since 
1(p − q) de-
pends on the exact plain strain p, it can not be practically computed, but can
be at least simplified. To do it, let us decompose the domain Ω in its elastic
and plastic parts in dependence of p or q as

Ω := Ωp
ela ∪ Ωp

pla, Ω := Ωq
ela ∪ Ωq

pla,

where
Ωp

ela := {x ∈ Ω : p(x) = 0}, Ωp
pla := Ω \ Ωp

ela,

Ωq
ela := {x ∈ Ω : q(x) = 0}, Ωq

pla := Ω \ Ωq
ela,

and let us define

ω1 := Ωq
ela
∩ Ωp

ela
, ω2 := Ωq

pla
∩ Ωp

pla
, ω3 := Ω \ {ω1 ∪ ω2}.

Then, ω1 represents a part of domain Ω, where both exact and approximate
plastic strains show elasticity behavior. It this subdomain, we can choose any
λ(p) = λ(q) ∈ Λ to obtain∫

ω1

(λ(p) − λ(q))2 dx = 0.

In the subdomain ω3, where the exact and approximate plastic strains indi-
cate different behaviors (one indicates elastic behavior, whereas the other one
plastic behavior), we can choose one parameter (either λ(p) from (2.8) or
λ(q) from (6.11)) to ensure∫

ω3

(λ(p) − λ(q))2 dx = 0.

In ω2, both exact and approximate plastic strains show plasticity behavior and∫
ω2

(λ(p) − λ(q))2 dx =

∫
ω2

(
p

|p| −
q

|q|
)2

dx

=

∫
ω2

(
p

|p|
|q| − |p|

|q| − q − p

|q|
)2

dx

≤ 2

∫
ω2

(
(|q| − |p|)2

|q|2 +
(q − p)2

|q|2
)

dx

≤ 4

∫
ω2

(q − p)2

|q|2 dx ≤ 4

∫
Ωq

pla

(q − p)2

|q|2 dx.
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Together, we have formulated an estimate


1(p − q) ≤ 
2(p − q) :=
1

2

∫
Ω

σ2
yH

2(p − q)2dx + 4

∫
Ωq

pla

(q − p)2

|q|2 dx, (6.14)

which results in

Theorem 5 The majorant value M̂(v, q; σ, λ(q)) in the case of the exact
stress (6.12) and λ(q) from (6.11) satisfies

M̂(v, q; σ, λ(q)) ≤ 1

2
|||(u − v), (p − q)|||2 + 
2(p − q), (6.15)

where the overestimation functional 
2(p − q) is defined in (6.14).
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[5] I. Babuška and T. Strouboulis, The finite element method and its relia-
bility, Oxford University Press, New York, 2001.

[6] M. Brokate and J. Sprekels, Hysteresis and phase transitions, Springer,
New York, 1996.

15



[7] W. Bangerth and R. Rannacher, Adaptive finite element methods for
differential equations, Birkhäuser, Berlin, 2003.
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